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Abstract

In this article, we present a real option approach for improving revenue management regard-

ing fluctuating commodity prices and time-varying strike prices in the field of operational

research. We also take into account the cyclical nature of commodity prices, which is an im-

portant “stylised” fact in the empirical behavior of commodity prices. Two typical examples

are provided to illustrate how real options can be used for enhancing profits and managing

risk, which are important in revenue management. Valuation of these real options via a

semi-analytical algorithm will be discussed.

Keywords: Air transport, energy, risk management, revenue management, real options,

stochastic processes.

1 Introduction

Many firms from various industrial sectors face a common important problem of in-

creasing or maximizing their revenues by selling a fixed stock of products or certain

amount of services due to the limitation of the production or service capacity in a fixed

time period. This is commonly known as the problem of revenue management. In many

cases, those products or services will have a very low value or even zero value if they are

not used by the end of the selling period. Typical examples of industries offering such

products or services include airlines, hotels, rental cars and fashion goods. See the surveys

by Belobaba (1987), Weatherford and Bodily (1992) and Geragthy and Johnson (1997)

for detail. Some previous researches on revenue management mainly focus on the analysis

of firms’ pricing policy and selling strategy under the assumption that they are driving
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force in price-setting actiing as monopolists in these industries (see, for example, Gallego

and Van Ryzin (1994) and Feng and Gallengo (1995), and others). Under the assumption,

a model with price certainty works well. However, in practice, the price of the underlying

capacity or commodity is usually driven by market forces (See, for example, Deng, Feng

and Li (2006) for discussions). This makes the model with price certainty not satisfactory.

When the price of the underlying capacity or commodity is fluctuating due to changes in

economic factors, revenue management not only plays an important role for enhancing or

maximizing profit, but also plays a significant role for risk management. This extends the

domain of revenue management from enhancing or maximizing profit to both managing

risk and enhancing or maximizing profit. Traditionally, the main focus of the literature

on revenue management concerns profit enhancement or profit maximization for indus-

tries, such as the airline industry and the car rental industry, with fluctuating commodity

prices (see, for example, Anderson, et al., 2004). There is a limited amount of literature

concerning the issue of risk management in revenue management when the price of the

underlying commodity or capacity fluctuates randomly over time.

In this paper, we shall address the two important aspects, namely, profit enhancement

and risk management, in revenue management. In particular, we shall apply a special

type of options written on the underlying commodities to achieve the goals of profit

enhancement and risk managment in revenue management. We shall consider two typical

industrial examples in revenue management to illustrate how the two goals can be achieved

through the use of the options. First, an example from the airline industry is provided

for studying profit enhancement. The price of the airticket fluctuates randomly over time

due to market forces, economic conditions and travel seasons. In reality, many travellers

buy airline ticket from travel agents, which play an important role as an intermediation

between airline companies and travellers. Here, we introduce a callable ticket or a discount

ticket sold by a travel agent to a traveller, which gives the travel agent the right to buy

back or call back the ticket at the last minute at which the agent can still sell the ticket.

Since the travel agent has the right to buy back the ticket, the travel agent have to sell the

callable ticket at a lower price compared with the original ticket. Travellers who do not

have definite or exact travel plans may consider buying callable tickets. We shall consider

the valuation of these discounted tickets. Besides determining the price of a discount

ticket, it is an important practical problem about the determination of the optimal time

at which the agents should buy back the ticket in order to maximize their payoffs or profits.

We shall determine the optimal time by solving an optimal stopping problem. The second

example based on Strategic Petroleum Reserve (SPR) in the energy industry is to examine

the risk management issue in revenue management. Since the SPR producers intend to

hedge risk borne by them due to the special nature of energy commodities, they can also

use long call options while selling the energy commodities to the SPR builders. To provide

more flexibility, we consider both the European-style and American-style energy options.

