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Abstract

Let M be a matroid on E ∪ {`}, where ` 6∈ E is a distinguished element of M . The `-port of M is
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and F+
7 be the unique series extension of F7. In this paper, we prove that the system Ax ≥ 1, x ≥ 0 is

box-totally dual integral (box-TDI) if and only if M has no U2,4-minor using `, no F ∗7 -minor using `, and

no F+
7 -minor using ` as a series element. Our characterization yields a number of interesting results in

combinatorial optimization.
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1 Introduction

A linear system Ax ≥ b, x ≥ 0 is called totally dual integral (TDI) if the maximum in the LP-duality
equation

min{wT x : Ax ≥ b, x ≥ 0} = max{yT b : yT A ≤ wT, y ≥ 0} (1.1)

has an integral optimal solution y, for every integral vector w for which the maximum is finite. As shown
by Edmonds and Giles [7], if Ax ≥ b, x ≥ 0 is a TDI system and b is integral, then the minimum also
has an integral optimal solution provided the optimum of (1.1) is finite. So total dual integrality has been
serving as a general framework for the study of min-max relations in combinatorial optimization. In various
problem settings, Ax ≥ b, x ≥ 0 can be shown to have the stronger property that, for every choice of
rational vectors u and l, the system Ax ≥ b, x ≥ 0, u ≥ x ≥ l is TDI; such a linear system Ax ≥ b, x ≥ 0
is called box-totally dual integral (box-TDI). For detailed information about box-TDI systems, see Cook [3]
and Edmonds and Giles [8].

In this paper a box-TDI system associated with matroids is to be established. We introduce some notions
before presenting our result. A 0-1 matrix A is called Mengerian [18] if the system Ax ≥ 1, x ≥ 0 is TDI;
the matrix is so named because for path-edge incidence matrices A, (meaning that there exists a graph G,
together with two distinct vertices s and t, such that rows of A are precisely the incidence vectors of the
edge sets of all st-paths), the statement “A is Mengerian” is exactly the edge version of Menger’s Theorem.
Naturally, A is box-Mengerian if the system Ax ≥ 1, x ≥ 0 is box-TDI.

A clutter [6] on a finite set E is a set L of subsets of E such that no member of L is a proper subset of
another member. We shall call L Mengerian (resp. box-Mengerian) if L = {∅}, L = ∅, or the L-E incidence
matrix AL is Mengerian (resp. box-Mengerian). Notice that clutters L and 0-1 matrices AL are essentially
the same class of objects. We shall use the language of clutters since it is more combinatorial.

As usual, let U2,4 be the uniform matroid on four elements of rank two, let F7 be the Fano matroid, let

F ∗7 be the dual of F7, and let F+
7 be the unique series extension of F7. We refer to Oxley [13] for an in-depth

account of matroid theory and undefined terms.
Let M be a matroid [13] on E ∪ {`}, where ` 6∈ E is a distinguished element of M . A matroid obtained

from M by deleting and contracting elements in E is called a minor of M using `. The `-port of M [12] is
the clutter PM,` = {P : P ⊆ E with P ∪ {`} a circuit of M} on E. In [18], Seymour characterized all pairs
(M, `) for which PM,` is Mengerian.

Theorem 1.1 (Seymour [18]) Let M be a matroid and let ` be an element of M . Then PM,` is Mengerian
if and only if M has neither U2,4-minor using ` nor F ∗7 -minor using `.

This far-reaching theorem, which yields a number of important min-max relations in combinatorial opti-
mization, has attracted tremendous research efforts in matroid optimization, see, for instances, Gerards and
Laurent [9], Guenin [10], Truemper [20], Tseng and Truemper [21], and Ding and Zang [5]. For any matrix
A and any vectors l,u, let Q(A, l,u) denote the polytope {x : Ax ≥ 1, x ≥ 0} ∩ {x : l ≤ x ≤ u}. A vector

x is called 1
d -integral, where d is a positive integer, if all coordinates of dx are integral. Gerards and Laurent

obtained the following structural theorem, which can be found in several interesting applications [9, 11].

Theorem 1.2 (Gerards and Laurent [9]) Let M be a matroid on E ∪ {`} with ` 6∈ E, and let A be the

PM,`-E incidence matrix. Then all vertices of Q(A, l, u) are 1
d -integral, for all positive integers d and all

1
d -integral vectors l, u, if and only if M has no U2,4-minor using `, no F ∗7 -minor using `, and no F+

7 -minor
using ` as a series element.
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The purpose of this paper is to present a characterization of all pairs (M, `) for which PM,` is box-
Mengerian.

Theorem 1.3 Let M be a matroid and let ` be an element of M . Then PM,` is box-Mengerian if and only

if M has no U2,4-minor using `, no F ∗7 -minor using `, and no F+
7 -minor using ` as a series element.

Let A be as defined in Theorem 1.2. Our theorem asserts that M contains no aforementioned minors if
and only if, for any rational vectors l and u, the maximum of the following LP-duality equation

min{wT x : Ax ≥ 1, x ≥ 0,u ≥ x ≥ l} = max{αT 1 + βT l− γT u : αT A + βT − γT ≤ wT, α,β, γ ≥ 0}
has an integral optimal solution, for any integral vector w for which the optimum is finite, and so does the
minimum provided both l and u are integral.

Observe that the excluded minors of the above two theorems are exactly the same. We shall prove in
Section 7 that, if a 0-1 matrix A is box-Mengerian then for all positive integers d and all 1

d -integral vectors

l and u, all vertices of Q(A, l, u) are 1
d -integral. Therefore, Theorem 1.3 implies Theorem 1.2; yet, box

1
d -integrality for all d does not imply box-total dual integrality in general. So the integrality property for
the maximum in the above equation cannot be deduced directly from Theorem 1.2. In Section 7, we shall
also discuss applications of our main result to T -joins, T -cuts, two-commodity paths, two-commodity cuts,
and odd cycles in graphs. We shall see that Theorem 1.3 strengthens Theorem 1.1 in many cases. Another
motivation of our work is the following. Although there are many nice results on total dual integrality, things
become much more difficult when the stronger notion of box-total dual integrality is considered. Few proof
techniques have been found that are applicable to this stronger property [15]. To our knowledge, most of
the known box-TDI systems Ax ≤ b can be established by checking that A is totally unimodular or that for
any rational c, the problem max{cT x : Ax ≤ b} has (if finite) an optimal solution y such that the rows of
A corresponding to positive components of y form a totally unimodular submatrix of A (see Theorem 5.35
of Schrijver [15]). However, the box-TDI system considered in this paper, which is fairly “large”, can only
be derived in a sophisticated way; our proof of Theorem 1.3 might suggest more insights into box-total dual
integrality.

Our main result can also be stated in terms of clutters. Let L be a clutter on E. We define deletion
and contraction operations on L as follows. For any e ∈ E, let L\e consist of members X of L with e 6∈ X

and let L/e consist of minimal members of {X − {e} : X ∈ L}. Clearly, both L\e and L/e are clutters on
E − {e}. A clutter obtained from L by applying a sequence of deletions and contractions is called a minor
[16] of L. If L is a port of a matroid M , it is easy to verify that taking minors in M and taking minors in L
are the same thing, as pointed out in [18].

Proposition 1.1 Let ` be an element of matroid M and let L be the `-port of M . For any element e 6= ` of
M , the `-port of M\e is L\e and the `-port of M/e is L/e.

We also need to consider three special ports. By symmetry, all ports of U2,4 are isomorphic and so are
all ports of F ∗7 . We denote these two clutters by C3 and Q6, respectively. Similarly, if `1 and `2 are the two

element of F+
7 that are in series, then the `1-port and `2 port of F+

7 are isomorphic, which we denote by
Q7. In other words, C3 is the clutter on {1, 2, 3} that consists of sets {1, 2}, {2, 3}, and {1, 3}; Q6 is the
clutter on {1, 2, 3, 4, 5, 6} that consists of sets {1, 3, 5}, {1, 2, 6}, {2, 3, 4}, and {4, 5, 6}; and Q7 is the clutter
on {1, 2, 3, 4, 5, 6, 7} that consists of sets {1, 4, 7}, {2, 5, 7}, {3, 6, 7}, {1, 2, 6, 7}, {1, 3, 5, 7}, {2, 3, 4, 7}, and
{4, 5, 6, 7}. Clearly, Proposition 1.1 implies that Theorem 1.3 can be restated as follows.
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Corollary 1.1 A port is box-Mengerian if and only if none of C3, Q6, and Q7 is its minor.

Ports with no C3-minors are known as binary clutters, which are precisely ports of binary matroids [16].
Corollary 1.1 clearly implies the following, which is basically equivalent to our main result.

Corollary 1.2 A binary clutter is box-Mengerian if and only if neither Q6 nor Q7 is its minor.

