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Abstract

Nowadays in business environment, marketing competitiveness is as de-

manding as ever. To survive under keen competitions, industries must keep

acquiring customers and make them loyal while maximizing profit from their

service subscription or product purchasing. Intensive research works have

been done in answering when and what kind of promotions should be used

under limited marketing communication resources to maintain a perpetual

generation of revenue. In this paper, we investigate the advantages in consec-

utive promotion based on the framework of the model proposed in Ching et al.

[1]. The customers’ behavior is modelled by using a Markov chain and we aim

at maximizing the expected profit using stochastic dynamic programming.

We find that a multi-period promotion strategy is better then the strategy of

applying several single-period promotions in our tested examples.

Key Words: Customer Behavior, Consecutive Promotion, Stochastic Dynamic

Programming, Markov Process.
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1 Introduction

The competitions among providers in most servicing industries are keen nowadays.

Every company wants to maintain good relationship with their customers. This is

usually done by providing quality service and by making prompt promotion. How-

ever, too many promotions do no good as there lay a cost burden to the company.

Researchers have noticed that promotion causes a short-term growth in sales but

it will diminish in the long run, see for instance [5]. Moreover, companies often

have limited resources and they cannot conduct promotion all the time. In this pa-

per, we are interested in devising an optimal promotion plan so that the promotion

resources can be utilized fully and effectively. To tackle the problem, stochastic

models, in particular Markovian stochastic models [7] have been proved to be useful

and effective. Ching et al. [1] proposed a Markov decision approach for studying

the optimal promotion policy. Esteban-Bravo [3] applied dynamic programming

with the Markovian process to determine the promotion duration. They provided

a practical approach for the problem. Later Lin and Lin [6] considered a Marko-

vian stochastic for modeling the promotion duration for two competitive brands.

They give both explanation of profit function and explicit algorithm for solving the

optimal promotion duration.

One important step is to classify the customers by their degree of purchase

(different states). Then we can find out a plan which maximizes the total expected

profit, i.e., revenue minus promotional cost, using stochastic dynamic programming.

In [1], Ching et al. give a comprehensive discussion under this normal setting. They

propose a stochastic dynamic programming model with the Markov chain to capture

the customer behaviour. The advantage of Markov chain model is that it can take

into the account of the switching behaviour of the customers between the company

and its competitors. Thus the customer-company relationship can be described in

a stochastic setting which is more realistic, see for instance Pfeifer and Carraway

[8]. Stochastic dynamic programming is then applied to solve the optimal allocation

of promotion strategy with practical data in a computer services company. In [6],

the authors used Markov chain, entropy and diffusion theory to study the problem

of promotion duration during the transition state of customers’ switching between

different brands. Using Taguchi method, they are able to capture the uncertain

parameters of the model to determines optimal promotion duration. We will base

on the model and data in [1] and extend the model by adopting an additional

consideration, the multi-period promotion proposed in [6]. It is a usual practice to

decide whether to offer promotion and the type of promotion at the start of each

time unit, and all promotions last for a time unit. A multi-period promotion refers

to promotion that lasts for 2, 3, . . . , R time units. This encourages more purchases or

continuous subscriptions than a single-period promotion. We assume that customers

are in the same state (not referring to transition) even if they purchase more. Hence
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a greater revenue is expected.

The degree of increase in revenue of each period during the r-period of consecu-

tive promotions can be described by the following formula:

1 + m(1 − e−ni) i = 1, 2, . . . , r (1)

where m ≥ 0 denotes the ceiling level, n > 0 determines the growth rate of the

exponential curve, and r ≥ 2, an integer denotes a r-period promotion. The increase

is given to every single period and still applies if the customer changes to other

consumption level (different state) under the consecutive promotion. Jain and Singh

[4] suggested that the optimal acquisition and retention spending should follow the

second term of the formula. We use the formula because we have reason to believe

that a multi-period promotion has a significant advantage compared to a single-

period one at the beginning, but then the revenue increase declines as the length of

promotion increases and almost stops if the steady state of the market is reached.