Throughout this paper, we consider a special type of options with time-varying strike
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prices to enhance the profits or achieve better risk management results. We incorporate

this special feature to our real option-based revenue management models and price the

options using a semi-analytical algorithm, which provides practitioners with a much more

convenient way to value the real options compared with some numerical methods, such as

the finite-difference method. To illustrate the estimation accuracy of our approach, we also

provide numerical examples and compare the approximated results with those obtained

from the finite-difference method. Results show that our semi-analytical approach does

not deteriorate the accuracy of option pricing.

The rest of this paper is structured in the sequel. Section 2 provides a review on some

relevant literature. A general problem setting for the real option with a time-varying strike

price is briefly presented in Section 3. An example from the airline industry for profit

enhancement is presented in Section 4, followed by Section 5 which provides an example

of SPR from the energy industry for examining the risk-management issues. Concluding

remarks and further implications are included in Section 6.

2 Literature Review

Recently, techniques for real option valuation have been applied to investigate the

decision making in this field in the presence of uncertainty (Anderson et al., 2004). In the

traditional financial economics literature, effects of random fluctuation in spot prices and

limited capacity are often ignored in studies on options contracts and real options (Allaz

and Vila, 1993) for analytical simplicity. In particular, revenue management on callable

products has received considerable interest, and some previous studies (e.g., Gallego, Kou

and Phillips, 2004; Feng and Gallego, 2005) have made significant contributions to this

literature.

As one of the pioneer studies in this literature, Wu and Kleindorfer (2005) incorporate

option-based contracts in supply management into a game-theoretical model and focus

on electricity markets. As discussed by Gallego, et al. (2004), in addition, the nature

of callable products provides us with a different angle to examine revenue management.

However, the issues of using callable products to enhance profit profiles and to improve

the practice of risk management have not been extensively explored yet.

More interestingly, one realizes that one of the most important features of the under-

lying commodities in revenue management is their price fluctuation over time (Anderson,

et al., 2004; Gallego, et al., 2004; Feng and Gallego, 2005). Thus, real options need to

have time-varying strike prices so as to enhance profits and/or to hedge risk.

Multiple contributions are made to the literature by this paper. Firstly, we provide a

new real option approach to deal with both of the issues of profit enhancement and risk

management, which are important in the revenue management. Secondly, we highlight

the special feature of fluctuating commodity prices in revenue management and adopt

an effective semi-analytical algorithm for pricing real options with time-varying strike
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prices. Thirdly, it sheds lights on the risk management issues in energy financing and

risk hedging using real options. Finally, it provides testable implications for the airline

industry and for energy finance and economics regarding the demand-supply equilibrium

in building strategic petroleum reserve. This is mainly because changes in demand and/or

supply influenced by many factors in the economy may affect the profit-enhancement and

risk-management strategies significantly.

3 A General Problem Setting for Real Options with Time-Varying

Strike Prices

To construct a real option with a time-varying strike price, we denote Kt as the strike

price depending on time t. For analytical simplicity, we define Kt = Kert, where K is

pre-determined in the options contract and r is a constant risk-free rate.

We suppose there is an underlying commodity S with spot price St at time t. The spot

price of S fluctuates randomly over time according to certain stochastic process which will

be specified in the next two sections for different commodities. A call option written on S,

with time-varying strike Kt and maturity T has a discounted payoff e−rT (ST −KT )+. Note

that the option is a European option if it is not allowed to be exercised before the maturity

T ; otherwise, it is an American option, and there could be an optimal early exercise time

τ ∗ ∈ (0, T ]. The early exercise feature of the American option with time-varying strike

poses additional difficulty in its pricing issue.

Wu, Kleindorfer, Sun and Zhang (2002) present a model for pricing capacity options

on non-storeable goods, and Xia and Zhou (2005), a pioneer study in option valuation,

provide a closed-form formula for pricing perpetual American options with time-varying

strike prices. Whereas Xia and Zhou (2005) pave the road for further research on this

topic, exploring the use of options with both time-varying strike prices and finite matu-

rities in revenue management and valuing these options have not been explored in the

literature. It is of practical relevance to explore the use of these options to improve rev-

enue management when the underlying commodity prices are fluctuating and/or capacity

is limited.

