
入次数に制約のあるブーリアンネットワークに対する
先行状態検出問題および制御問題について

阿久津 達也 1　林田 守広 1　張 淑芹 2　程 王韋王其 3　呉 國寶 4

1京都大学　化学研究所　バイオインフォマティクスセンター
2復旦大学　数学科　　 3香港大学　数学科　　 4香港浸會大学　数学科

ブーリアンネットワーク（BN）は遺伝子ネットワークの数理モデルの一つである。先行状態検出問題とは、
BNの状態が与えられた時、その状態の直前の状態を見つける問題である。また、制御問題は、初期状態、
目標状態が与えられた時に、いくつかの頂点の状態を制御することにより目標状態に至らせるような制御
系列を見つける問題である。いずれの問題も NP困難であることが知られているが、本稿では入次数に制
約がある場合について、より詳細な結果を示す。また、同様の場合の先行状態検出問題に対する平均的に比
較的高速に動作するアルゴリズムを示すとともに、先行状態の平均的な分布について解析を行う。その結果
として、同様の場合の制御問題に対する従来より平均的に高速なアルゴリズムを示す。
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We study the predecessor and control problems for Boolean networks (BNs). The predecessor problem
is to determine whether there exists a global state that transits to a given global state in a given BN,
and the control problem is to find a sequence of 0-1 vectors for control nodes in a given BN which leads
the BN to a desired global state. The predecessor problem is useful both for the control problem for
BNs and for analysis of landscape of basins of attractions in BNs. In this article, we focus on BNs of
bounded indegree and show some harness results on the computational complexity of the predecessor and
control problems. We also present simple algorithms for the predecessor problem that are much faster
than the naive exhaustive search-based algorithm. Furthermore, we show some results on distribution of
predecessors, which leads to an improved algorithm for the control problem for BNs of bounded indegree.

1 Introduction

The Boolean network (BN, in short) is one of the
well-studied mathematical models of genetic net-
works [6]. Finding a sequence of control actions
for BNs is an important problem on BNs, which
is abbreviated as BN-CONTROL in this article.
Inspired from works on control of the probabilis-
tic Boolean network (PBN, in short) model [5],
we studied BN-CONTROL [1]. We showed that
BN-CONTROL is NP-hard even in considerably re-
stricted cases [1]. However, we may be able to de-
velop algorithms that are much faster than exhaus-
tive search based algorithms. Though we have not
yet fully succeeded to develop such algorithms, we

encountered the problem of finding a global state
transiting to a given global state, which is known
as the predecessor problem for BNs [3, 4] and is ab-
breviated as BN-PREDECESSOR in this article.
In other words, BN-PREDECESSOR is to find an
input node to a specified node in a state transi-
tion diagram of a BN. It should be noted that the
problem is trivial once a state transition diagram
is constructed. However, the number of nodes of a
state transition diagram is 2n where n is the num-
ber of nodes in a BN. Therefore, faster algorithms
should be developed.

For the predecessor problem, some studies have
been done. Barrett et al. studied the computa-
tional complexity of the predecessor problem for
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BNs and other discrete dynamical systems [3]. They
showed that BN-PREDECESSOR is NP-hard even
for BNs with planar graph structures, whereas they
presented a polynomial time algorithm for BNs of
bounded tree-width. Coppersmith also studied the
computational complexity of BN-PREDECESSOR
and distribution of predecessors [4]. She showed
that BN-PREDECESSOR for BNs with maximum
indegree K can be reduced to K-SAT, where K-
SAT denotes the Boolean satisfiability problem for
a set of clauses each of which consists of at most
K-literals. She also showed that as n grows, the ra-
tio of global states having at least one predecessors
converges to 1/e and 0 for general BNs and for BNs
with maximum indegree K, respectively.