We now outline the rest of the paper. The proof of the necessity part of Theorem 1.3 is straightforward,
which we give in Section 2. The proof of the sufficiency part is much more difficult. Let = be the set of
pairs (M, `), where M is a connected matroid on at least two elements, including `, such that M has no

U2,4-minor using `, no F ∗7 -minor using `, and no F+
7 -minor using ` as a series element. We first discuss in

Section 3 results of Tseng and Truemper [21] and Gerards and Laurent [9], which say that, for every (M, `)
in =, either M is regular or M/` is not 3-connected. This result allows us to decompose matroids in = into
regular matroids. In Section 4 we prove that PM,` is box-Mengerian if M is regular. In Section 5 we analyze
feasible solutions to the LP problem that is in our consideration. In particular, we study the behavior of
such a solution when the corresponding matroids are composed or decomposed. We complete our proof of
Theorem 1.3 in Section 6. Finally, in the last section, we discuss several applications of our main result.

We close this section by defining some notations that we shall use in this paper. Let Q and Z be the
sets of rationals and integrals, respectively. Let Q+ and Z+ be the sets of nonnegative numbers in the
corresponding sets. For any two sets Ω and K, where Ω is always a set of numbers and K is always finite,
we use ΩK to denote the set of vectors x = (x(k) : k ∈ K) whose coordinates are members of Ω. Suppose

J ⊆ K. The |J |-dimensional vector x|J = (x(j) : j ∈ J) stands for the projection of x to ΩJ . In addition,
x(J) denotes the value

∑
j∈J x(j). The support of x, denoted by spt(x), is the set {k ∈ K : x(k) 6= 0}.

Finally, we use x̄ to denote the vector (|x(k)| : k ∈ K).

2 Necessity

In this section we prove the “only if” part of Theorem 1.3. We begin with a lemma (see Theorem 22.7 in
[14]), which says that in the definition of box-TDI systems, we may allow coordinates of u and l to be ∞.

Lemma 2.1 If Ax ≥ b, x ≥ 0 is box-TDI, then Ax ≥ b, x ≥ 0, u ≥ x ≥ l is TDI, for any u with
coordinates in Q ∪ {+∞} and any l with coordinates in Q ∪ {−∞}. In particular, Ax ≥ b, x ≥ 0 is TDI.

Proof of the necessity part of Theorem 1.3. Let M be a matroid on E ∪{`}, where ` 6∈ E, such that PM,`

is box-Mengerian. It was proved in lemmas 2.2–2.4 of [2] that minors of a box-Mengerian clutter remains
box-Mengerian. Therefore, if M ′ is a minor of M using `, we deduce from Proposition 1.1 that PM ′,` is
also box-Mengerian. It remains to show that C3, Q6, and Q7 are not box-Mengerian. A straightforward
computation shows that C3 and Q6 are not Mengerian [18]. Thus Lemma 2.1 implies that they are not

box-Mengerian either. Next, let A = AQ7 be the incidence matrix of Q7. We choose w = (1, 1, 1, 1, 1, 1, 2)T ,

l = (0, 1
2 , 0, 1

2 , 0, 1
2 , 0)T , and u = ( 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 )T . It is routine to verify that x = ( 1
4 , 1

2 , 1
4 , 1

2 , 1
4 , 1

2 , 1
4 )T

and y = ( 1
2 , 1

2 , 1
2 , 0, 1

2 , 0, 0, 0, 1
2 , 0, 1

2 , 0, 1
2 , 0, 0, 0, 0, 0, 0, 0, 0)T are feasible solutions to the pair of LP problems

min



wT x

∣∣∣∣∣∣




A
I
−I


x ≥




1
l
−u


, x ≥ 0



 and max



yT




1
l
−u




∣∣∣∣∣∣
yT




A
I
−I


 ≤ wT , y ≥ 0



 .
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Moreover, x and y achieve the same objective value 11
4 , which implies that this is the optimal value for

both problems. Since (1T , lT ,−uT ) is 1
2 -integral yet 11

4 is not, we conclude that no optimal solution to the
maximization problem is integral. Therefore, by definition, PF+

7 ,` = Q7 is not box-Mengerian.

3 Matroid decomposition

The goal of this section is to introduce results on matroids that will be used in proving our main result.

3.1 Connectivity and summing operations

We begin with the definition of matroid connectivity. Let M be a matroid on E. A partition (E1, E2) of E is
called a k-separation, where k is a positive integer, if min{|E1|, |E2|} ≥ k and r(E1) + r(E2) ≤ r(E) + k− 1.
A matroid is k-connected if it has no k′-separation, for any k′ < k. As customary, 2-connected matroids are
called connected and others are disconnected.

For i = 1, 2, let Mi be a matroid on Ei with E1 ∩ E2 = ∅. The 1-sum of M1 and M2 is the matroid M

on E1 ∪ E2 such that C is a circuit of M if and only if it is a circuit of either M1 or M2. Next, for i = 1, 2,
let Mi be a matroid on Ei ∪ {p}, where E1 ∩ E2 = ∅ and p 6∈ E1 ∪ E2. The parallel connection of M1 and
M2 is the matroid M on E1 ∪ E2 ∪ {p} such that C is a circuit of M if and only if C is a circuit of M1 or
M2, or C = (C1 − {p}) ∪ (C2 − {p}), where, for i = 1, 2, Ci is a circuit of Mi that contains p. Matroid M\p
is called the 2-sum of M1 and M2. The following are well known results, which can be found in [13] (see
4.2.13, 8.3.1, 7.1.20, and 7.1.19).

Lemma 3.1 (i) If a matroid M is disconnected then it is the 1-sum of two nonempty matroids.
(ii) If a connected matroid M has a 2-separation (E1, E2), then M is the 2-sum of connected matroids

M1 and M2 such that E(Mi) = Ei∪{p} (i = 1, 2), where p 6∈ E. In addition, for i = 1, 2, there exist disjoint
subsets Xi and Yi of E − Ei such that Mi

∼= M\Xi/Yi.

We shall refer to M1 and M2 determined in (ii) as matroids induced by (E1, E2). Their common element
will always be denoted by p.

3.2 Matroids in =
In this subsection we describe the structure of matroids in =. This structure is the foundation for our proof.
We begin with a well known result of Bixby [1], which implies that all matroids in = are binary.

Theorem 3.1 Let ` be an element of a connected matroid M . Then M has no U2,4-minor using ` if and
only if M is binary.

Seymour proved several similar results in [17], including the following.

Theorem 3.2 Let ` be an element of a connected matroid M . Then M has no U2,4-minor using `, no
F7-minor using `, and no F ∗7 -minor using ` if and only if M is regular.

The next is a result of the same type, due to Tseng and Truemper [21], which deals with F ∗7 . Our
formulation is slightly weaker than the original result, see [9].
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Theorem 3.3 Let ` be an element of a binary matroid M . If M has no F ∗7 -minor using `, then at least one
of the following holds:

(i) M is isomorphic to F7;
(ii) M is regular;
(iii) M is not 3-connected;
(iv) M is 3-connected but M/` is not.

Based on this result, Gerards and Laurent [9] obtained a structural result for matroids in =.

Theorem 3.4 If (M, `) ∈ = then either M is regular or M/` is not 3-connected.

3.3 Signed matroids

Because of Theorem 3.4, we shall need to work on M/`. At the same time, we also need to keep track of
all information on M . One way to deal with this is to consider a representation of M on M/`. A signed
matroid is a pair (N, Σ), where N is a binary matroid on E and Σ is a subset of E. A subset X ⊆ E is called
Σ-odd or Σ-even if |X ∩ Σ| is odd or even, respectively. The following simple proposition links the `-port
of M with the set of odd circuits of M/`. We omit its proof since it follows easily from the fact that, in a
binary matroid, the intersection of any circuit and any cocircuit must have an even cardinality (see 9.1.2 in
[13]). Recall that a cocycle is a disjoint union of cocircuits.

Proposition 3.1 Let M be a binary matroid on E ∪ {`}, where ` 6∈ E. If Σ ⊆ E such that Σ ∪ {`} is a
cocycle of M , then the `-port of M is exactly the set of Σ-odd circuits of M/`.

Let (N, Σ) be a signed matroid. We denote its set of Σ-odd circuits by ON,Σ. If N is the 1-sum of two
matroids N1 and N2, then it is clear that ON,Σ is the disjoint union of ON1,Σ∩E(N1) and ON2,Σ∩E(N2). The

situation is more complicated if N is the 2-sum of two matroids. The following lemma is what we shall need
to deal with this scenario. Let (E1, E2) be a 2-separation of N and let N1, N2 be the two matroids induced
by (E1, E2).

Lemma 3.2 Let C ∈ ON,Σ with C ∩ E1 6= ∅ 6= C ∩ E2. If C ∩ E2 is Σ-even, then ON1,Σ∩E1 is a minor of
ON,Σ. If C ∩ E2 is Σ-odd, then ON1,(Σ∩E1)∪{p} is a minor of ON,Σ.

Proof. Let C2 = C ∩E2. Then C2 ∪{p} is a circuit of N2. It follows that N ′ = N\(E2−C2) is the 2-sum of
N1 and C2 ∪ {p} (see 7.1.15 in [13]). Moreover, ON ′,Σ′ = ON,Σ\(E2 − C2), where Σ′ = Σ− (E2 − C2). Let
X be a maximal subset of C2 ∩Σ such that |X| is even. Then ON ′,Σ′ = ON ′,Σ′′ , where Σ′′ = Σ′−X. Notice
that |C2 ∩ Σ′′| ≤ 1 and |C2 ∩ Σ′′| ≡ |C2 ∩ Σ| (mod 2). Let e ∈ C2 such that e ∈ Σ′′ in case C2 ∩ Σ′′ 6= ∅.
Let N ′′ = N ′/(C2 −{e}). Then N ′′ ∼= N1 and ON ′′,Σ′′ = ON ′,Σ′′/(C2 −{e}) = ON,Σ\(E2 −C2)/(C2 −{e}),
which proves the lemma.