In the next two sections, we explore the use of these options in the airline industry

and the energy sector and consider the valuation of these options. We shall adopt a semi-

analytical algorithm for pricing these options on commodities with fluctuating prices in

the airline industry and in the energy industry, respectively.

4 Profit Enhancement: An Example from the Airline Industry

In the airline industry, capacity is limited and therefore revenue management, including

both the determination of prices over time and booking process, plays a key role in airline

companies’ profits. Previous studies (e.g., Gallego, et al., 2004) treat airline tickets as
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callable products for revenue management and discuss some alternatives such as bumping,

flexible products and last-minute discounts.

In this section, we present a real option-based revenue management model with a

call option purchased by travel agents, and the main objective is to enhance the agents’

profits by purchasing call options from their customers while selling them air tickets. The

call option premium appears in the form of a discount off the regular airfare. Customers

who are flexible regarding all aspects of their trips and have the possibility of changing

their travel plans are willing to accept the deal. In this case, travel agents can call back

these tickets when some other customers need to travel with necessity and/or purchase

air tickets shortly before departure at much higher prices. This can enhance the profits

of the agents.

To illustrate the real option approach in this model, we assume that a customer pur-

chases an air ticket at a discounted price cS0 at time t0, where 0 < c < 1. S0 is the regular

airfare. At the same time, the deal is that with the call option, the travel agent can buy

back the ticket at the price Kt at any time t ∈ (0, T ], where T is the last minute at which

the agent can sell the ticket and T represents the maturity of the embedded call option.

As defined in Section 2, the time-varying strike price Kt = S0e
rt and St is the spot

price of the air ticket at time t. Suppose C0 is the price of a call option written on

the ticket S, with strike Kt and maturity at time T . The discount coefficient c can be

determined by:

(1 − c)S0 = C0.

Furthermore, since airfare has the property of seasonality, we introduce an additional

factor to the model to describe it following Elliott, Sick and Stein (2003). Thus, the spot

price of the air ticket under a real-world probability P follows:

St = S0gte
Xt ,

where gt is the seasonality factor defined as

gt = eδ
R t

0
sin(2πs+ξ)ds

and

dXt = (µ − q)dt + σdWt.

Here µ is the long-run mean return, q is a dividend-like term, σ is volatility, and Wt

is a standard Brownian motion. In general, one can consider that parameters r, µ, q,

σ, and St are deterministic functions of time t following prior research (e.g., Duffie and

Richardson, 1991), and therefore, for analytical simplicity, we assume they are constant.

A more general case can be extended easily by following the same method presented in

the following.
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By Itô’s lemma, we have

dSt =
(

δ sin(2πt + ξ) + µ − q + 1
2
σ2

)

Stdt + σStdWt

= (bt − q)Stdt + σStdWt,
(4.1)

where bt = δ sin(2πt + ξ) + µ + 1
2
σ2.

For pricing options, we need to work in a risk-neutral world. First, we suppose that

there is a constant market price of risk λ. Let Ft denote the information set generated by

the values of the Brownian motion W up to and including time t. Define a risk-neutral

measure Q equivalent to P on FT by the following Radon-Nikodym derivative:

dQ
dP

∣

∣

∣

∣

FT

:= exp(−λWT − 1

2
λ2T ) . (4.2)

From Girsanov’s theorem,

W †
t := λt + Wt (4.3)

is a standard Brownian motion with respect to {Ft} under Q.