We remark that other revenue adjustment can be used. Take for example

• Linear function: 1 + mr/n, or 1 + m min{1, r/n} which sets an upper bound;

• S-shaped function: m((nr + d1)
1/3 + d2), where d1, d2 are shifts.

We are going to find the maximum expected profit using stochastic dynamic

programming, where both finite and infinite horizon will be considered.

The rest of the paper is organized as follows. In Section 2, we review the Markov

chain model discussed in [1] for customers’ behavior and introduce the idea of multi-

period promotion. In Section 3, we present the dynamic programming approach for

the captured promotion problem. Numerical results are also given to demonstrate

the method. Finally, a summary is given in Section 4 to conclude the paper.

2 A Markov Model for Customers’ Behavior

In this section, customers are classified into N different states (namely 1, 2, . . . , N)

in the Markov model according to their consumption level. The data we considered

here is taken from [1]. The customer consumption data is stored in the company

database and can be collected weekly. In the following, we will take the number

of states to be four (N = 4) where States 1, 2, 3 are low-usage, medium-usage and

high-usage customers respectively, and, to make our consideration complete, State

4 is used to indicate non-customers (no usage). Thus a customer is said to be in

State 4, if he or she is either a customer of the competitor company or did not

subscribe any of the service during the period. It is then clear to see that at any

time a customer belongs to exactly one of the states in {1, 2, 3, 4} in our problem.

With these notations, a Markov chain model is a good approach to capture the
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transitions of customers among the states. In fact, the Markov chain model can

be characterized by an 4 × 4 transition matrix P . Here Pij(i, j = 1, 2, 3, 4) is the

transition probability that a customer will make a transition to State j in the next

period given that the current state is i. Thus a customer in State i will stay with the

same state in the next period (retention probability) is given by Pii. It can be shown

that if the underlying Markov chain is irreducible then the stationary distribution

p exists. This means that there is an unique probability vector p = (p1, p2, p3, p4)

such that

p = pP,
4∑

i=1

pi = 1, pi ≥ 0. (2)

By making use of the stationary distribution p, one can compute the retention

probability and the customer lifetime value [1]. With the help of stochastic dynamic

programming, one can also obtain the optimal promotion strategy [1]. For more

details about Markov chain model, we refer readers to the book [9]. We will apply

the model to a computer service company where the data is taken from Ching et al.

[1]. The duration of data available was 20 weeks. The company had a promotion

(e.g. special price or rate offer) for the first 8 consecutive weeks and no promotion

thereafter. The customers are classified by their service time consumed as follows:

State 1 2 3 4

Minutes 1 − 20 21 − 40 > 40 = 0

Table 1: The Classification of Customers (taken from [1])

The transition probability under promotion, P (1), and that under no promotion,

P (2), are respectively given by (taken from [1])

P (1) =




0.4230 0.0992 0.0615 0.4163

0.3458 0.2109 0.2148 0.2285

0.2147 0.2034 0.4447 0.1372

0.1489 0.0266 0.0191 0.8054




and

P (2) =




0.4146 0.0623 0.0267 0.4964

0.3837 0.1744 0.1158 0.3261

0.2742 0.2069 0.2809 0.2380

0.1064 0.0121 0.0053 0.8762




.

We note that the revenue was much higher when no promotion was given due

to the fact that a big discount was given to the customers in promotion period.