4 Regular matroids

In this section we prove a few results on regular matroids, which will be extended in later sections to all
matroids in = using Theorem 3.4. Our proof relies on results of Tutte on chain groups [22].
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Let U be a matrix whose columns are indexed by a set E. A nonzero vector x ∈ {0,±1}E is U -primitive

if Ux = 0 and, for every y ∈ ZE with Uy = 0, spt(y) is not a proper subset of spt(x). A vector x ∈ QE is

said to conform to a vector y ∈ QE if spt(x) ⊆ spt(y) and x(e)y(e) > 0, for all e ∈ spt(x). The following
result was proved in [22].

Theorem 4.1 Let M be a regular matroid and let U be a totally unimodular matrix representing M .
(i) If x is U -primitive then spt(x) is a circuit of M ;
(ii) If C is a circuit of M then C = spt(x) for some U -primitive vector x;
(iii) If x is an integral nonzero vector with Ux = 0, then there exist U -primitive vectors x1, x2, ..., xm

conforming to x such that x = x1 + x2 + ... + xm.

In the rest of this section, let M be a regular matroid on E ∪ {`}, where ` 6∈ E. Let U be a totally
unimodular matrix representing M and let A be the PM,`-E incidence matrix. We first prove two technical
lemmas. Recall that x̄ = (|x(k)| : k ∈ K), for any x indexed by K.

Lemma 4.1 For any α ∈ QPM,`

+ , there exists x ∈ QE∪{`} such that Ux = 0, x(`) = αT 1, and x̄|E ≤ AT α.

Proof. Let the members of PM,` be P1, P2, ..., Pn, which are ordered according to the order of the rows of
A. By Theorem 4.1(ii), for each i = 1, 2, ..., n, there exists U -primitive vector pi with spt(pi) = Pi ∪ {`}.
By replacing pi with −pi, if necessary, we may assume that pi(`) = 1. Let x = [p1,p2, ..., pn]α. Then

Ux = [0,0, ...,0]α = 0, x(`) = αT 1, and x̄ ≤ [p̄1, p̄2, ..., p̄n]α. Notice that, when projected to QE , the last

inequality is exactly x̄|E ≤ AT α, and thus the lemma is proved.

Lemma 4.2 For any x ∈ QE∪{`} with Ux = 0, there exists α ∈ QPM,`

+ such that αT 1 ≥ x(`) and

AT α ≤ x̄|E. Moreover, if x is integral, then so is α.

Proof. We first consider the case when x is integral. If x(`) ≤ 0, then α = 0 satisfies the requirements. Hence
we may assume x(`) = k > 0. By Theorem 4.1(iii), there exist U -primitive vectors x1, x2, ..., xm conforming
to x such that x = x1 + x2 + ... + xm. Without loss of generality, let x1(`) = x2(`) = ... = xk(`) = 1 and

xk+1(`) = xk+2(`) = ... = xm(`) = 0. Then we deduce from Theorem 4.1(i) that each x̄T
i |E (1 ≤ i ≤ k) is a

row of A. Consequently, (x̄1 + x̄2 + ...+ x̄k)|E = AT α, for some α ∈ ZPM,`

+ with αT 1 = k = x(`). Since each

xi conforms to x, it follows that x̄ = x̄1 + x̄2 + ... + x̄m. Therefore, x̄|E ≥ (x̄1 + x̄2 + ... + x̄k)|E = AT α.
If x is not integral, we may choose a positive integer d such that x′ = dx is integral. It follows from the

conclusion in the last paragraph that there exists α′ ∈ ZPM,`

+ such that (α′)T 1 ≥ x′(`) and AT α′ ≤ x̄′|E .

Then it is clear that α = 1
dα′ satisfies the requirements of the lemma.

The next lemma is the first step for our main proof.

Lemma 4.3 If M is a regular matroid on E ∪ {`}, where ` 6∈ E, then PM,` is box-Mengerian.

Proof. Let l ∈ QE , u ∈ QE , and w ∈ ZE . We need to show that

max{αT 1 + βT l− γT u : αT A + βT − γT ≤ wT, α, β,γ ≥ 0}, (4.1)
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which is the dual of min{wT x : Ax ≥ 1, x ≥ 0,u ≥ x ≥ l}, has an integral optimal solution, assuming that
it has an optimal solution. We consider

max{x(`) + βT l− γT u : Ux = 0, (x|E) + β − γ ≤ w, −(x|E) + β − γ ≤ w, β,γ ≥ 0}. (4.2)

Notice that the two inequalities (x|E) + β − γ ≤ w and −(x|E) + β − γ ≤ w can be equivalently combined
as a single inequality (x̄|E)+β−γ ≤ w. The following two observations are clear from the last two lemmas.

(i) If (α, β,γ) is a feasible solution to (4.1), then there exists x such that x(`) = αT 1 and (x, β, γ) is
a feasible solution to (4.2).

(ii) If (x, β, γ) is a feasible solution to (4.2), then there exists α such that αT 1 ≥ x(`) and (α, β,γ) is
a feasible solution to (4.1). Moreover, if (x,β, γ) is integral, then so is (α, β,γ).

Since (4.1) has feasible solutions, (i) implies that (4.2) has feasible solutions too. It also implies that the
maximum of (4.1) is at most that of (4.2). On the other hand, (ii) implies that the maximum of (4.2) is
at most that of (4.1). Thus (4.2) has a finite maximum and its maximum is the same as that of (4.1). In
addition, (ii) also implies that every integral optimal solution of (4.2) induces an integral optimal solution
of (4.1). Therefore, we only need to show that (4.2) has an integral optimal solution.

Let (x0, β0,γ0) be an optimal solution of (4.2). Let E+ = {e ∈ E : x0(e) ≥ 0} and E− = E − E+. Let

v denote the expression x(`) + βT l− γT u. Then

max{v : Ux = 0, (x|E) + β − γ ≤ w, −(x|E) + β − γ ≤ w, β,γ ≥ 0}
= max{v : Ux = 0, (x|E) + β − γ ≤ w, −(x|E) + β − γ ≤ w, β, γ, x|E+ , (−x)|E− ≥ 0}
= max{v : Ux = 0, (x + β − γ)|E+ ≤ w|E+ , (−x + β − γ)|E− ≤ w|E− , β, γ, x|E+ , (−x)|E− ≥ 0}. (4.3)

It follows from the totally unimodularity of U that the coefficient matrix of (4.3) is also totally unimodular.
Thus (4.3) has an integral optimal solution (x∗,β∗, γ∗). Since all feasible solutions to (4.3) are also feasible
to (4.2), the above equalities imply that (x∗, β∗, γ∗) is an integral optimal solution of (4.2).

A flow is a pair (f ,α) such that α ≥ 0 and f = AT α. The next two lemmas are the base cases for more
general results, which we shall use to analyze feasible solutions of the LP problem in our consideration.

Lemma 4.4 For any flow (f , α) and any circuit C of M/` with C ⊆ spt(f), there exist t ∈ {0, 1} and

χ ∈ {0,±1}E that satisfy the following properties:
(i) spt(χ) = C;

(ii) for any ε ∈ Q+ with ε < 1
2 min

e∈C
f(e), there exist flows (f+,α+) and (f−, α−) such that f± ≤ f ± εχ

and αT
±1 ≥ αT 1± tε.

Proof. By Lemma 4.1, there exists x ∈ QE∪{`} such that Ux = 0, x(`) = αT 1, and x̄|E ≤ f . Let D be
the circuit of M with C ⊆ D ⊆ C ∪ {`}. By Theorem 4.1(ii), there exists a U -primitive vector d such that

spt(d) = D and d(`) ≥ 0. Let t = d(`). We define χ ∈ {0,±1}E as follows: χ(e) = 0 if e 6∈ C, χ(e) = 1 if
e ∈ C and x(e)d(e) ≥ 0, and χ(e) = −1 if e ∈ C and x(e)d(e) < 0. Clearly, (i) is satisfied.

For the given ε, let y± = x ± εd. By applying Lemma 4.2 to y± we get flows (f±, α±) such that

αT
±1 ≥ y±(`) and f± ≤ ȳ±|E . Notice that y±(`) = x(`) ± εd(`) = αT 1 ± tε, so αT

±1 ≥ αT 1 ± tε holds.

For the other inequality in (ii), our choice of α± and our definition of y± imply that we only need to verify

|x(e)± εd(e)| ≤ f(e)± εχ(e), for all e ∈ E. If e 6∈ C, then d(e) = χ(e) = 0, so the inequality follows from
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our choice of x. For each e ∈ C, we consider two cases: |x(e) ± εd(e)| = |x(e)| + ε or ||x(e)| − ε|. In the
second case,

|x(e)± εd(e)| = max{|x(e)| − ε, ε− |x(e)|} ≤ max{|x(e)| − ε, ε} ≤ f(e)− ε ≤ f(e)± εχ(e),

where the second inequality follows from our choice of x and the restriction on ε. For the first case, let us
also assume that the second case does not occur and thus x(e) 6= 0. Then

|x(e)± εd(e)| = |x(e)|+ ε ≤ f(e) + ε = f(e)± εχ(e),

where the last equality follows from the assumption |x(e)± εd(e)| = |x(e)|+ ε.