Let µ† := µ−λσ. Write b†t := δ sin(2πt+ ξ)+µ†+ 1
2
σ2. Then the risk-neutral dynamic

of S under Q is:

dSt = (b†t − q)Stdt + σStdW †
t . (4.4)

4.1 Discounted Airfare with A European Option

We first present the fair value of the discounted airfare when a European call option

is purchased by a travel agent. The European call option gives the agent the right, but

not the obligation, to buy or call back the ticket. However, the agent cannot exercise the

option before its maturity T . We can determine the value of the European option, given

that

(1 − c)S0 = e−rT E
[

(ST − KT )+
∣

∣S0

]

,

where E is the expectation with respect to the risk-neutral probability Q defined above.

Note that the discount c offers to customers by the agent can be determined completely

once we have determined the premium of the European option with payoff (ST −KT )+ at

the maturity T . Hence, we first consider the following problem according to risk-neutral

spot price (4.4):

C(t, S) = e−r(T−t)E
[

(ST − KT )+
∣

∣St = S
]

. (4.5)

In the above European option, KT is used only at the maturity and regarded as fixed.
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Then the above (4.5) satisfies the partial differential equation (PDE):

{

∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 + (b†t − q)S ∂C
∂S

− rC = 0,

C(T, S) = (S − KT )+.
(4.6)

As shown in Wilmott, Howison and Dewynne (1996), solving equation (4.6) yields























C(t, S) = S0e
R T

t
(b†s−q−r)dsN(d1(t, S)) − KertN(d2(t, S)),

d1(t, S) =
ln(S)−ln(KerT )+

R T

t
(b†s−q+ 1

2
σ2)ds

σ
√

T−t
,

d2(t, S) = d1(t, S) − σ
√

T − t.

(4.7)

Hence, the discount factor c is expressed by

c = 1 − e
R T

0
(b†s−q−r)dsN(d10) − KN(d20)/S0, (4.8)

where










d10 =
ln(S0)−ln(KerT )+

R T

0
(b†s−q+ 1

2
σ2)ds

σ
√

T
,

d20 = d10 − σ
√

T .

4.2 Discounted Airfare with An American Option

However, the travel agent can have more flexibility if he relaxes the restrictions in the

above European option by longing an American option instead. In this case, both the

optimal exercise time τ ∗ and the value of c, where

(1 − c)S0 = E[e−rτ∗

(Sτ∗ − Kτ∗)+],

need to be determined.

We now consider the following optimal stopping problem, which is different from pric-

ing a standard American call option since the strike price is time-varying. At time t, the

American call option price is

CA(t, S) = sup
τ∈Tt,T

E
[

e−r(τ−t)(Sτ − Kτ )
+
∣

∣

∣
St = S

]

. (4.9)

Once CA(t, S) is determined, we can determine the value of the discount factor c. Note

that the optimal exercise time τ ∗ is the same for CA(t, S) and c.
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The above (4.9) satisfies the following free-boundary PDE problem:































∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 + (b†t − q)S ∂C
∂S

− rC ≤ 0,

C(t, S) − (St − Kt)
+ ≥ 0,

(

∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 + (b†t − q)S ∂C
∂S

− rC
)(

C(t, S) − (St − Kt)
+
)

= 0,

C(T, S) = (S − KT )+,

(4.10)

or






min
{

−∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 − (b†t − q)S ∂C
∂S

+ rC, C(t, S) − (St − Kt)
+
}

= 0,

C(T, S) = (S − KT )+.
(4.11)

Since both American and European options satisfy the same PDE, so does the early

exercise premium

ǫ(t, S) := CA(t, S) − C(t, S).

Thus, ǫ(t, S) satisfies

∂ǫ
∂t

+ 1
2
σ2S2 ∂2ǫ

∂S2 + (b†t − q)S ∂ǫ
∂S

− rǫ = 0. (4.12)

We approximate the solution for the above PDE by assuming that ǫ(t, S) is approxi-

mately given by the following separated form:

ǫ(t, S) ≈ H(S, h)h(t).

Then

h∂H
∂h

∂h
∂t

+ H ∂h
∂t

+ (b†t − q)Sh∂H
∂S

+ 1
2
σ2S2h∂2H

∂S2 − rHh = 0.