However, it does not imply that it must be a disadvantage to carry out promotion

because it can be compensated by new customers attracted. The following table

gives the data.
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State 1 2 3 4

Promotion 6.97 18.09 43.75 0.00

No promotion 14.03 51.72 139.20 0.00

Table 2: The Average Revenue of Customers (taken from [1])

In our revenue adjustment mechanism, we have to determine the values of m

and n. We will try different values of the ceiling level of adjustment, m, in our

calculations, however for n, we proposed that the increase nearly stops if it has

reached the steady state. With regard to this, we calculate the sum of the absolute

of the differences entry-wise between P 100 and P r. When it is smaller than 0.01,

then we can say it reaches the “steady state” (roughly speaking) after r steps. Using

this r, we want to find the value of n such that e−nr is smaller than 0.05 (hence

the increase is almost ceased). We remark that given an ergodic irreducible Markov

chain, the process will converge to its unique stationary distribution. It is well known

that the convergence rate depends on the modulus of the second largest eigenvalue

|λ2| < 1 of the transition probability matrix [2]. Roughly speaking, this means the

error between P n and P∞ will decay at a rate proportional to |λ2|
n (exponentially

decay). Here P∞ = 1tp where 1 is a row vector of all ones and p is the steady-

state distribution. Thus this suggests an effective method for determining m and

n. Notice that the matrix P we are considering is indeed P (1). Here we show some

cases of P r:

P 2 =




0.2884 0.0865 0.0826 0.5424

0.2994 0.1286 0.1665 0.4056

0.2771 0.1583 0.2573 0.3073

0.1962 0.0457 0.0387 0.7194




P 3 =




0.2504 0.0781 0.0834 0.5881

0.2672 0.1015 0.1278 0.5035

0.2730 0.1214 0.1713 0.4343

0.2142 0.0561 0.0528 0.6768




P 4 =




0.2384 0.0739 0.0805 0.6072

0.2505 0.0873 0.1047 0.5575

0.2589 0.0991 0.1273 0.5147

0.2221 0.0619 0.0616 0.6544




P 12 =




0.2306 0.0692 0.0739 0.6263

0.2308 0.0694 0.0741 0.6257

0.2309 0.0695 0.0744 0.6253

0.2305 0.0691 0.0737 0.6268




.

In fact, the steady-state distribution is given by (0.2306, 0.0692, 0.0738, 0.626). We

note that the eigenvalues of P are 1.0000, 0.0519, 0.2664 and 0.5656. The second

largest eigenvalue is 0.5656. This means that the Markov chain process in this

case will converge very fast to its steady-state distribution. Therefore we find that

n should be greater than 0.2496. We take n = 0.25. We proceed to stochastic

dynamic programming in the next section.
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3 Stochastic Dynamic Programming

In this section, we present the dynamic programming approach for the captured

promotion problem. We adopt the notations in [1].

N = total number of states (i = 1, . . . , N)

M = total number of alternatives (promotion) (j = 1, . . . , M)

T = number of weeks in consideration (t = 1, . . . , T )

dj = cost needed for carrying out promotion plan j per time unit

c
(j)
i = revenue obtained from a customer in State i under

alternative j per time unit

p
(j)
ik = transition probability for a customer to move from State i

to State k under alternative j per time unit

α = discount factor.

We define vi(t) to be the maximum expected profit with t weeks remaining for a

customer in State i at the beginning of the (T − t)th period for i = 1, . . . , N and

t = 1, . . . , T . Under the normal setting, we have the following relationship:

vi(t) = max
j=1,...,M

{
c
(j)
i − dj + α

N∑

k=1

p
(j)
ik vk(t − 1)

}
. (3)

A stochastic dynamic programming model is a system that can move from one

distinguished state to any other possible states. In each step, the manager has

to make a decision from a well-defined set of alternatives (to promote or not to

promote). This action affects the transition probabilities of the next move and

at the same time incurs an immediate gain or loss and subsequent gain or loss.

The problem that the decision maker facing is to determine an optimal strategy (a

stationary policy) of actions so that the overall gain is maximized. A stationary

policy is a rule of taking actions. It describes all the decisions that should be made

throughout the process. For more details about the stationary policy theorem for

a stochastic dynamic programming model, we refer readers to Winston [10]. In

the following subsections, we will consider both cases of infinite horizon and finite

horizon under a constraint that the number of promotions is fixed.

