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Abstract. In this paper, we propose iterative algorithms for solving image restoration problems.
The iterative algorithms are based on the decouple of deblurring and denoising steps in the restoration
process. In the deblurring step, an e�cient deblurring method using fast transforms can be employed.
In the denoising step, e�ective methods like wavelet shrinkage denoising method or total variation
denoising method can be used. The main advantage of this proposal is that the resulting algorithms
can be very e�cient, and can produce better restored images in visual quality and signal-to-noise
ratio than those by the restoration methods using the combination of a data-�tting term and a
regularization term together. The convergence of the proposed algorithms is shown in the paper.
Numerical examples are also given to demonstrate the e�ectiveness of these algorithms.
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1. Introduction. Digital image restoration and reconstruction plays an impor-
tant part in various areas of applied sciences such as medical and astronomical imag-
ing, �lm restoration, image and video coding. In this paper, we focus on a common
degradation model [25]: an ideal image f ∈ RN is observed in the presence of Toeplitz
matrix H ∈ RN×N arising from a spatial-invariant blur, and an additive zero-mean
Gaussian white noise n ∈ RN of standard deviation σ. Thus the observed image
g ∈ RN is obtained by:

g = Hf + n.(1.1)

It is well-known that restoring an image f is a very ill-conditioned problem. A
regularization method should be used in the image restoration process. One usual
approach is to determine the restored image by minimizing a cost function consisting
of a data-�tting term and a regularization term:

min
f
‖Hf − g‖22 + αR(f).(1.2)

Here ‖ · ‖2 is the Euclidean norm in RN , R(f) is the regularization term and α is
a positive regularization parameter. Numerous expressions for R have been used in
literature:

• Tikhonov regularization [15, 31]: R(f) = ‖f‖22 or ‖∇f‖22, where ∇ stands for
discrete gradient. It has been shown in [24] that an e�cient image restoration
method based fast transforms can be developed, and the computational cost
is O(N log N) operations. However, the drawback of the Tikhonov regular-
ization is that image edges cannot be preserved in the restoration process.

• Total variation (TV) regularization [27]: R(f) = ‖∇f‖2. The distinctive
feature of TV regularization is that image edges can be preserved. Thus TV
regularization is in general more suitable than the Tikhonov regularization for
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image restoration purpose. We refer readers to [28] for recent developments
of TV image restoration.

• Wavelet regularization [2, 10, 13]: R(f) =
∑

k λkφ(〈f ,ψk〉), where φ(·) is
a penalty function, λk denotes a weighted coe�cient and {ψk} denotes a
wavelet orthonormal basis. In image restoration, φ(x) = |x|p, where 1 ≤ p ≤ 2
is commonly used.

In this paper, we propose iterative algorithms for solving image restoration problems.
The iterative algorithms are based on the decouple of deblurring and denoising steps
in the image restoration process. The motivations of this approach are that
(M1) an e�cient deblurring method based on fast transforms can be used in the

deblurring step;
(M2) e�ective denoising methods like wavelet shrinkage method and total variation

method can be employed in the denoising step;
(M3) the resulting algorithms can be very e�cient, and can produce better re-

stored images than those of the restoration method using data-�tting and
regularization terms together in (1.2).

We consider and study the following iterative algorithms based on the decouple of
deblurring and denoising steps (an initial guess f (0) is used).

Algorithm1 :
f̂ (i) = argminf ‖Hf − g‖22 + α1‖f − f (i−1)‖22(1.3)
f (i) = argminf ‖f − f̂ (i)‖22 +

∑

k

λkφ(〈f ,ψk〉)(1.4)

Algorithm2 :
f̂ (i) = argminf ‖Hf − g‖22 + α1‖f − f (i−1)‖22(1.5)
f (i) = argminf ‖f − f̂ (i)‖22 + α2TV (f)(1.6)

We can also apply the wavelet denoising method and then the TV denoising
method in the denoising step, The main reason is that the Gibbs-type oscillation
artifacts may be introduced in the restored signal by using wavelet denoising methods,
see for instance Figure 1.3(b) in the next subsection). When the TV denoising method
is used after the wavelet denoising method, oscillation artifacts can be suppressed, see
for instance Figure 1.3(d) in the next subsection.