We further assume that

h(t) = 1 − e−r(T−t), (4.13)

and therefore,

∂h

∂t
= r(h − 1). (4.14)

With appropriate substitutions and variable changes, this gives

S2 ∂2H
∂S2 + βtS

∂H
∂S

− α
h
H = (1 − h)α∂H

∂h
, (4.15)
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where

α =
2r

σ2
and βt =

2(b†t − q)

σ2
.

Equation (4.15) can be approximated by

S2 ∂2H
∂S2 + βtS

∂H
∂S

− α
h
H = 0, (4.16)

since the right-hand side of Equation (4.15) is generally fairly small and can be ignored.

When T − t is large, 1 − h is close to zero; when T − t is small, on the other hand, ∂H
∂h

is

close to zero. Solving equation (4.16) and applying boundary conditions lead to

CA(t, S) =

{

C(t, S) + At

(

S
S∗

)γt
, if S < S∗,

S − Kert, if S ≥ S∗,
(4.17)

where

At =
S∗

γt

[1 − eb
†
t−q−rN(d1(t, S

∗))] and γt =
1

2

(

− (βt − 1) +

√

(βt − 1)2 +
4α

h

)

.

The variable S∗ is the critical stock price above which the option should be exercised. It

can be estimated by solving the equation

S∗ − Kert = C(t, S∗) + At

iteratively.

In short, travel agents can be better off if they long options while selling air tickets.

The prices of the call options appear in the form of discounts off the regular airfare.

However, it is worth noting that this example is not exactly the same as that in the

revenue management in prior research, since we focus on an intermediate party in the

airline industry.

4.3 Numerical Examples

In this subsection, we use numerical examples for the European and American call

options embedded in the discounted airfare to further illustrate profit maximization in

revenue management of the airline industry described in Sections 4.1 and 4.2. Assuming

that

r = 0.05, q = 0.08, µ† = 0.065, ξ = 1, δ = 0.01, σ = 0.3

we price the embedded options and the discounted airfare for various values of initial spot

price S0 and maturity T . We suppose that T takes values 0.25 year, 0.5 year, 0.75 year

and 1 year, respectively, and S0 ranges from 100 to 140 with an increment of 10. The

figures we have assumed are consistent with the corresponding figures in the industries.

For instance, the spot price of the ticket can be from £100 to £140 , which are compatiable
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with the prices of tickets for UK internal flights or tickets from UK to other EU regions.

The maturity T from 0.25 year and 1 year is also compatible with the real time duration

for a ticket, which is available for sale.

We shall compare the option prices obtained from the semi-analytical algorithm with

those from the finite difference scheme. Since there is no closed-form solution to the

pricing problem we considered above, one might use some numerical method, such as the

finite-difference scheme to solve the pricing P.D.E.s. The finite-difference scheme has the

advantage of giving a good approximate pricing result when an appropriate or a fine grid

for discretizing the space and the time domains of the pricing P.D.E.s. is used. However,

the computational time and effort required to implement the finite-difference scheme can

be substantial. The semi-analytical algorithm we proposed can provide a convenient way

to determine the option prices. We shall demostrate the accuracy of the semi-analytical

algorithm by comparing it with a finite-difference scheme with a fine grid, which can

deliver accurate approximation results.

Tables 1 presents the European and the American call option prices obtained from the

BAW quadratic approximation [3] when the initial price of underlying commodity and the

maturity take different values, respectively. Comparing the option prices obtained from

the above semi-analytical algorithm with those from the finite difference scheme, we find

that the relative errors are negligible. Corresponding values of the discounted airfares are

also presented in Table 1, and we find that the approximation algorithm provides accurate

estimation and is easy to implement.

5 Risk Management: An Example from the Energy Industry

In the energy industry, revenue management is also one of the critical issues. Strategic

petroleum reserve (SPR) has been a hot issue for three decades, and it becomes one of the

crucial factors boosting the prices of natural resources recently. In this section, we use

SPR to illustrate the risk-management issues, in particular the risk-hedging issues, in real

option-based revenue management, and investigate these issues from the producer side.