For any two flows (f , α) and (f ′,α′), we write (f ′, α′) ¹ (f , α) if f ′ ≤ f and (α′)T 1 ≥ αT 1. We call

a flow (f ,α) minimal if f ′ = f and (α′)T 1 = αT 1 hold for all flows (f ′, α′) ¹ (f , α). For any x ∈ QE , a
subset E′ ⊆ E is called x-fractional if x(e) 6∈ Z, for every e ∈ E′.

Lemma 4.5 If (f , α) is a minimal flow and e is an element of M/` such that f(e) is not integral, then
M/` has an f -fractional circuit C that contains e.

Let us make a preparation before presenting a proof of this lemma.

Lemma 4.6 Let N be a matroid on F , let W be a totally unimodular matrix representing N , and let e ∈ F

and x ∈ QF with Wx = 0. Then
(i) There is a totally unimodular matrix W ′ representing N/e such that W ′x′ = 0, where x′ = x|F−{e};
(ii) N has an x-fractional circuit C that contains e, if x(e) is not integral.

Proof. (i) Let We be the column of W that is indexed by e. If e is a loop, then We = 0. In this case, let
W ′ be obtained from W by deleting We. Then W ′ satisfies the requirement since N/e = N\e. If e is not a

loop, we extend it into a basis B. Let WB be the submatrix of W that corresponds to B. Then W−1
B W is

another totally unimodular matrix representing N (see 2.2.20 in [13]). Let W ′ be obtained from W−1
B W by

deleting the row and column indexed by e. Then W ′ satisfies the requirements (see 3.2.6 in [13]).
(ii) Suppose for a contradiction that the result is false for some N and x with |F | minimum. If x(e′) is

integral for all e′ ∈ F − {e}, then We = 0, as Wx = 0 and W is an integral matrix. This is a contradiction
because C = {e} would be the required circuit. Therefore, we may assume that there exists e′ ∈ F−{e} with
x(e′) 6∈ Z. By (i), there is a totally unimodular matrix W ′ representing N/e′ such that W ′(x|F−{e′}) = 0.

Then we deduce from the minimality of |F | that N/e′ has an x′-fractional circuit C 3 e. This means that
either C or C ∪ {e} is an x-fractional circuit of N , which is a contradiction.

Proof of Lemma 4.5. By Lemma 4.1, there exists x ∈ QE∪{`} such that Ux = 0, x(`) = αT 1, and ȳ ≤ f ,

where y = x|E . Then by Lemma 4.2, there exists a flow (f ′,α′) such that (α′)T 1 ≥ x(`) and f ′ ≤ ȳ. By

the minimality of (f , α), we have f = ȳ (we do not need the fact (α′)T 1 = αT 1 here). By Lemma 4.6(i),
there exists a totally unimodular matrix U ′ representing M/` such that U ′y = 0. Then by Lemma 4.6(ii),
M/` has a y-fractional circuit C 3 e. Since f = ȳ, it follows that C is f -fractional, as required.
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5 Flows

The concept of flow introduced in the last section was for regular matroids. It can easily be extended to
any signed matroid (N, Σ). Let A be the ON,Σ-E incidence matrix, where E = E(N). Then a flow is a pair

(f , α) such that α ≥ 0 and f = AT α. In case N = M/`, for a regular matroid M , such that Σ ∪ {`} is a
cocycle of M , then Proposition 3.1 guarantees that this extension is consistent with our definition given in
the last section.

The goal of this section is to generalize Lemma 4.4 and Lemma 4.5 from regular matroids to matroids
in =. These results will be used in the next section to analyze feasible solutions to our LP problem. Our
proof will use Theorem 3.4, which allows us to construct the required objects from parts that are obtained
on regular matroids.

5.1 Composition and decomposition

Throughout this subsection, let N be a connected binary matroid on E and let Σ ⊆ E. Let A be the
ON,Σ-E incidence matrix. Suppose (E1, E2) is a 2-separation of N . For i = 1, 2, let ON,Σ(Ei) denote the
set of Σ-odd circuits C with C ⊆ Ei. Let ON,Σ(E1, E2) = ON,Σ − ON,Σ(E1) − ON,Σ(E2), which is the set
of Σ-odd circuits that meet both E1 and E2. We may drop the subscripts when there is no confusion. Two
members C1, C2 ∈ O(E1, E2) are said to cross at (E1, E2), if both C1 ∩ E1 and C2 ∩ E2 are Σ-odd. A flow
(f , α) is called cross-free at (E1, E2) if no two members in O(E1, E2) ∩ spt(α) cross. We shall call a flow

(f ′,α′) tight at (E1, E2), with respect to a given flow (f ,α), if it is an optimal solution to the problem

min{α′(O(E1, E2)) : (f ′, α′) ¹ (f , α)}. Notice that this problem must have an optimal solution since
α′ ≥ 0. The next lemma says that such a tight flow must be cross-free.

Lemma 5.1 For any 2-separation (E1, E2) and any flow (f , α), if (f ′, α′) is tight at (E1, E2) with respect

to (f , α), then (f ′,α′) is cross-free at (E1, E2).

Proof. Suppose there exist C1, C2 ∈ O(E1, E2) ∩ spt(α′) that cross. Let N1 and N2 be the two matroids
induced by (E1, E2). Then, for i, j ∈ {1, 2}, Ci,j = (Ci ∩ Ej) ∪ {p} is a circuit of Nj . Notice that C1,1

and C2,2 are Σ-odd while C1,2 and C2,1 are Σ-even, as C1 and C2 cross. It follows that the symmetric
differences C1,1∆C2,1 and C1,2∆C2,2 are both Σ-odd. Since Ni (i = 1, 2) is binary, C1,i∆C2,i is a disjoint
union of circuits of Ni\p, which implies that at least one of these circuits Di is Σ-odd. Clearly, Di ∈ O(Ei).
Moreover, if we use RC to denote the row of A that is indexed by C ∈ OM,Σ, then RD1 +RD2 ≤ RC1 +RC2 .

Let δ = min{α′(C1),α′(C2)}. We define α′′ ∈ QOM,Σ with α′′(Ci) = α′(Ci)−δ and α′′(Di) = α′(Di)+δ,

for i = 1, 2, and α′′(C) = α′(C), for all other C ∈ OM,Σ. The choice of δ implies α′′ ≥ 0 and so (f ′′, α′′)

is a flow. It is routine to verify that (α′′)T 1 = (α′)T 1 and f ′′ = f ′ + δ(RD1 + RD2 − RC1 − RC2) ≤ f ′.
However, α′′(O(E1, E2)) = α′(O(E1, E2)) − 2δ, contradicting the minimality of α′(O(E1, E2)). Therefore,

(f ′,α′) is indeed cross-free at (E1, E2), which proves the lemma.

Let (E1, E2) be a 2-separation and let N1, N2 be the two matroids induced by (E1, E2). Let flow (f , α)
be cross-free at (E1, E2). Without loss of generality, we always assume that C ∩ E1 is Σ-odd for all C ∈
O(E1, E2) ∩ spt(α). Let Σ1 = Σ ∩ E1 and Σ2 = (Σ ∩ E2) ∪ {p}. We shall refer to (N1, Σ1) and (N2, Σ2)
as signed matroids induced by (E1, E2). Notice that ON,Σ(E1) ⊆ ON1,Σ1 , ON,Σ(E2) ⊆ ON2,Σ2 , and each
C ∈ ON,Σ(E1, E2) with C ∩ E1 Σ-odd can be partitioned into C1, C2 such that C1 ∪ {p} ∈ ON1,Σ1 and
C2 ∪ {p} ∈ ON2,Σ2 . In fact, ON1,Σ1 and ON2,Σ2 do not have any other members.
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To decompose (f , α) into flows on (N1, Σ1) and (N2, Σ2), we naturally define αi∈QONi,Σi
+ (i = 1, 2) with

αi(C) =

{
α(C) if C ∈ ON,Σ(Ei),∑{α(D) : D ∈ ON,Σ(E1, E2), D ∩ Ei = C} if C ∈ ONi,Σi

−ON,Σ(Ei).

The two flows (f1,α1) and (f2, α2) will be referred to as components of (f , α) with respect to (E1, E2).
Recall that O(E1, E2) = ON,Σ(E1, E2) denotes the set of Σ-odd circuits that meet both E1 and E2 and that
α(O(E1, E2)) is the summation of α(C) over all C ∈ O(E1, E2). It is straightforward to verify that they
satisfy the following.

Lemma 5.2 For i = 1, 2, f i|Ei = f |Ei and f i(p) = α(O(E1, E2)). Moreover, αT
1 1 + αT

2 1 = αT 1 +
α(O(E1, E2)).