Algorithm3 :
f̂ (i) = argminf ‖Hf − g‖22 + α1‖f − f (i−1)‖22(1.7)
f̃ (i) = argminf ‖f − f̂ (i)‖22 +

∑

k

λkφ(〈f ,ψk〉)(1.8)

f (i) = argminf ‖f − f̃ (i)‖22 + α2TV (f)(1.9)

In the above three algorithms, α1 and α2 are the positive parameters for deblurring
and denoising respectively.

We note that the computational cost of the deblurring step in (1.3), (1.5) and
(1.7) is O(N log N) operations [24], and both wavelet denoising methods [11, 16, 21]
and the TV denoising method [5, 6, 25] in the denoising steps are also very e�cient.
These refer to our motivations (M1) and (M3). In the next subsection, we consider an
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one-dimensional signal restoration example to further illustrate our motivations (M2)
and (M3).

We remark that we use wavelet shrinkage or/and total variation in the denoising
step. However, the other e�ective denoising methods can be used in the framework if
they are available and suitable for the purpose.

1.1. An Example. The original signal is shown in Figure 1.1. The following
experiments are studied.

(i) The original signal is blurred by a motion blur of length 9 and degraded
by the Gaussian noise with a zero mean and a variance of 64. The blurred
and noisy signal is then shown in Figure 1.2(a). Figures 1.2(b) and 1.2(c)
show the restored signals by minimizing a cost function (cf. (1.2)) consisting
of a data-�tting term and a regularization term of the Haar wavelet (hard
thresholding) regularization method [13] and of the TV regularization method
[27] respectively. Here trial by error for di�erent values of α in (1.2) is used.
In the �gures, the least relative errors of the restored signals among the tested
values of α are reported.

(ii) The original signal is degraded only by the Gaussian noise with a zero mean
and a variance of 64. The noisy signal is then shown in Figure 1.3(a). Figures
1.3(b) and 1.3(c) show the restored signals by minimizing a cost function

min
f
‖f − g‖22 + αR(f)(1.10)

(H = I, i.e., no blur) using the Haar wavelet hard thresholding denoising
method and the TV denoising method respectively. We observe that the Haar
wavelet hard thresholding method [21] (Figure 1.3(b)) and the TV method
(Figure 1.3(c)) are more e�ective in denoising (both methods have smaller
relative errors) than in the combination of deblurring and denoising together
(Figures 1.2(b)-(c)). This illustrates our motivation (M2).

(iii) For the motivation (M3), we used the three proposed iterative algorithms to
restore the blurred and noisy signal in Figure 1.2(a). Figures 1.4(a), 1.4(b)
and 1.4(c) show the restored signals by using Algorithms 1, 2 and 3 respec-
tively. In these tests, Haar wavelet hard thresholding denoising method [21]
is used. We see from the �gures that the relative errors of the restored sig-
nals by Algorithms 1 and 2 are less than those of Figures 1.2(b) and 1.2(c).
We also �nd that the relative errors of the restored signals by Algorithm 3
is the least one among all the restored signals. These examples show that
the decouple of deblurring and denoising for image restoration can be an ef-
fective approach. In Section 4, more numerical examples will be given to
demonstrate the e�ectiveness of this approach.

1.2. Outline. The outline of this paper is given as follows. In Section 2, we
review deblurring and denoising methods. In Section 3, we show the convergence of
Algorithms 1, 2 and 3. In Section 4, numerical examples are given to demonstrate
the e�ectiveness of the proposed methods. Finally, concluding remarks are given in
Section 5.

2. Deblurring and Denoising Methods. In this section, we review deblurring
and denoising methods.
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Figure 1.1. The original signal.
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Figure 1.2. The blurred and noisy signal (a); the restored signal by the Haar wavelet regular-
ization method (b); the restored signal by the TV regularization method (c).