Considering the special features of energy commodities, such as seasonality and mean-

reverting prices, we again price both European and American options with time-varying

strike prices.

5.1 European and American Options on Energy Commodities

To hedge risk, producers of energy products can long call options while selling under-

lying commodities to the SPR builders. Thus, we shall focus on European and American

call options in this section. Some special natures of the energy commodities significantly

affect the valuations of options on them, and therefore need to be pointed out here.

First, due to the fluctuation of energy commodity prices and the existence of time value

of money as shown in the traditional finance literature, the strike price of the relevant
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options should be time-varying to better hedge the risk, and can again be defined as

Kt = Kert, t ∈ (0, T ] as before, where K is usually taken to be S0. If they are European

options, KT = KerT , and they are equivalent to regular European options when the

risk-free rate r is constant. If they are American options, however, the factor t plays

an important role in determining the option prices. Given that the spot price of an

underlying energy commodity is S0 at time t0, for analytical simplicity, we define the

energy commodity price producers sell at is S0−C0 at time t0, where C0 is the call option

premium.

Second, due to the features of seasonality and the mean-reverting property of energy

commodity prices, we assume that under a real-world probability P, the spot price of

the underlying energy commodity follows St = S0gte
Xt , where gt is again the seasonality

factor defined as gt = eδ
R t

0
sin(2πs+ξ)ds and

dXt = κ(γ − Xt)dt + σdWt.

κ is the strength of mean-reversion, which determines the speed of adjustment pulling the

randomly moving value of the mean-reverting asset toward a central location γ, and γ is

also referred to the long-run mean return.

By Itô’s lemma, we get

dSt =
(

δ sin(2πt + ξ) + κγ + 1
2
σ2 − κ ln St

)

Stdt + σStdWt

= (b̄t − κ ln St)Stdt + σStdWt,
(5.1)

where b̄t = δ sin(2πt + ξ) + κγ + 1
2
σ2.

For pricing options on the energy commodity, we also need to consider a risk-neutral

world. We suppose that there is a constant market price of risk λ̄. Define a risk-neutral

measure Q̄ equivalent to P on FT by the following Radon-Nikodym derivative:

dQ̄
dP

∣

∣

∣

∣

FT

:= exp

(

−
∫ T

0

λ̄ ln StdWt −
1

2

∫ T

0

λ̄2(ln St)
2dt

)

. (5.2)

¿From Girsanov’s theorem,

W̄ †
t := Wt +

∫ t

0

λ̄ lnSudu (5.3)

is a standard Brownian motion with respect to {Ft} under Q.

Let κ† := κ + λ̄σ. Then, under Q, the risk-neutral dynamic of S is:

dSt = (b̄t − κ† ln St)Stdt + σStdW̄ †
t , (5.4)
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At time t, thus, the American call option price is

CA(t, S) = esssup
τ∈Tt,T

E
[

e−r(τ−t)(Sτ − Kτ )
+
∣

∣

∣
St = S

]

, (5.5)

which satisfies the following free-boundary PDE problems:































∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 + (b̄t − κ† ln S)S ∂C
∂S

− rC ≤ 0,

C(t, S) − (St − Kt)
+ ≥ 0,

(

∂C
∂t

+ 1
2
σ2S2 ∂2C

∂S2 + (b̄t − κ† ln S)S ∂C
∂S

− rC
)(

C(t, S) − (St − Kt)
+
)

= 0,

C(T, S) = (S − KT )+

(5.6)

5.2 Numerical Examples

To further illustrate the implementation of the algorithm introduced in Section 4.1, we

consider the following numerical experiments using some specimen values for the model

parameters such as r = 5%; κ = 0.15, γ = 0.5, ξ = 1, δ = 0.01, λ̄ = 0.06 and σ = 0.3. For

different values of the initial price of the energy commodity S0 and the time to maturity T ,

we price European and American call options purchased by energy commodity producers,

and calculate their corresponding real energy commodity prices defined by S0 − C0. We

suppose that S0 ranges from 30 to 70 with an increment of 10, while T can be 0.25, 0.5,

0.75 and 1 years. Table 2 presents the numerical results for the European and American

call option prices approximated by the finite-difference scheme, and their corresponding

real commodity prices.