3.1 The Infinite Horizon Case

We first consider the basic setting and will add back the revenue adjustment later.

We can calculate the value vi (maximum expected profit starting at State i) of a

discounted, infinite-horizon Markov decision process using linear programming. The

optimal values vi satisfy the relationship [10]:

vi ≥ max
j=1,...,M

{
c
(j)
i − dj + α

N∑

k=1

p
(j)
ik vk

}
, i = 1, . . . , N.
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The optimal values are the ones for which the equality holds. The optimal plan for

each State i is the value of k that maximizes the right-hand-side of the inequality

[10]. Therefore one can set up a linear programming as follows:




min z =
N∑

i=1

vi

subject to

vi ≥ c
(j)
i − dj + α

N∑

k=1

p
(j)
ik vk, i = 1, . . . , N ; j = 1, . . . , M.

vi ≥ 0, i = 1, . . . , N.

which is equivalent to the following problem in matrix form:





min z =
N∑

i=1

vi

subject to

v ≥ c(j) − dj1 + αP (j)v, j = 1, . . . , M.

v ≥ 0.

Here 1 is a matrix with all entries 1 and has the same size as c(j).

To proceed with our revenue adjustment, we introduce one more notation as

follows:

c′(j)(r) = (1 + m(1 − e−nr))c(j) − dj1

where m ≥ 0, n > 0 fixed; j = 1, . . . , M − 1; r = 2, . . . , R and j 6= M . Because we

have reserved the last alternative for no action done (no promotion). Here R is the

maximum duration allowed for a consecutive promotion.

Now we consider for a policy using alternative j which lasts for 2 time units.

Following from one-step removal policy, its intermediate form after 1 time unit is:

v = c′(j)(2) + αP (j)v′

where v′ denotes a vector of expected profit in infinite horizon given that no decision

can be made in the first step.

As we have no choice to select other alternatives after 1 time unit since the

promotion lasts for 2 time units, we have to use the matrix P (j) for transition and

the same revenue c′(j)(2). Again, from one-step removal policy, we have:

v′ = c′(j)(2) + αP (j)v.

Combining, we have

v = c′(j)(2) + αP (j)
(
c′(j)(2) + αP (j)v

)

or

v =
(
I + αP (j)

)
c′(j)(2) + (αP (j))2v.
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Using similar argument and changing it to inequality, it can be generalized as:

v ≥
(
I + αP (j) + · · · + (αP (j))r−1

)
c′(j)(r) + (αP (j))rv.

Hence the linear programming we should consider ultimately is the following:






min z =
N∑

i=1

vi

subject to

v ≥ c(j) − dj1 + αP (j)v, j = 1, . . . , M.

v ≥
(
I + αP (j) + · · ·+ (αP (j))r−1

)
c′(j)(r) + (αP (j))rv,

j = 1, . . . , M − 1; r = 2, . . . , R

v ≥ 0.

We limit R to be 4 in our numerical examples. The result is computed using Scilab

and the program code is available at “http://hkumath.hku.hk/∼ wkc/MDP2.zip”.

We denote Di to be the optimal plan taken when a customer is in State i. Here 0

means no promotion should be carried out and 1 means we should carry out a single-

period promotion, and so on. We have set M = 2 (promotion and no promotion),

N = 4 (four states of customers). We remark that when m = 0, the situation

reduces to the case studied in [1]. Tables 3 to 8 present the optimal solutions.

d α m v1 v2 v3 v4 D1 D2 D3 D4

0 119 179 297 92 1 0 0 1

0.5 119 179 297 92 1 0 0 1

0.9 1 121 180 298 93 2 0 0 1

1.5 134 189 307 101 4 0 0 1

2 150 209 320 111 4 4 0 1

0 234 295 415 205 1 0 0 1

0.5 234 295 415 205 1 0 0 1

0 0.95 1 237 297 418 207 2 0 0 1

1.5 261 318 437 225 4 0 0 1

2 292 354 466 250 4 4 0 1

0 1144 1206 1329 1113 1 0 0 1

0.5 1144 1206 1329 1113 1 0 0 1

0.99 1 1158 1220 1342 1126 2 0 0 1

1.5 1269 1327 1448 1231 4 4 0 1

2 1414 1481 1592 1370 4 4 0 1

Table 3: d = 0
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d α m v1 v2 v3 v4 D1 D2 D3 D4