2.1. Deblurring Methods. In order to determine f̂ (i) in (1.3), (1.5) and (1.7),
it is required to solve the following linear system:

(
HT H + α1I

)
f̂ (i) = HT g + α1f

(i−1).(2.1)

Because of the regularized term α1I, the coe�cient matrix (HT H + α1I) is always
invertible even if HT H is singular.

We note that H is a block-circulant with circulant-block (BCCB) matrix when
periodic boundary conditions are applied to the image boundary. The matrix H can
be diagonalized by the discrete Fast Fourier Transform (FFT) matrix, and therefore
the cost of solving (2.1) is O(N log N) operations where N is the number of pix-
els of the restored image. When zero boundary conditions are applied to the image
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Figure 1.3. The noisy signal (a); the restored signal by the Haar wavelet regularization method
(b); the restored signal by the TV regularization method (c); the restored signal by the Haar wavelet
regularization method and then the TV regularization method (d).

boundary, H is a block-Toeplitz with Toeplitz-block (BTTB) matrix. The conjugate
gradient method can be used to solve (2.1). The convergence of the conjugate gradi-
ent method can be improved using preconditioning techniques. Transformation-based
preconditioning techniques have been proved to be very successful [23]. When re�ec-
tive boundary conditions applied to the image boundary, H is a block-Toeplitz-plus-
Hankel with Toeplitz-plus-Hankel-block (BTHTHB) matrix. If the blurring function
is symmetric, such block-Toeplitz-plus-Hankel with Toeplitz-plus-Hankel-block matrix
can be diagonalized by the discrete cosine transform (DCT) matrix [24]. Therefore
the cost of solving the corresponding linear system is O(N log N) operations.
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Figure 1.4. The restored signal by Algorithm 1 (a); the restored signal by the TV regularization
method (b); the restored signal by Algorithm 2 (b); the restored signal by Algorithm 3(c).

We note from (1.1) and (2.1) that

f̂ (i) =
(
HT H + α1I

)−1
(
HT g + α1f

(i−1)
)

= f + ε
(i)
f + εn,(2.2)

where

ε
(i)
f = α1

(
HT H + α1I

)−1
(
f (i−1) − f

)
and εn =

(
HT H + α1I

)−1
HT n.

Here the variance of εn is given by σ2
(
HT H + α1I

)−1
HT H

(
HT H + α1I

)−1. Ac-
cording to (2.2), we will choose a small value of α1 in order to reduce the error ε

(i)
f .

However, the residual noise εn will be ampli�ed by using a small value of α1. In
the denoising step of Algorithms 1, 2 and 3, we apply wavelet shrinkage or/and TV
regularization denoising methods to suppress the residual noise.

2.2. Wavelet Denoising Methods. Wavelet-based noise reduction algorithms
[11, 12, 21, 33] are asymptotically near optimal for a wide class of signals corrupted
by additive Gaussian white noises. These algorithms also work well when the noise is
neither white noise nor Gaussian, see for instance [17].

By using the unitary invariance property of the 2-norm, one can rewrite

‖f − f̂ (i)‖22 =
∑

k

(
〈f ,ψk〉 − 〈f̂ (i),ψk〉

)2

6



in (1.4), (1.6) and (1.8). Therefore we have

f (i) = argminf

∑

k

((
〈f̂ (i),ψk〉 − 〈f ,ψk〉

)2

+ λk|〈f ,ψk〉|p
)

.(2.3)

It is easy to see that the wavelet coe�cients of f (i) can be obtained independently
for each 〈f (i),ψk〉 as a scalar optimization problem. In particular, when p = 1, the
solution in (2.3) is just the popular soft thresholding scheme [12]:

〈f̂ (i),ψk〉 =




〈f̂ (i),ψk〉 − λk/2, if 〈f̂ (i),ψk〉 ≥ λk/2,

〈f̂ (i),ψk〉+ λk/2, if 〈f̂ (i),ψk〉 ≤ −λk/2,
0, otherwise.