Note that we have assumed zero dividend payment in the numerical examples, and

therefore, according to the standard finance theory, the American call option prices should

have been the same as the corresponding European counterparts due to the absence of

dividend payment. However, this is not the truth here since the strike prices of the Amer-

ican call options are time-varying. This makes their behaviors totally different from those

predicted from the standard option pricing theory. We can see that the gaps between the

American call option prices and the European ones are quite substantial, and they increase

in the length of maturity. In other words, an early exercise premium for the American

call option is present due to the presence of the time-varying-strike-price (TVSP) effect,

and this illustrates that the TVSP effect on option premium is significant.

One noticeable feature of the embedded European and American call options is that

the strike price depends on both the initial price of the energy commodity S0 and the time

to maturity T . This makes the behaviors of call option prices as functions of the initial

underlying price S0 different from those of the standard call option prices with constant

strike prices. This difference becomes more pronounced when we consider a European call

option with longer time to maturity, and it is mainly due to the feature of seasonality.

As shown in Table 2, the European call option prices decrease in the initial price of
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the underlying energy commodity when T = 0.75 year and when the maturity is one year.

Please note that this does not violate the features of European call option prices defined

in the Black-Scholes formula since the underlying security in the Black-Scholes model

follows a log-normal process. The phenomena shown in our numerical experiments reflect

the special feature, seasonality, of energy commodities. We also find that the influence

of seasonality does not appear when call options are of the American style, and this is

mainly because of the self-adjustment made by the option holders when they can choose

an optimal early exercise time.

In short, we find that the seasonality have significant effects on European call option

prices, but insignificant effects on the American ones. On the contrary, the TVSP effect

is significant when call options are of the American style, but insignificant when they are

of the European style.

6 Concluding Remarks and Further Implications

While revenue management has attracted serious attention of academic researchers

in various disciplines and practitioners in different sectors, profit maximization has been

the major focus of previous studies. Although more and more people have realized the

importance of the risk-management issues, in particular the risk-hedging issues, in this

field, they have not been extensively studied in the literature. This study introduces a

real-option approach to deal with both profit enhancement and risk hedging issues in

revenue management.

On the basis of studies on callable products in revenue management (e.g., Gallego, et

al., 2004; Feng and Gallego, 2005), we used two typical examples in two industries, the

airline industry and the energy industry, to illustrate the proposed approach. Due to the

special features of airline tickets and energy commodities, in addition, we incorporate the

seasonality and TVSP effects into the models, and propose a semi-analytical algorithm for

pricing the real options. It develops the approach presented in Xia and Zhou (2005) which

gives a closed-form expression for pricing perpetual American options with time-varying

strike prices. Numerical examples are also presented to illustrate the estimation accuracy

of the proposed approach by comparing with results obtained from the finite difference

scheme.

In the airline industry, travel agents can buy call options from their customers while

selling air tickets so as to be able to call back these tickets if they can sell them at much

higher prices. To enhance their own profits, in other words, travel agents long call options

in order to purchase the tickets back from their customers if some other customers travel

with necessity and would like to pay higher prices. Customers who are flexible regarding

their trips and those who can change their travel plans are willing to accept the deal. The

option premium appears in the form of a discount offered to the customers when they

purchase air tickets. In the energy industry, strategy petroleum reserve (SPR) has been
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a hot topic for at least 30 years, and it is one of the most significant factors boosting the

prices of energy commodities. To hedge risk, producers of energy commodities can long

call options from the strategic reserve builders while selling them underlying products.