Let Ei, Ni, and Σi (i = 1, 2) be the same as above. Conversely, suppose (f i, αi) is a flow of (Ni, Σi), for
i = 1, 2. We explain how to compose these two to get a flow (f ,α) of (N, Σ). Naturally, we set α(C) = αi(C)
if p 6∈ C ∈ ONi,Σi

. To define α(C) for all C ∈ ON,Σ(E1, E2), we consider Oi (i = 1, 2), which consist of all
Ci ∈ ONi,Σi with Ci 3 p. We pair members of O1 with members of O2 in an “arbitrary” way, as detailed in
the following algorithm:

Step 1: Set a = 0 ∈ QO(E1,E2)
+ , a1 = α1|O1 , and a2 = α2|O2 .

Step 2: While there exists C1 ∈ O1 with a1(C1) 6= 0 and C2 ∈ O2 with a2(C2) 6= 0, decrease ai(Ci)
(i = 1, 2) by δ and increase a((C1 − {p}) ∪ (C2 − {p})) by δ, where δ = min{a1(C1), a2(C2)}.

Step 3: Set α|O(E1,E2) = a.

Flow (f , α) will be referred to as the sum of (f1, α1) and (f2,α2). For any C ⊆ ONi,Σi (i = 1 or 2), let

Ĉ = (C−Oi)∪{C ∈ O(E1, E2) : (C∩Ei)∪{p} ∈ C}. It is routine to verify that (f , α) satisfies the following.

Lemma 5.3 Let (f ,α) be the sum of (f1,α1) and (f2,α2). Then f |E1 ≤ f1|E1 , f |E2 ≤ f2|E2 , αT 1 =

αT
1 1 + αT

2 1−max{f1(p), f2(p)}, α(O(E1, E2)) = min{f1(p), f2(p)}, and α(Ĉ) ≤ αi(C) (∀C ⊆ONi,Σi , i =
1, 2). Moreover, α is integral if both α1 and α2 are.

5.2 Generalizations

In this subsection, we present generalizations of Lemma 4.4 and Lemma 4.5, assuming that (M, `) ∈ =,
N = M/` is connected, E(N) = E, Σ ⊆ E, and Σ ∪ {`} is a cocycle of M . For any 2-separation (E1, E2) of

N , a flow (f ,α) is called (E1, E2)-minimal if f ′ = f and (α′)T 1 = αT 1 hold for all flows (f ′,α′) ¹ (f , α)
with α′(O(E1, E2)) ≤ α(O(E1, E2)). Notice that a minimal flow is (E1, E2)-minimal for every 2-separation

(E1, E2). A flow (f ,α) is called connected if α′(O(E1, E2)) > 0 holds for all flows (f ′,α′) ¹ (f , α) and
all 2-separations (E1, E2) of N . We first prove a technical lemma, which will be used in both of our
generalizations.

Lemma 5.4 Let (E1, E2) be a 2-separation of N and let (f , α) be a connected flow that is (E1, E2)-minimal.

Let (f ′, α′) be tight at (E1, E2) with respect to (f , α). If (f ′1,α
′
1) and (f ′2, α

′
2) are components of (f ′, α′)

with respect to (E1, E2), then both (f ′1, α
′
1) and (f ′2, α

′
2) are minimal and connected.
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Proof. By Lemma 5.1, (f ′, α′) is cross-free at (E1, E2) and thus (f ′1, α′1) and (f ′2, α′2) are well defined. Let

(N1, Σ1) and (N2, Σ2) be the signed matroids induced by (E1, E2). For i = 1, 2, let (f ′′i , α′′i ) ¹ (f ′i, α
′
i) be

a flow of (Ni, Σi). We need to show that f ′′i = f ′i, (α′′i )T 1 = (α′i)
T 1, and α′′i (ONi,Σi(X, Y )) > 0, for every

2-separation (X, Y ) of Ni.

Let (f ′′, α′′) be the sum of (f ′′1 ,α′′1) and (f ′′2 , α′′2). Then we deduce from Lemma 5.3 and Lemma 5.2
that, for i = 1, 2,

f ′′|Ei ≤ f ′′i |Ei ≤ f ′i|Ei = f ′|Ei ≤ f |Ei , (5.1)

and so f ′′ ≤ f . Using the same lemmas,

(α′′)T 1 = (α′′1)T 1 + (α′′2)T 1−max{f ′′1(p), f ′′2(p)}
≥ (α′1)

T 1 + (α′2)
T 1−max{f ′1(p),f ′2(p)}

= (α′)T 1 + α′(O(E1, E2))−max{f ′1(p),f ′2(p)}
= (α′)T 1 ≥ αT 1,

(5.2)

and also by the tightness of (f ′, α′),

α′′(O(E1, E2)) = min{f ′′1(p), f ′′2(p)} ≤ min{f ′1(p), f ′2(p)} = α′(O(E1, E2)) ≤ α(O(E1, E2)).

Since (f ,α) is (E1, E2)-minimal, we must have f ′′ = f and (α′′)T 1 = αT 1. Thus we deduce from (5.1) that

f ′′i |Ei = f ′i|Ei , and from (5.2) that (α′′i )T 1 = (α′i)
T 1 (i = 1, 2) and max{f ′′1(p), f ′′2(p)} = α′(O(E1, E2)). By

Lemma 5.3 and the tightness of (f ′, α′), we also have min{f ′′1(p), f ′′2(p)} = α′′(O(E1, E2)) ≥ α′(O(E1, E2)).

Therefore, for i = 1, 2, f ′′i (p) = α′(O(E1, E2)) = f ′i(p), which implies f ′′i = f ′i, and thus (f ′i, α
′
i) is minimal.

Next, suppose (X, Y ) is a 2-separation of Ni (i = 1, 2) with p ∈ Y . We claim that (X, E − X) is a
2-separation of N . To see this, let NX , NY be the two matroids induced by (X,Y ) and let N ′

Y be the
2-sum of NY and Nj , where j ∈ {1, 2} − {i}. Then the definition of 2-sum implies that N is the 2-sum
of NX and N ′

Y , so (X, E − X) is a 2-separation of N . Let C = ONi,Σi(X, Y ). Then its definition implies

Ĉ = ON,Σ(X,E − X). By Lemma 5.3 and the connectivity of (f ,α), we have α′′i (C) ≥ α′′(Ĉ) > 0, which

proves that (f ′i, α
′
i) is connected.

Now we generalize Lemma 4.4.

Lemma 5.5 Suppose a connected flow (f , α) is either minimal or (E1, E2)-minimal, for a 2-separation

(E1, E2) of N . Then for any circuit C ∈ ON,Σ with C ⊆ spt(f), there exist t ∈ Z, δ > 0, and χ ∈ {0,±1}E

that satisfy the following properties:
(i) spt(χ) = C;
(ii) for any ε ∈ Q+ with ε < δ, there exist flows (f+,α+) and (f−,α−) such that f± ≤ f ± εχ and

αT
±1 ≥ αT 1± tε. Moreover, if C ∈ O(E1, E2), then (f±, α±) can be chosen with the extra property

that min{α+(O(E1, E2)), α−(O(E1, E2))} ≤ α(O(E1, E2))− ε.

Proof. We prove by induction on |E|. If N is 3-connected, by Theorem 3.4, M is regular and so the result
follows from Lemma 4.4. Therefore, we may proceed to the induction step and also assume that N has a 2-
separation. Since a minimal flow is (E1, E2)-minimal, for every 2-separation (E1, E2) of N , we may assume,
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without loss of generality, that (f , α) is (E1, E2)-minimal. Let (f ′, α′) be a flow tight at (E1, E2), with

respect to (f ,α). By Lemma 5.1, (f ′, α′) is cross-free at (E1, E2). The connectedness and minimality of

(f , α) imply that (f ′, α′) is also connected and (E1, E2)-minimal. Therefore, by the tightness of (f ′, α′), we

may assume, without loss of generality, that (f ′, α′) = (f , α). Let (f1, α1) and (f2, α2) be the components
of (f , α) with respect to (E1, E2). By Lemma 5.4, they both are minimal and connected.

If C ∈ O(E1, E2), let Ci = (C ∩Ei)∪{p}, for i = 1, 2. If C 6∈ O(E1, E2), let Ci = C ∩Ei, for i = 1, 2. By
induction, there exist ti, δi, and χi that satisfy our induction hypothesis. We remark that, in the situation
Ci = ∅, the choice ti = 0, δi = 1, and χi = 0 satisfy the requirements, as we may take (f i±, αi±) = (f i, αi).

By replacing χi with −χi, if necessary, we assume that χi(p) ≥ 0. Let t0 = χ1(p) = χ2(p), t = t1 + t2 − t0,

and δ = min{δ1, δ2}. Let χ ∈ {0,±1}E with χ|Ei = χi|Ei , for i = 1, 2. Then (i) is clearly satisfied.
For any rational ε with 0 < ε < δ, let (f i±, αi±) be flows obtained from the induction hypothesis. Let

(f±, α±) be the sum of (f1±, α1±) and (f2±,α2±). We prove that they satisfy the requirements. First,

f±|Ei
≤ f i±|Ei

≤ (f i ± εχi)|Ei
= (f ± εχ)|Ei

, for i = 1, 2, so f± ≤ f ± εχ. Next,

αT
±1 = αT

1±1 + αT
2±1−max{f1±(p), f2±(p)}

≥ αT
1 1 + αT

2 1± (t1 + t2)ε−max{f1(p)± t0ε, f2(p)± t0ε}
= αT 1± (t1 + t2 − t0)ε + α(O(E1, E2))−max{f1(p),f2(p)}
= αT 1± tε

Finally, in case C ∈ O(E1, E2), we have

min{α+(O(E1, E2)), α−(O(E1, E2))} = min{f1±(p), f2±(p)}
≤ min{f1(p)± ε, f2(p)± ε} = α(O(E1, E2))− ε,

which completes our proof.