(2.4)

Usually, λk is set to be a constant related to the variance σk of the residual noise εn

in its k-th level wavelet decomposition, see [11]. In our setting, the variance σk can
be estimated as follows:

σ2
k = E{|〈εn,ψk〉|2} =

∑
u,v

σ2|H(u, v)|2|Ψ(k, u, v)|2
(|H(u, v)|2 + α1)2

,(2.5)

where E(·) is the expectation operator, H(u, v) and Ψ(k, u, v) are the discrete Fourier
transforms of H and ψk respectively. Both H(u, v) and Ψ(k, u, v) can be computed
by using the FFT in O(N log N) operations. This optimization step can be done
independently for each wavelet coe�cient and therefore the cost of wavelet denoising
the image solution is in O(N log N) operations. Other wavelet shrinkage denoising
schemes like hard thresholding method [21] and Garrote thresholding method [16] can
be used in the denoising step of the proposed algorithms.

2.3. The TV Denoising Method. The use of TV regularization for image
processing has been proposed by Rudin, Osher and Fatemi [27]. The distinctive fea-
ture of TV regularization is that edges can be preserved. We remark that Steidl et.al.
[29] have shown the equivalence of soft wavelet shrinkage, total variation di�usion and
total variation regularization. Recent developments of TV image restoration can be
found in [28].

The Euler-Lagrange equation for the total variation denoising problem is given
by the following a nonlinear system of equations. The arti�cial time marching scheme
proposed in Rudin et al. [27] obtains the solution of this nonlinear system of equations
as the steady state of a parabolic partial di�erential equation. Indeed, it is equivalent
to employing the following gradient descent method to solve the minimization prob-
lem. The drawback of this method is that the convergence rate of explicit methods
can be very slow due to stability constraints. Implicit methods can be applied but
then one has to deal with the nonlinearity problem and the solution of the resulting
linear systems. In [32], the lagged di�usivity �xed point iteration is introduced. This
method consists of linearizing the nonlinear di�erential term in the nonlinear system
of equations by lagging the di�usion coe�cient one iteration behind. The resulting
linear system can be solved e�ciently by multigrid methods [32]. The algorithm can
be interpreted in the framework of generalized Weiszfeld's methods, see for instance
[7]. As proved in [7], this method is monotonically convergent, in the sense that the
objective function values evaluated at the iterates form a monotonically decreasing
sequence, and the convergence rate is linear. In practice, this method is very robust.
Recently, Chan and Chen [6] proposed a very fast multilevel method using primal
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relaxation for total variation denoising problems. Chambolle [5] considered a dual
formulation of total variation denoising problem, and used the projected gradient
method to solve the resulting constrained optimization problem. Based on the the-
ory on semismooth operators, Ng et al. [25] studied semismooth Newton's methods
for computing the nonlinear projection. The convergence and numerical results have
shown that the proposed algorithm is quite e�ective.

3. Convergence Analysis. Let us �rst introduce the following notations in the
following discussion:

Sh(x) ≡ argminf ‖Hf − g‖22 + α1‖f − x‖22

Sw(x) ≡ argminf ‖f − x‖22 +
∑

k

λkφ(〈f ,ψk〉)

Stv(x) ≡ argminf ‖f − x‖22 + α2TV (f)

The main aim of this section is to show the convergence of Algorithm 1:

f (i) = Sw(Sh(f (i−1)))

Algorithm 2:

f (i) = Stv(Sh(f (i−1)))

and Algorithm 3:

f (i) = Stv(Sw(Sh(f (i−1))))

for i = 1, 2, · · ·. We will use the techniques of non-expansive operators to show the
convergence. Let us �rst introduce some de�nitions.

Definition 3.1. [8] An operator P : RN → RN is called non-expansive if for
any x1,x2 ∈ RN , we have

||P (x1)− P (x2)||2 ≤ ||x1 − x2||2.

If there exists a number β ∈ (0, 1) and an non-expansive operator T : RN → RN such
that P = (1− β)I + βT is non-expansive, then P is called β-averaged. In particular,
when β = 1/2, P is called a �rmly non-expansive operator.