While constructing the models for these two industries, we find that the seasonality effect

is significant in both of them while the mean-reversion effect is significant in the energy

industry as documented in the literature.

Using the models constructed on the basis of real options and incorporating seasonality,

mean-reversion and time-varying strike prices into the models, we examine both aspects

of revenue management, profit enhancement and risk management. Besides that we show

the effectiveness and the estimation accuracy of the proposed approach, we also find that

seasonality has significant effects only on European call prices, but the time-varying-

strike-price effects are significant only on the American ones, in the energy industry.
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Table 1 European and American Option Prices in the Airline Industry

European European Discounted American American Discounted

S0 (Fin. Diff.) Eq(4.7) Airfare (Fin. Diff.) Eq(4.17) Airfare

T = 0.25 year

100 3.5359 3.5357 96.4643 3.6015 3.6125 96.3875

110 3.8892 3.8892 106.1108 3.9614 3.9738 106.0262

120 4.2422 4.2428 115.7572 4.3211 4.3350 115.6650

130 4.5965 4.5963 125.4037 4.6819 4.6963 125.3037

140 4.9503 4.9499 135.0501 5.0422 5.0576 134.9424

T = 0.5 year

100 4.6123 4.6113 95.3887 4.8304 4.8441 95.1559

110 5.0742 5.0724 104.9276 5.3140 5.3285 104.6715

120 5.5350 5.5336 114.4664 5.7968 5.8129 114.1871

130 5.9968 5.9947 124.0053 6.2802 6.2973 123.7027

140 6.4577 6.4558 133.5442 6.7631 6.7817 133.2183

T = 0.75 year

100 5.2358 5.2351 94.7649 5.6326 5.6848 94.3152

110 5.7594 5.7586 104.2414 6.1959 6.2532 103.7468

120 6.2828 6.2821 113.7179 6.7591 6.8217 113.1783

130 6.8063 6.8056 123.1944 7.3223 7.3902 122.6098

140 7.3302 7.3291 132.6709 7.8858 7.9587 132.0413

T = 1 year

100 5.7857 5.7870 94.2130 6.2690 6.4255 93.5745

110 6.3643 6.3656 103.6344 6.8960 7.0680 102.9320

120 6.9430 6.9443 113.0557 7.5229 7.7106 112.2894

130 7.5216 7.5230 122.4770 8.1499 8.3531 121.6469

140 8.1002 8.1017 131.8983 8.7768 8.9957 131.0043
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Table 2 European and American Option Prices in the Energy Industry

European (C0) Real Commodity American (C0) Real Commodity

S0 (Finite Difference) Price (S0 − C0) (Finite Difference) Price (S0 − C0)

T = 0.25 year

30 0.4903 29.5097 0.8444 29.1556

40 0.5622 39.4378 1.0583 38.9417

50 0.6233 49.3767 1.2626 48.7374

60 0.6767 59.3233 1.4597 58.5403

70 0.7243 69.2757 1.6511 68.3489

T = 0.5 year

30 0.3279 29.6721 0.9274 29.0726

40 0.3416 39.6584 1.1468 38.8532

50 0.3502 49.6498 1.3553 48.6447

60 0.3558 59.6442 1.5557 58.4443

70 0.3595 69.6405 1.7500 68.2500

T = 0.75 year

30 0.2051 29.7949 0.9560 29.0440

40 0.1954 39.8046 1.1745 38.8255

50 0.1863 49.8137 1.3822 48.6178

60 0.1779 59.8221 1.5820 58.4180

70 0.1702 69.8298 1.7756 68.2244

T = 1 year

30 0.1299 29.8701 0.9687 29.0313

40 0.1138 39.8862 1.1859 38.8141

50 0.1012 49.8988 1.3925 48.6075

60 0.0911 59.9089 1.5914 58.4086

70 0.0827 69.9173 1.7844 68.2156

16