In this article, we study BN-PREDECESSOR,
its variant, and BN-CONTROL with focusing on
cases where the maximum indegee is bounded by
some constant K. We show some hardness re-
sults on BN-PREDECESSOR, BN-CONTROL and
a related problem, all of which strengthen existing
hardness results. Next, based on our previous al-
gorithms for identifying singleton attractors [7], we
develop algorithms for identifying all predecessors,
all of which are much faster than the naive enumer-
ation based algorithm. Then, based on studies by
Coppersmith [4], we show some results on distribu-
tions of predecessors. Furthermore, by making use
of some of these results, we develop an improved al-
gorithm for BN-CONTROL for bounded indegree.
Due to space limitation, we do not present details
here. Details are given in the journal version [2]

2 Preliminaries

2.1 Boolean Network and BN-
PREDECESSOR

A BN consists of a set of n nodes V and n Boolean
functions F , where V = {v1, . . . , vn} and F =
{f1, . . . , fn}. In general, V and F correspond to a
set of genes and a set of gene regulatory rules, re-
spectively. Each node takes either 0 or 1 at each
discrete time t, where 1 (resp. 0) means that the
corresponding gene expresses (resp. does not ex-
press) at time t. The state of vi at time t is de-
noted by vi(t). The global state of a BN (or sim-
ply the state of a BN) at time step t is denoted
by the vector v(t) = [v1(t), . . . , vn(t)]. A reg-
ulation rule for each node is given in the form of
a Boolean function and the states of nodes change
synchronously. A node vi has ki incoming nodes
vi1 , . . . , viki

and the state of vi at time t + 1 is de-
termined by vi(t+1) = fi(vi1(t), . . . , viki

(t)), where
fi is a Boolean function with ki input variables. The

number ki is called the indegree of node vi. We also
write vi(t + 1) = fi(v(t)) to denote the regulation
rule for vi and v(t + 1) = f(v(t)) to denote the
regulation rule for the whole BN. A specific global
state can be written as an n-dimensional binary vec-
tor [b1, . . . , bn]. If we consider all 2n possible states
and compute their respective next states, a list of 2n

one-step state transitions can be obtained. These
2n transitions fully characterize the dynamics of a
BN and the table representing these 2n transitions
is called the state transition table. We can also as-
sociate a directed graph called state transition dia-
gram in which a set of nodes is the set of all possible
2n global states, and there exists a directed edge
from u to v if and only if v = f(u) holds (see also
Fig. 1).
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Figure 1: Example of (A) Boolean network and (B)
state transition diagram, where v1(t + 1) = v2(t) ∧
v3(t), v2(t+1) = v1(t) and v3(t+1) = v2(t)⊕v3(t).

For a global state v, a global state u is called
a predecessor of v if v = f(u). That is, u is a
predecessor of v if there is an edge from u to v in
the state transition diagram of a given BN. Then,
BN-PREDECESSOR is defined as follows [3, 4].
Definition 1 (BN-PREDECESSOR) [3, 4]
Suppose that a BN (V, F ) and a global state v1 are
given. Then, the problem is to find a global state v0

such that v1 = f(v0). If there does not exist such a
global state, “None” should be the output.

We can generalize the concept of predecessor to
k-predecessors. u is called a k-predecessor of v if
k times applications of f to u yield v. That is, u

is a k-predecessor of v if v =

k︷ ︸︸ ︷
f(f(· · ·(u) · · ·)) holds.

Clearly, a usual predecessor is equivalent to a 1-
predecessor. We define BN-k-PREDECESSOR to
be a problem of finding a k-predecessor of a given
global state in a given BN.
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2.2 Control of Boolean Network

In BN-CONTROL [1], there are two types of nodes:
internal nodes and external nodes, where inter-
nal nodes correspond to usual nodes (i.e., genes)
in BN and external nodes correspond to control
nodes. Let a set V of n + m nodes be V =
{v1, . . . , vn, vn+1, . . . , vn+m}, where v1, . . . , vn are
internal nodes and vn+1, . . . , vn+m are external
nodes. For convenience, we use xi to denote an
external node vn+i. Then, vi(t + 1) for i = 1, . . . , n
are determined by vi(t+ 1) = fi(vi1(t), . . . , viki