We remark that an equivalent form of �rmly non-expansive operator is de�ned as

‖P (x1)− P (x2)‖22 ≤ [P (x1)− P (x2)]
T (x1 − x2) ,(3.1)

see for instance [9]. In fact, let T be a non-expansive operator such that P = 1
2I+ 1

2T .
For any x,y ∈ RN , we have

‖T (x)− T (y)‖22 = 4‖P (x)− P (y)‖22 + ‖x− y‖22 − 4(P (x)− P (y))T (x− y).

Since T is non-expansive, i.e.,

‖T (x)− T (y)‖22 ≤ ‖x− y‖22,
8



we obtain the inequality (3.1). On the other hand, given an operator P with (3.1),
we have

‖(2P − I)(x)− (2P − I)(y)‖22 ≤ ‖x− y‖22.

We can construct T = 2P − I and the above formula shows that T is non-expansive.
The following lemma shows that the product of two averaged non-expansive is also
averaged non-expansive.

Lemma 3.2. Let P1 and P2 be β1- and β2-averaged non-expansive operators
respectively. Then P1P2 is (β1 + β2 − β1β2)-averaged non-expansive.

Proof. Since P1 and P2 are β1- and β2-averaged non-expansive operators, there
exist non-expansive operators T1 and T2 such that

Pi = (1− βi)I + βiTi

for i = 1, 2. Thus we obtain

P1P2 = (1− β1 − β2 + β1β2)I + (1− β1)β2T2 + (1− β2)β1T1 + β1β2T1T2.

Set β3 = β1 + β2 − β1β2 and

T =
1

β1 + β2 − β1β2
((1− β1)β2T2 + (1− β2)β1T1 + β1β2T1T2) .

It is easy to check that β3 ∈ (β2, 1) with β1, β2 ∈ (0, 1) and T is non-expansive.
Now we show that Sh, Sw and Stv are �rmly non-expansive. For any x,y ∈ RN ,

we have

Sh(x)− Sh(y) = α1

(
HT H + α1I

)−1
(x− y) .

It is straightforward to obtain the following inequality:

‖Sh(x)− Sh(y)‖22 = (Sh(x)− Sh(y))T
α1

(
HT H + α1I

)−1
(x− y)

≤ (Sh(x)− Sh(y))T (x− y).

It follows that Sh is �rmly non-expansive. For Sw and Stv, we can use the following
results in [9].

Lemma 3.3. [9, Lemma 2.4] Let γ be a positive number and ϕ be a convex and
semi-continuous function. Suppose

x̂ ≡ argminx ‖y − x‖22 + γϕ(x),(3.2)

and de�ne S : RN → RN such that x̂ = S(y). Then S is �rmly non-expansive.
We note that |x|p (1 ≤ p ≤ 2) is a convex and semi-continuous function. By using

the results in Lemma 3.3, both operators Sw and Stv are �rmly non-expansive.
In order to establish the convergence of the proposed iterative scheme, we study

the following property of β-averaged non-expansive operators, see for instance [4].
Lemma 3.4. Let P : RN → RN be an β-averaged non-expansive operator. For a

given z(0) ∈ RN , de�ne the sequence z(k) = P (z(k−1)) for k = 1, 2, · · ·. If the set of
�xed points of P is nonempty, then P is asymptotically regular, i.e.,

lim
k→∞

||z(k+1) − z(k)||2 = lim
k→∞

||P k+1(z(0))− P k(z(0))||2 = 0.
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Proof. Let z be a �xed point of P . We denote g = I − P . Since P is an β-
averaged non-expansive operator, there exist a number β ∈ (0, 1) and a non-expansive
operator T such that P = (1− β)I + βT . It also implies that g = β(I −T ). For any
x,y ∈ RN , we have

‖x− y‖22 − ‖T (x)− T (y)‖22 =
2
β

(g(x)− g(y))T (x− y)− 1
β2
‖g(x)− g(y)‖22 ≥ 0.

or

[g(x)− g(y)]T (x− y) ≥ 1
2β
‖g(x)− g(y)‖22.

By using the fact that z = P (z), we have

‖z − z(k)‖22 − ‖z − z(k+1)‖22 = ‖z − z(k)‖22 − ‖P (z)− P (z(k))‖22
= 2

(
g(z)− g(z(k))

)T (
z − z(k)

)
− ‖g(z)− g(z(k))‖22

≥
(

1
β
− 1

)
‖g(z)− g(z(k))‖22.