The next is a generalization of Lemma 4.5.

Lemma 5.6 If (f , α) is a minimal and connected flow and e is an element of N such that f(e) is not
integral, then N has an f -fractional circuit C that contains e.

Proof. Our strategy is the same as that used in proving the last lemma. We prove by induction on |E|. If
N is 3-connected then M is regular and so the result follows from Lemma 4.5. We proceed to the induction
step and assume that N has a 2-separation (E1, E2) with, say, e ∈ E1. Let (f ′,α′) be a flow tight at this

2-separation, with respect to (f , α). The minimality of (f , α) implies f ′ = f , so we may assume, without
loss of generality, that α′ = α as well. By Lemma 5.1, (f , α) is cross-free at (E1, E2). Thus we may
consider (f1, α1) and (f2,α2), the components of (f , α) with respect to (E1, E2). By Lemma 5.4, they
both are minimal and connected. Let (N1, Σ1) and (N2, Σ2) be the signed matroids induced by (E1, E2). By
Lemma 5.2, f1(e) = f(e), which is not integral, so we deduce from the induction hypothesis that N1 has an
f1-fractional circuit C1 that contains e. If C1 63 p, then C1 is a circuit of N and thus C = C1 is f -fractional,
as f |E1 = f1|E1 . On the other hand, if C1 3 p, then f1(p) is not integral, which implies, by Lemma 5.2,
that f2(p) = f1(p) is not integral either. By induction, N2 has an f2-fractional circuit C2 that contains p.
In this case, C = (C1 − {p})∪ (C2 − {p}) is a circuit of N , so it is f -fractional, as f |Ei = f i|Ei (i = 1, 2).
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6 Proving the main result

Throughout this section, let M be a matroid on E ∪ {`} with ` 6∈ E. Let N = M/` and let Σ ⊆ E such that
Σ ∪ {`} is a cocycle of M .

For any 0-1 matrix A, any rational vectors l and u, and any integral vector w, let Max(A, l, u, w)
denote the LP problem expressed in (4.1). Our goal is to find, for every A = APM,`

with (M, `) ∈ =, an

integral optimal solution of Max(A, l, u,w), when there is an optimal solution. The way we achieve this is
to analyze potential minor minimal counterexamples L. That is, L = PM,` is not box-Mengerian yet all its
proper minors are. Equivalently, PM,` is not box-Mengerian, but PM ′,` is, for every proper minor M ′ of M

that uses `.
Throughout this section, we assume that PM,` is a minor minimal counterexample and A = APM,`

. We

first prove that (M, `) ∈ = and N is connected, which guarantee that results proved in the last section can be
used here. Next we prove that if (α, β,γ) is an optimal solution of Max(A, l, u, w) then α(ON,Σ(E1, E2))
is not integral, for all 2-separations (E1, E2) of N . Finally, we prove using lemmas established in the last
section that, for any 2-separation (E1, E2), α(ON,Σ(E1, E2)) is integral for at least one optimal solution
(α, β,γ). This contradiction will eliminate all counterexamples and thus will prove the theorem.

We proceed by proving a sequence of lemmas. If ` is a loop or coloop in M , then PM,` = {∅} or ∅,
respectively. By definition, they are box-Mengerian and thus the following holds.

Lemma 6.1 ` is neither a loop nor a coloop of M .

The next lemma can be proved easily from the definition of TDI systems, so we omit its proof.

Lemma 6.2 Suppose the system Cixi ≥ di, xi ≥ 0 is TDI, for i = 1, 2. Then so is the system

[
C1 0
0 C2

] [
x1

x2

]
≥

[
d1

d2

]
,

[
x1

x2

]
≥

[
0
0

]
.

A straightforward consequence of this lemma is the following observation. Suppose the system Cx ≥ d,
x ≥ 0 is box-TDI. If C ′ is obtained from C by adding a zero-column, then the system C ′x′ ≥ d, x′ ≥ 0 is
also box-TDI. This observation in turn implies the following.

Lemma 6.3 M is connected.

Putting Lemma 6.1 and Lemma 6.3 together we get the following.

Lemma 6.4 (M, `) ∈ =.

From this point on, it would be more convenient for us to view PM,` asON,Σ, as guaranteed by Proposition
3.1. In particular, since A = AON,Σ , we deduce the following from Lemma 6.2 immediately.

Lemma 6.5 N is connected.

The last two lemmas guarantee that all results from the last section can be applied to (M, `). Since ON,Σ

is not box-Mengerian, there exist rational vectors l and u and an integral vector w for which Max(A, l, u, w)
is finite yet has no integral optimal solution. Next, we analyze optimal solutions of this problem.

Lemma 6.6 If (α, β,γ) is an optimal solution to Max(A, l,u,w) such that the flow (f , α) is cross-free at
a 2-separation (E1, E2) of N , then α(O(E1, E2)) is not integral.
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Proof. Since (f , α) is cross-free at (E1, E2), we may assume, by symmetry, that C ∩ E1 is Σ-odd for all
C ∈ O(E1, E2) ∩ spt(α). Let Σ1 = Σ ∩ E1 and Σ2 = (Σ ∩ E2) ∪ {p}. Let N1, N2 be the two matroids
induced by (E1, E2). By Lemma 3.2, both ON1,Σ1 and ON2,Σ2 are proper minors of ON,Σ and thus, both
are box-Mengerian, as ON,Σ is a minor minimal counterexample.

Suppose α(O(E1, E2)) is integral. For i = 1, 2, let Ai = AONi,Σi
; let βi,γi ∈ QEi∪{p}

+ , li,ui ∈ QEi∪{p},

and wi ∈ ZEi∪{p} be such that βi|Ei = β|Ei , γi|Ei = γ|Ei , li|Ei = l|Ei , ui|Ei = u|Ei , wi|Ei = w|Ei ,
βi(p) = γi(p) = li(p) = 0, ui(p) = +∞, and wi(p) = α(O(E1, E2)). Let (f1, α1) and (f2,α2) be the
components of (f , α). Then, for i = 1, 2, (αi, βi,γi) is a feasible solution to Max(Ai, li, ui, wi).

We claim that, for i = 1, 2, Max(Ai, li,ui, wi) has a finite maximum. To see this, we consider any of its

feasible solution (α′i, β
′
i, γ

′
i). Let (f ′, α′) be the sum of (f ′1, α

′
1) and (f ′2, α

′
2). Let β′, γ′ ∈ QE

+ be such that

β′|Ei
= β′i|Ei

and γ′|Ei
= γ′i|Ei

, for i = 1, 2. Then Lemma 5.3 implies that (α′,β′,γ′) is a feasible solution
to Max(A, l, u, w). Moreover,

(α′1)
T 1 + (β′1)

T l1 − (γ′1)
T u1 + (α′2)

T 1 + (β′2)
T l2 − (γ′2)

T u2

≤(α′1)
T 1 + (α′2)

T 1 + (β′1)
T l1 + (β′2)

T l2 − (γ′)T u

=(α′)T 1 + (β′)T l− (γ′)T u + max{f ′1(p),f ′2(p)}
≤αT 1 + βT l− γT u + α(O(E1, E2)),

where the last inequality holds since, for i = 1, 2, by the constraint of Max(Ai, li,ui, wi) (recall (4.1)) we

have f ′i(p) + βi(p)− γi(p) ≤ wi(p). So f ′i(p) ≤ wi(p) = α(O(E1, E2)). Our claim is thus justified.
For i = 1, 2, Max(Ai, li,ui, wi) has an integral optimal solution (α∗i , β

∗
i ,γ

∗
i ), as ONi,Σi is box-Mengerian.

Since u1(p) = u2(p) = +∞, it follows that γ∗1(p) = γ∗2(p) = 0. Let (f∗, α∗) be sum of (f∗1, α
∗
1) and (f∗2, α

∗
2).

By Lemma 5.3, α∗ is integral. Let β∗, γ∗ ∈ ZE
+ be such that β∗|Ei = β∗i |Ei and γ∗|Ei = γ∗i |Ei , for i = 1, 2.

Then (α∗, β∗, γ∗) is a feasible solution to Max(A, l, u, w). Moreover,

(α∗)T 1 + (β∗)T l− (γ∗)T u ≥ (α∗1)
T 1 + (α∗2)

T 1−w1(p) + (β∗)T l− (γ∗)T u

= (α∗1)
T 1 + (α∗2)

T 1−w1(p) + (β∗1)
T l1 + (β∗2)

T l2 − (γ∗1)
T u1 − (γ∗2)

T u2

≥ αT
1 1 + βT

1 l1 − γT
1 u1 + αT

2 1 + βT
2 l2 − γT

2 u2 −w1(p)

= αT 1 + βT
1 l1 − γT

1 u1 + βT
2 l2 − γT

2 u2

= αT 1 + βT l− γT u

which implies that (α∗, β∗,γ∗) is an integral optimal solution, a contradiction.