(t)),
where each vik

is either an internal node or an ex-
ternal node. Here, we let v(t) = [v1(t), . . . , vn(t)]
and x(t) = [x1(t), . . . , xm(t)]. We can describe
the dynamics of a BN by v(t + 1) = f(v(t),x(t)),
where x(t)’s are determined externally. Then, BN-
CONTROL is defined as follows (see also Fig. 2).
Definition 2 (BN-CONTROL) [1]
Suppose that for a BN, we are given an initial
state of the network (for internal nodes) v0 and
the desired state of the network vM at the M -
th time step. Then, the problem is to find a se-
quence of 0-1 vectors 〈x(0), . . . ,x(M)〉 such that
v(0) = v0 and v(M) = vM . If there does not exist
such a sequence, “None” should be the output.

Datta et al. proposed a dynamic programming
(DP) algorithm for control of PBN [5]. Here, we
briefly review their method in the context of BN.
We use a table D[b1, . . . , bn, t], where each entry
takes either 0 or 1. D[b1, . . . , bn, t] takes 1 if there
exists a desired control sequence beginning from a
state [b1, . . . , bn] at time t. This table is computed
from t = M to t = 0 by using the following recur-
rence:

D[b1, . . . , bn, M ] =

�
1, if [b1, . . . , bn] = vM ,
0, otherwise,

D[b1, . . . , bn, t − 1] =

����
���

1, if there exists (a,x) such
that D[a1, . . . , an, t] = 1
and a = f(b,x),

0, otherwise,

where b = [b1, . . . , bn] and a = [a1, . . . , an].

3 Hardness Results

We obtained the following hardness results, which
strengthen existing hardness results.
Proposition 3.1 BN-PREDECESSOR is NP-
hard for K = 3.

Theorem 3.2 BN-CONTROL is NP-hard for
K = 2 and M ≥ 2.

Theorem 3.3 BN-2-PREDECESSOR is NP-hard
for K = 2.
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Figure 2: BN-CONTROL is, given initial and de-
sired states of internal nodes (v1, v2, v3), to compute
a sequence of states of external nodes (x1, x2) that
leads to the desired state.

4 Recursive Algorithms for
BN-PREDECESSOR

In our previous work [7], we developed a very sim-
ple algorithm (called the basic recursive algorithm)
for identifying all singleton attractors along with
its variants. Furthermore, we analyzed the average
case time complexities. In these algorithms, a par-
tial solution (i.e., a partial global state) is extended
one by one according to a given node ordering that
leads to a complete solution (i.e., a singleton attrac-
tor). If it is found that a partial solution cannot be
extended to a complete solution, the next partial
solution is examined.

By modifying these algorithm slightly, we can ob-
tain algorithms for BN-PREDECESSOR. For that
purpose, we only need to modify the part of

it is found that fj(v(t)) �= vj(t)

in [7] to

it is found that fj(v(t)) �= v1
j ,

where v1
j denotes the jth element of a vector v1.

Since both algorithms are almost identical, the
same theoretical results on the average case time
complexity as in [7] should hold for the modified
algorithms (see Table 1). We also performed com-
putational experiments on the modified algorithms
and obtained results similar to those in Table 1.

5 Results on Distribution of

Predecessors

Coppersmith showed that the probability that a
randomly chosen global state has a predecessor is
bounded by (1− 2−2K

)n [4], which approaches to 0
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Table 1: Theoretically estimated average case time
complexities of basic, outdegree-based, and BFS-
based algorithms for the singleton attractor detec-
tion problem [7]. The same results should hold for
the modified algorithms for BN-PREDECESSOR.

K 2 3 4 5

basic 1.35n 1.43n 1.49n 1.53n

outdegree-based 1.19n 1.27n 1.34n 1.41n

BFS-based 1.16n 1.27n 1.35n 1.41n

as n grows. Based on her idea, we estimate a lower
bound of the expected number of predecessors for a
global state having at least one predecessor.