We note that g(z) = z−P (z) = 0 and g(z(k)) = z(k)− z(k+1). Therefore, we obtain

‖z − z(k)‖22 − ‖z − z(k+1)‖22 ≥
(

1
β
− 1

)
‖z(k) − z(k+1)‖22.

Since (1/β−1) > 0, one can immediately deduce that
∑

k ‖z(k)−z(k+1)‖22 is bounded.
Then the result follows.

Now we consider the well-known Opial theorem [26]. It states that if the set of the
�xed points of P is nonempty, and P is non-expansive and asymptotically regular,
then the sequence x(k) where x(k) = P (x(k−1)) for k = 1, 2, . . . converges weakly to
a �xed point. Using the results in Lemma 3.4, we have the following theorem.

Theorem 3.5. [4, Theorem 2.1] Let P : RN → RN be an β-averaged non-
expansive operator. If the set of the �xed points of P is nonempty, then for any z(0),
the sequence {z(k)} where z(k) = P (z(k−1)) for k = 1, 2, · · · converges to a �xed point
in RN .

According to Lemma 3.2, since the operators Sh,Sw and Stv are �rmly non-
expansive, the product StvSwSh is β-averaged non-expansive for some β ∈ (0, 1). By
applying Theorem 3.5, we have our main results of this paper.

Theorem 3.6. (i) Assume that the set of the �xed points of SwSh is nonempty,
Algorithm 1 converges to a �xed point.

(ii) Assume that the set of the �xed points of StvSh is nonempty, Algorithm 2
converges to a �xed point.

(iii) Assume that the set of the �xed points of StvSwSh is nonempty, Algorithm
3 converges to a �xed point.

Before we end this section, we give several remarks about the convergence of the
proposed algorithm.

• When H is rank-de�cient, SwSh, StvSh, and StvSwSh may not be strictly
contraction operators. However, we can add a projection operator Sp at each
iteration such that the values of the entries of f (i+1) is projected to [0, 255].
It follows from the Banach-Algoglu theorem that the operators SpSwSh,

10



SpStvSh, and SpStvSwSh have a weak accumulation point, see [10] for de-
tails. Therefore, their corresponding set of �xed points are non-empty. By
using Theorem 3.6, we can show that Algorithms 1, 2 and 3 converges to a
�xed point.

• When H is full-rank, i.e., the smallest eigenvalue of HT H is larger than 0,
it is easy to check that for all x,y, there exists a number r ∈ (0, 1) such that

‖Sh(x)− Sh(y)‖2 ≤ r‖x− y‖2.

It implies that SwSh, StvSh, and StvSwSh are strictly contraction operator.
According to Banach-Picard theorem, for any initial vector f (0), Algorithms
1, 2 and 3 converges to a unique �xed point.

4. Numerical Results. In this section, we illustrate the performance of Al-
gorithms 1, 2 and 3 for solving image restoration problems. Three indices are used
to measure the quality of the restored images by di�erent algorithms. They are the
Signal-to-Noise Ratio (SNR), the Improvement in SNR (ISNR), and the Blurred SNR
(BSNR):

SNR = 10 log10

‖f‖22
‖f − f̃‖22

, ISNR = 10 log10

‖f − g‖22
‖f − f̃‖22

and

BSNR = 10 log10

‖g‖22
‖n‖22

,

where f , g, f̃ and n are the original image, the blurred and noisy image, the restored
image and the noise vector, respectively. In our algorithms, the stopping criterion is

RE =
‖f (k−1) − f (k)‖2

‖f (k−1)‖2
≤ 10−3

We use the output of the ForWaRD restoration method [22] as an initial image. Trial
by error for α1 and α2 is used in the tests. In the �gures, we report the highest SNR of
the restored image over all tested values of α1 and α2. Our codes are written in Matlab.
The computaational results by ForWaRD were generated by using the software �For-
WarRD� which can be downloaded from http://www.dsp.rice.edu. Research codes ac-
companying this work will be made availabe at http://wenyouwei.googlepages.com/softwares.