In general, there are many ways to choose l, u, and w so that Max(A, l, u, w) is finite yet has no integral
optimal solutions. Let us call such a triple (l, u, w) a certificate.

Lemma 6.7 There exists a certificate (l, u, w) with l ≥ 0.

Proof. Let (l,u,w) be any certificate and let E− = {e ∈ E : l(e) < 0}. For any z ∈ QE , let z̃ ∈ QE

denote the vector with z̃(e) = max{z(e), 0}, for all e ∈ E. We show that (̃l, u, w) is also a certificate, which

proves the lemma. Since Max(A, l̃, u, w) and Max(A, l, u, w) have the same set of feasible solutions and
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l̃ ≥ l, so the value of Max(A, l̃,u,w) is at least that of Max(A, l, u, w). On the other hand, for any feasible

solution (α, β, γ) of Max(A, l̃, u, w), let β′ be obtained from β by setting β′(e) = 0 if l(e) < 0 and setting

β′(e) = β(e) otherwise, for all e ∈ E. Then (α,β′,γ) is a feasible solution to Max(A, l,u, w) and βT l̃ =

(β′)T l, which implies that Max(A, l̃, u, w) and Max(A, l,u,w) have the same maximum. Consequently,

Max(A, l̃, u, w) is finite. Notice that β′ is integral if β is. Therefore, if (α,β, γ) is an integral optimal

solution of Max(A, l̃, u,w) then (α, β′,γ) would be an integral optimal solution of Max(A, l,u,w), which

is impossible. Thus (̃l,u, w) is a certificate, as required.

Lemma 6.8 Suppose l ≥ 0 and (E1, E2) is a 2-separation of N . Let (α, β,γ) be chosen among all optimal
solutions of Max(A, l, u, w) such that α(O(E1, E2)) is minimized. If the flow (f , α) is connected and
(E1, E2)-minimal then α(O(E1, E2)) is integral.

Proof. Suppose, on the contrary, that α(O(E1, E2)) 6∈ Z. Let N1 and N2 be the two matroids induced by
(E1, E2). Notice that (f , α) is tight at (E1, E2), with respect to (f , α). By Lemma 5.1, (f , α) is cross-free
at (E1, E2). Thus we may consider the components (f1,α1) and (f2,α2) of (f ,α). By Lemma 5.4 and
Lemma 5.2, for i = 1, 2, (f i, αi) is minimal and connected, and f i(p) = α(O(E1, E2)) 6∈ Z. Consequently,
by Lemma 5.6, Ni has an f i-fractional circuit Ci 3 p. Let C = (C1−{p})∪ (C2−{p}). Then C ∈ O(E1, E2)
is f -fractional. Let us apply Lemma 5.5 to (f ,α) and C. Let t, δ, χ, ε, and (f±,α±) satisfy the conclusion

of the lemma. Let µ,ρ ∈ {0,±1}E be such that

µ =

{
χ(e) if e ∈ C and f(e) < w(e)
0 otherwise

and ρ =

{
χ(e) if e ∈ C and f(e) > w(e)
0 otherwise

.

Since w is integral, it follows that f(e) 6= w(e), for all e ∈ C, and thus µ + ρ = χ.
Observe that (α, w − f + γ,γ) is also an optimal solution of Max(A, l, u, w), as l ≥ 0. Thus we may

assume, without loss of generality, that β = w − f + γ. Let β± = β ∓ εµ and γ± = γ ± ερ. Notice that

f(e) < w(e) implies β(e) > 0, and f(e) > w(e) implies γ(e) > 0. Therefore, if ε is sufficiently small, we
have β± ≥ 0 and γ± ≥ 0. Furthermore,

β± − γ± = β − γ ∓ ε(µ + ρ) = β − γ ∓ εχ,

and so
f± + β± − γ± ≤ f ± εχ + β − γ ∓ εχ = f + β − γ ≤ w,

which implies that both (α+, β+, γ+) and (α−, β−, γ−) are feasible solutions to Max(A, l, u, w). Since

αT 1 + βT l− γT u ≥ αT
±1 + βT

±l− γT
±u

≥ αT 1± tε + βT l∓ εµT 1− γT u∓ ερT u

= αT 1 + βT l− γT u± ε(t− µT 1− ρT u),

so we must have t− µT 1− ρT u = 0, and thus both (α+, β+, γ+) and (α−, β−, γ−) are optimal solutions.

However, by Lemma 5.5, min{α±(O(E1, E2))} ≤ α(O(E1, E2)) − ε, which contradicts the minimality of
α(O(E1, E2)), and thus the lemma is proved.
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Now we are ready to prove our main result.

Proof of Theorem 1.3. The necessity was proved in Section 2, so we only prove the sufficiency. Suppose
the result is false. Then there is a minor minimal counterexample (M, `). By Lemma 6.4, (M, `) ∈ =, and
by Lemma 6.5, N = M/` is connected. By Lemma 4.3, M is not regular, which implies, by Theorem 3.4,
that N has a 2-separation (E1, E2). Let Σ ⊆ E such that Σ ∪ {`} is a cocycle of M . Then Proposition 3.1

implies that PM,` = ON,Σ. Let A be the PM,`-E incidence matrix. Let l, u ∈ QE and w ∈ ZE such that
Max(A, l, u, w) is finite yet has no integral optimal solution.

Claim 1. For any optimal solution (α,β, γ) of Max(A, l, u, w), the flow (f ,α) is connected.

Suppose otherwise. Then there exists a flow (f ′, α′) ¹ (f , α) such that α′(O(E1, E2)) = 0, for some

2-separation (E1, E2) of N . From (f ′, α′) ¹ (f ,α) we deduce that (α′,β, γ) is also an optimal solution

of Max(A, l,u, w); from α′(O(E1, E2)) = 0 we deduce that (f ′, α′) is tight, and hence by Lemma 5.1,

(f ′,α′) is cross-free at (E1, E2). Then Lemma 6.6 implies that α′(O(E1, E2)) is not integral, which is a
contradiction, so the claim is proved.

By Lemma 6.7, we may assume that l ≥ 0. Let us choose an optimal solution (α,β, γ) such that

(i) α(O(E1, E2)) is minimized;

(ii) subject to (i), f(E) is minimized, where f = AT α.

Claim 2. α(O(E1, E2)) is not integral.

Our choice (i) implies that (f , α) is tight at (E1, E2), with respect to itself. By Lemma 5.1, (f ,α) is
cross-free, and thus the claim follows from Lemma 6.6.

Claim 3. The flow (f , α) is (E1, E2)-minimal.

Consider any flow (f ′, α′) ¹ (f , α) with α′(O(E1, E2)) ≤ α(O(E1, E2)). Since (α′, β,γ) is feasible

and (α,β, γ) is optimal, (α′,β, γ) must also be optimal and thus (α′)T 1 = αT 1 holds. By our choice (i),

α′(O(E1, E2)) = α(O(E1, E2)). Thus our choice (ii) implies that f(E) ≤ f ′(E). However, our choice of f ′

implies f ′ ≤ f , so we must have f ′ = f , which proves the claim.

Now, by Claim 1, Claim 3, and Lemma 6.8, α(O(E1, E2)) is integral, which contradicts Claim 2. This
contradiction proves that there is no counterexample and thus the theorem is proved.

7 Applications

In this section we discuss several applications of our main result.

7.1 Box 1
d
-integral binary clutters

Let d be a positive integer. A linear system Ax ≥ b is box 1
d -integral if, for all 1

d -integral vectors u and l, all

vertices of {x : Ax ≥ b, u ≥ x ≥ l} are 1
d -integral.

Lemma 7.1 If Ax ≥ b is box-TDI and b is integral, then Ax ≥ b is box 1
d -integral, for every integer d > 0.
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Proof. For any integer d > 0, observe that 1
dAx ≥ b is also box-TDI. Let u and l be 1

d -integral. Then the

system 1
dAx ≥ b, du ≥ x ≥ dl is TDI, which implies that the polyhedron P = {x : 1

dAx ≥ b, du ≥ x ≥ dl}
is integral. Since d{x : Ax ≥ b, u ≥ x ≥ l} = P , the result follows.

For any clutter L on E, let A be the L-E incidence matrix. We call L box 1
d -integral, where d is a positive

integer, if the system Ax ≥ 1, x ≥ 0 is box 1
d -integral.

Theorem. (Gerards and Laurent [9]) The following are equivalent for every binary clutter L.
(i) L has neither Q6 nor Q7 minor;

(ii) L is box 1
d -integral for some integer d ≥ 2;

(iii) L is box 1
d -integral for all integers d ≥ 1.

The implications (iii) ⇒ (ii) ⇒ (i) are given in [9]. The difficult part for proving this theorem, (i) ⇒ (iii),
follows from Lemma 7.1 and Corollary 1.2.