Proposition 5.1 Suppose that for each node,
K input nodes are randomly selected and then
a Boolean function is randomly selected from
22K

possible Boolean functions (including constant
Boolean functions). Then, the expected number of
global states having no predecessor is greater than

2n ·
(

2L − 1
2L

)
where L = n

22K+1 .

Proposition 5.2 Suppose that for each node, K
input nodes are randomly selected and then a
Boolean function is randomly selected from 22K

possible Boolean functions. Then, once a global
state has a predecessor, it is expected to have
2n/(2(2K+1)−1) or more predecessors.

6 An Improved Algorithm for
BN-CONTROL

BN-CONTROL is NP-hard but can be solved in
O(nM2m+n) time for BNs of bounded indegree by
using the DP algorithm in Section 2.2. Though
some practically faster algorithm was proposed, no
improvement has been done on the theoretical com-
putational complexity. Here, we show an improved
algorithm for BN-CONTROL whose average case
time complexity is O(nM2m+βn), where β (< 1)
depends on K.

The idea of the improved algorithm is quite sim-
ple but non-trivial. We can assume without loss of
generality that the constant function 0 is assigned
to each of the first n/2H nodes with high probabil-
ity, where H = 22K

[2]. Then, we can ignore these
nodes and thus we can only consider 2n− n

2H states
for internal nodes, instead of 2n states.

As in Section 5, we let L = n

22K+1 = n
2H . For a

global state v, v0 denotes the global state defined

by

[

L︷ ︸︸ ︷
0, 0, . . . , 0,vL+1,vL+2, . . . ,vn].

Then, the following proposition follows from the
definition of v0.
Proposition 6.1 Suppose that the constant func-
tion 0 is assigned to each of the first L nodes in a
BN with external nodes. Then, f(v,x) = f(v0,x)
holds for all v.

Based on this proposition, we can replace
D[b1, . . . , bn, t] in the original DP algorithm with
D′[c1, . . . , cn−L, t]. Using this improved algorithm,
we can obtain the following theorem.
Theorem 6.2 Suppose that for each node, K
input nodes are randomly selected and then
a Boolean function is randomly selected from
22K

possible Boolean functions. Then, BN-
CONTROL for bounded indegree K can be solved
in O(nM2m+(1−(1/2(2K+1)))n) time on the average.

References

[1] T. Akutsu, M. Hayashida, W-K. Ching, and
M. K. Ng (2006) Control of Boolean net-
works: Hardness results and algorithms for
tree-structured networks, Journal of Theoret-
ical Biology, 244, 670–679.

[2] T. Akutsu, M. Hayashida, S-Q. Zhang, W-K.
Ching, and M. K. Ng (2008) Analyses and algo-
rithms for predecessor and control problems for
Boolean networks of bounded indegree, IPSJ
Transactions on Bioinformatics, in press.

[3] C. Barrett, H. B. Hunt III, M. V. Marathe,
S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns,
and M. Thakur (2007) Predecessor existence
problems for finite discrete dynamical systems,
Theoretical Computer Science, 386, 3–37.

[4] S. N. Coppersmith (2007) Complexity of the
predecessor problem in Kauffman networks,
Physical Review E, 75, 051108.

[5] A. Datta, A. Choudhary, M.L. Bittner, and
E.R. Dougherty (2003) External control in
Markovian genetic regulatory networks, Ma-
chine Learning, 52, 169–191.

[6] S. A. Kauffman (1993) The Origins of Order:
Self-organization and Selection in Evolution,
Oxford Univ. Press, New York.

[7] S-Q. Zhang, M. Hayashida, T. Akutsu, W-K.
Ching, and M. K. Ng (2007) Algorithms for
finding small attractors in Boolean networks,
EURASIP Journal on Bioinformatics and Sys-
tems Biology, 2007, 20180.

-4-