Similar to [13, 22], we employ the Haar wavelet shrinkage denoising methods. The
shrinkage methods include soft thresholding method [12], hard thresholding method
[21] and Garrote thresholding method [16]. The program for TV denoising method is
based on the code 1 written by Vogel [32]. A very small parameter (1×10−6) is set in
the total variation term to avoid singularities in the calculation, for details see [32].

In the �rst experiment, we use a synthetic 128× 128 image as shown as in Figure
4.1. The image is blurred by a 7× 7 point box-car blur [1, 22] de�ned as follows:

h(i, j) =
{ 1

q2 , 0 ≤ i, j ≤ q − 1
0, otherwise.

(4.1)

1http://www.math.montana.edu/∼vogel/Book/
11



Table 4.1
The Blurs, the variances of noises and the original images

Blur Noise Variance Image Size
Example 1 Blur in (4.1) (q = 9) 0.31 cameraman 256× 256
Example 2 Blur in (4.2) 2 cameraman 256× 256
Example 3 Blur in (4.2) 8 cameraman 256× 256
Example 4 Blur in (4.3) 49 lena 256× 256

with q = 7. White Gaussian noises are added to the blurred image. The blurred and
noisy images are shown as in Figures 4.2 (left) and 4.2 (right) for BSNR = 20dB and
BSNR = 30dB respectively.

Figures 4.2 and 4.12 show the restored images by using ForWaRD [22], the wavelet
regularization in (1.2) [13] and the TV regularization in (1.2) for the restoration of
blurred noisy images with BSNR = 20dB and BSNR = 30dB respectively. Figures 4.3
and 4.13 show the restored images by using Algorithm 1 with hard thresholding, soft
thresholding and Garrote thresholding for the restoration of blurred noisy images with
with BSNR = 20dB and BSNR = 30dB respectively. Figures 4.4 and 4.14 show the
restored image by using Algorithm 2 for the blurred noisy images with with BSNR
= 20dB and BSNR = 30dB respectively. Figures 4.5 and 4.15 shows the restored
images by using Algorithm 3 with hard thresholding, soft thresholding and Garrote
thresholding for the restoration of blurred noisy images with with BSNR = 20dB
and BSNR = 30dB respectively. In Figures 4.6� 4.8 and 4.16� 4.18, we compare the
restoration results in iteration number vs. SNRs. In Figures 4.9� 4.11 and 4.19�
4.21, we compare the restoration results in iteration number vs.relative errors (RE).
We �nd in Figures 4.13� 4.15 and 4.3� 4.5 that the proposed algorithms can produce
better restored images in visual quality and signal-to-noise ratio than those by the
restoration methods using the combination of a data-�tting term and a regularization
term together.

In the second experiment, we test the proposed algorithms and compare with
other restoration methods using several di�erent blurs studied in [13]:

h(i, j) =
{ 1

1+i2+j2 , −7 ≤ i, j ≤ 7,

0, otherwise;
(4.2)

h(i, j) = [1, 4, 6, 4, 1]T [1, 4, 6, 4, 1]/256.(4.3)

In the tests, we set the variances σ of noises that have been used in the published
papers [1, 2, 13, 14, 18, 19, 20, 22]. The detailed information about the tests is given
in Table 4.1. There are several image restoration methods [1, 2, 13, 14, 18, 19, 20, 22]
used for comparison. Their restoration results in their published work under the
same setting are listed in Table 4.2. In particular, we show the ISNRs of the proposed
algorithms and other restoration methods. The symbol '-' in the table denotes that
the settings are not tested in the corresponding published work. According to Table
4.2, we observe that the performance of our proposed algorithms are quite good and
are comparable to the other restoration methods in literature.

5. Concluding Remarks. We have proposed iterative algorithms for solving
image restoration problems. The iterative algorithms are based on the decouple of
deblurring and denoising steps in the restoration process. The main advantage of

12



Original Image Blurred & Noisy Image Blurred & Noisy Image

Figure 4.1. The original image, and the blurred and noisy images for BSNR=20dB (left) and
BSNR = 30dB (right).