7.2 Odd cycles in signed graphs

A signed graph is a graph G together with a subset Σ of E(G). A cycle of G is odd if it contains an odd
number of edges from Σ. It is well known [18, 9] that the set of edge sets of odd cycles in a signed graph
forms a binary clutter CG,Σ. More on signed graphs and odd cycles can be found in [4, 15].

Corollary 7.1 The following are equivalent for every signed graph (G, Σ).
(i) CG,Σ is Mengerian;
(ii) CG,Σ is box-Mengerian;
(iii) (G, Σ) cannot be reduced to (K4, E(K4)) by the following operations:

(a) deleting an edge of G;
(b) contracting an edge not in Σ;
(c) replacing Σ with the symmetric difference of Σ and {xy ∈ E(G) : x ∈ X, y 6∈ X}, for some

X ⊆ V (G).

It is explained in [9] that taking clutter minors in CG,Σ is equivalent to reducing a signed graph using
operations stated in (iii). Moreover, Q6 equals CK4,E(K4) yet Q7 does not equal any CG,Σ. Therefore, the

equivalence (i) ⇔ (iii) is a special case of Theorem 1.1 and the equivalence (ii) ⇔ (iii) follows from Corollary
1.2. We point out that this result strengthens Theorem 1.1 for the case of signed graphs.

7.3 T-joins

A graft [19] is a graph G = (V,E) together with a subset T ⊆ V of an even cardinality. The following figure
shows three grafts, which we denote by G1, G2, and G3.
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A subset F ⊆ E is a T -join if G\(E−F ) is a forest and its vertices of odd degree are precisely those in T .
The set of all T -joins forms a binary clutter [19, 4, 15]. To see this, we define a binary matroid on E ∪ {`},
where ` is an element not in E, by associating each element of E ∪ {`} with a vector over GF (2). For each

v ∈ V , let av ∈ {0, 1}V be the unit vector with av(v) = 1. Let m` =
∑

v∈T av. For each e = uv ∈ E, let

me = au +av. Notice that, if e is a loop then me = 0, since the sum is taken over GF (2). Let MG,T be the
binary matroid on E ∪ {`} determined by vectors me (e ∈ E) and m`. As pointed out in [19], the `-port of
MG,T is exactly the clutter of T -joins of G.

Taking minors in a T -join clutter can be translated into the following reductions in a graft [19]:

(i) deleting an edge;
(ii) contracting an edge uv, and putting the new vertex in T if and only if |T ∩ {u, v}| = 1.

If Theorem 1.1 is restricted to this case, it says that [4, 15] the clutter of T -joins of a graph G is Mengerian
if and only if (G,T ) cannot be reduced to G1. The following is the restriction of Theorem 1.2 to this case.

Corollary 7.2 The clutter of T -joins of a graph G is box-Mengerian if and only if none of G1, G2, and G3

can be reduced from (G,T ).

Proof. Observe that the T -join clutters of G1, G2, and G3 are Q6, Q7, and Q7, respectively. In fact, it is well
known [4, 15] that G1 is the only graft for which its T -join clutter is Q6. By Corollary 1.2, we only need to
verify that G2 and G3 are the only grafts for which their T -join clutters are Q7.

Suppose the T -join clutter of (G,T ) is Q7. Then MG,T (defined above) is F+
7 , with ` being a series

element. It follows that MG,T \` is the 1-sum of a coloop and F7\e ∼= M(K4). In other words, G has two
blocks, K2 and K4. Depending on if G is connected, there are two possibilities, which we denote by G2 and
G3. Let AG be the vertex-edge incidence matrix of G. Then the graphic matroid M(G) = MG,T \` is given

by AG, which implies that MG,T = F+
7 can be expressed as a matrix A∗G obtained from AG by adding a

column, corresponding `. Since ` is in series with the coloop of G, this new column is uniquely determined.
It is routine to verify that the last column of A∗G2

has four 1’s and the last column of A∗G3
has six 1’s, which

means that the corresponding grafts are G2 and G3.

Remark. If T = {s, t} then (G,T ) cannot be reduced to any of G1, G2, and G3. Notice that, in this case,
T -joins are st-paths. So this corollary implies that the clutter of st-paths of any graph is box-Mengerian.

7.4 T-cuts

Let G = (G,T ) be a graft. A T -cut is a set of edges {xy ∈ E(G) : x ∈ X, y ∈ Y }, for some partition (X, Y )
of V (G) such that |X ∩ T | and |Y ∩ T | are odd. The set of T -cuts is a binary clutter. In fact, the T -cut
clutter is the `-port of the dual of MG,T , the binary matroid we defined in the last section. In the following
result, the reduction we refer to are the reduction operations defined in the last section.

Corollary 7.3 The following are equivalent for every graft (G,T ).
(i) (G,T ) cannot be reduced to the graft (K4, V (K4));
(ii) the clutter of T -cuts of G is Mengerian;
(iii) the clutter of T -cuts of G is box-Mengerian.

Proof. The equivalence (i) ⇔ (ii) follows [4, 15] from Theorem 1.1. To complete our proof, we only need
to show that no T -cut clutter is Q7. This is clear because if the T -cut clutter of a graph G is Q7, then
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MG,T
∼= (F+

7 )∗, which implies F ∗7 = (F+
7 )∗\` ∼= MG,T \` = M(G), the graphic matroid of G. This is a

contradiction since F ∗7 is not graphic.

Remark. This corollary strengthens Theorem 1.1 when restricted to T -cuts. This case includes two special
interesting cases, |T | = 2 or G is series-parallel.

7.5 Two-commodity flows

Let s1, s2, t1, t2 be vertices of a graph G = (V, E) with s1 6= t1 and s2 6= t2. A two-commodity path is an
s1t1- or an s2t2-path. As pointed out in [18], two-commodity paths form a binary clutter. Moreover, it is
routine to verify that, if CG is the clutter of two-commodity paths of G, then for any e ∈ E, CG\e = CG\e
and CG/e = CG/e, except for CG/e = {∅}, when e = siti, for some i = 1, 2. Therefore,

Proposition 7.1 If a clutter is the clutter of two-commodity paths of a graph, then so are all its minors.

s

t

t

s

1

12

2

Corollary 7.4 The following are equivalent.
(i) the clutter of two-commodity paths of G is Mengerian;
(ii) the clutter of two-commodity paths of G is box-Mengerian;
(iii) no subgraph of G can be contracted to the above graph, up to permuting indices and exchanging

si with ti.

Proof. It has been pointed out in [18, 15] that the above graph is the only one for which Q6 is its clutter
of two-commodity paths. Therefore, the equivalence (i) ⇔ (iii) follows form Proposition 7.1 and Theorem
1.1. To establish (ii) ⇔ (iii), by Proposition 7.1 and Corollary 1.2, we only need to show that Q7 is not a
two-commodity path clutter.

Suppose G = (V, E) is a counterexample, where E = {1, 2, ..., 7}. Without loss of generality, let G be
connected. Let x and y be the ends of edge 7. Since 7 belongs to all members of Q7, G\7 has two components
Gx and Gy, which contain x and y, respectively. By symmetry, let us assume that 147 and 257 are s1t1-paths.
Since G is simple, edges 1,2,4,5 must all belong to one of Gx and Gy, say Gx. Notice that, in addition to
edge 7, x is incident with one edge in {1, 4} and one edge in {2, 5}. Consequently, at least one of the triples
127, 157, 427, and 457 share a common vertex, x. However, this is impossible since each of these triples is a
subset of a member of Q7, which is supposed to be a set of paths of G.

Remark. This corollary strengthens Theorem 1.1 when restricted to two-commodity paths.

Let G, s1, t1, s2, and t2 be as before. A two-commodity cut is a minimal set of edges separating both s1

from t1, and s2 from t2. All two-commodity cuts of G form a binary clutter [18, 4, 15]. In fact, as pointed
out in [18], if M is the matroid on E ∪{`} such that its `-port is the two-commodity path clutter of G, then
the `-port of M∗, the dual of M , is the two-commodity cut clutter of G, and vise versa.

Let G0 be the first graph shown below. It is known [18, 15] that the two-commodity cut clutter of G is
Mengerian if and only if no subgraph of G can be contracted to G0, up to permuting indices and exchanging
si with ti. The next is a characterization of box-Mengerian two-commodity cut clutters.
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Corollary 7.5 The clutter of two-commodity cuts of G is box-Mengerian if and only if no subgraph of G

can be contracted to any of the above two graphs, up to permuting indices and exchanging si with ti.

Proof. Let G1 be the second graph shown above. Like before, we only need to show that G1 is the only
graph for which its two-commodity cut clutter is Q7.

Suppose G = (V, E) is such a graph. Then the two-commodity cut clutter of G is the `-port of F+
7 . It

follows [16, 18] that the the two-commodity path clutter of G is the `-port of (F+
7 )∗. Notice that (F+

7 )∗ can
also be obtained from F ∗7 by adding a parallel element `. Thus the two-commodity path clutter of G, which

is the `-port of (F+
7 )∗, consists of a singleton {7}, and all members of Q6, the `-port of F ∗7 . Consequently,

G is obtained from the graph in Corollary 7.4 by adding an edge siti, for i = 1 or 2. Notice that the two
resulting graphs, for i = 1, 2, are both isomorphic to G1, so our result is proved.
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