Table 4.2
SNR Improvement in di�erent examples.

Method Ex.1 Ex.2 Ex.3 Ex.4
Algorithm 1 with hard thresholding 8.46 7.53 5.64 2.90
Algorithm 1 with soft thresholding 8.57 7.53 5.56 2.81
Algorithm 1 with Garrote thresholding 8.77 7.58 5.69 2.90
Algorithm 2 8.81 7.52 5.56 2.58
Algorithm 3 with hard thresholding 8.91 7.74 5.69 3.04
Algorithm 3 with soft thresholding 8.51 7.39 5.46 2.74
Algorithm 3 with Garrote thresholding 8.87 7.60 5.69 2.91
TV [3] 8.41 - - 2.80
ForWaRD [22] 7.34 6.72 4.95 2.26
EM [13] 7.59 6.93 4.88 2.94
BOA [14] 8.16 7.46 5.24 2.84
GEM [2] 8.10 7.40 5.15 2.85
Banham & Katsaggelos [1] 6.70 - - -
Jalobeanu et al. [18] - 6.75 4.85 -
Liu & Moulin [20] - - - 1.08
RI-RWI [19] 7.84 7.31 5.54 -

this proposal is that the resulting algorithms can be very e�cient, and can produce
better restored images in visual quality and signal-to-noise ratio than those by the
restoration methods using the combination of a data-�tting term and a regularization
term together. Numerical results have shown that the proposed algorithms are quite
e�ective.
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Figure 4.6. xIteration number vs. SNR by using Algorithm 1 with hard thresholding (upper),
soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.7. Iteration number vs. SNR by using Algorithm 2 with hard thresholding (upper),
soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.9. Iteration number vs. relative error by using Algorithm 1 with hard thresholding
(upper), soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.10. Iteration number vs. relative error by using Algorithm 2 with hard thresholding
(upper), soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.11. Iteration number vs. relative error by using Algorithm 3 with hard thresholding
(upper), soft thresholding (middle), Garrote shrinkage (bottom).
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ForWaRD, SNR:20.7  α:0.00032987 Wavelet , SNR:23.72 TV, SNR:22.44  α:0.019975

Figure 4.12. The restored images by using ForWaRD [22] [SNR = 20.70dB] (left), wavelet
regularization in 1.2 [13] [SNR = 23.72dB] (middle), TV regularization in 1.2 [SNR = 22.44dB]
(right).

SNR:27.08dB SNR:25.53dB SNR:28.33dB

Figure 4.13. The restored images by using Algorithm 1 with hard thresholding [α1 = 0.005,
SNR = 27.08dB] (left), soft thresholding [α1 = 0.005, SNR = 25.53dB] (middle), Garrote shrinkage
[α1 = 0.005, SNR = 28.33dB] (right).
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SNR:25.08

Figure 4.14. The restored image by using Algorithm 2 [SNR = 25.08dB].

SNR:27.27dB SNR:25.23dB SNR:27.64dB

Figure 4.15. The restored images by using Algorithm 3 with hard thresholding [α1 = 0.005,
SNR = 27.27dB] (left), soft thresholding [α1 = 0.005, SNR = 25.23dB] (middle), Garrote shrinkage
[α1 = 0.005, SNR = 27.64dB] (right).
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Figure 4.16. Iteration number vs. SNR by using Algorithm 1 with hard thresholding (upper),
soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.17. Iteration number vs. SNR by using Algorithm 2 with hard thresholding (upper),
soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.18. Iteration number vs. SNR by using Algorithm 3 with hard thresholding (upper),
soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.19. Iteration number vs. relative error by using Algorithm 1 with hard thresholding
(upper), soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.20. Iteration number vs. relative error by using Algorithm 2 with hard thresholding
(upper), soft thresholding (middle), Garrote shrinkage (bottom).
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Figure 4.21. Iteration number vs. relative error by using Algorithm 3 with hard thresholding
(upper), soft thresholding (middle), Garrote shrinkage (bottom).
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