0 102 164 282 74 1 0 0 1

0.5 102 164 282 74 1 0 0 1

0.9 1 102 164 282 74 2 0 0 1

1.5 115 173 291 82 4 0 0 1

2 131 189 303 92 4 4 0 1

0 199 262 383 169 1 0 0 1

0.5 199 262 383 169 1 0 0 1

2 0.95 1 200 263 384 170 2 0 0 1

1.5 224 283 403 188 4 0 0 1

2 253 315 429 211 4 4 0 1

0 966 1030 1153 934 1 0 0 1

0.5 966 1030 1153 934 1 0 0 1

0.99 1 976 1040 1163 943 2 0 0 1

1.5 1080 1140 1263 1042 4 0 0 1

2 1220 1286 1400 1175 4 4 0 1

Table 4: d = 2

d α m v1 v2 v3 v4 D1 D2 D3 D4

0 88 151 269 58 0 0 0 1

0.5 88 151 269 58 0 0 0 1

0.9 1 88 151 269 58 0 0 0 1

1.5 96 157 275 63 4 0 0 1

2 111 170 286 72 4 4 0 1

0 164 230 351 134 0 0 0 1

0.5 164 230 351 134 0 0 0 1

4 0.95 1 164 230 351 134 0 0 0 1

1.5 186 247 369 150 4 0 0 1

2 214 276 393 172 4 4 0 1

0 788 854 978 755 1 0 0 1

0.5 788 854 978 755 1 0 0 1

0.99 1 793 860 983 761 2 0 0 1

1.5 893 955 1079 855 4 0 0 1

2 1025 1091 1208 981 4 4 0 1

Table 5: d = 4
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3.2 The Finite Horizon Case

We consider optimization in finite horizon. We limit the number of promotion

available for each customer in a period of planning to make it closer to reality.

We will use the values obtained in the last subsection as boundary conditions. We

introduce some more notations:

w = number of weeks remaining

p = number of promotions remaining

q = number of weeks remaining until the next decision echo

r = currently under a r-period promotion

As before, we consider the case M = 2 and N = 4. The recursive relation is given

by:

vi(w, p, q, r) =






max
t=0,...,min{w,p}

{
c̃i(t) + α

N∑

k=1

p
(m1)
ik vi(w − 1, m2, m3, m4)

}
if q = 0

c̃i(r) + α
N∑

k=1

p
(1)
ik vi(w − 1, p − 1, q − 1, r) if q ≥ 2

c̃i(r) + α
N∑

k=1

p
(1)
ik vi(w − 1, p − 1, 0, 0) if q = 1

where

m1 =

{
2 if t = 0

1 otherwise
m2 =

{
p if t = 0

p − 1 otherwise

m3 =

{
0 if t = 0

t − 1 otherwise
m4 =

{
0 if t = 0, 1

t otherwise

and

c̃i(t) =





(1 + m(1 − e−nr))c
(1)
i − d1 if t ≥ 2

c
(1)
i − d1 if t = 1

c
(2)
i − d2 if t = 0

where m ≥ 0, n > 0 are fixed.

In our promotion planning, we set wmax = 52, pmax = 4. The solution is presented

as a list like

t1, t2, t3, t4, v
∗

where v∗ is the maximum expected profit, ti is the week to employ a promotion,

“-” refers as no promotion and being enclosed by square brackets means consecutive

promotion. For example, [1, 2], 51, 52, 83 means we should have a consecutive pro-

motion at week 1 and 2, i.e. a two-period promotion in week 1, and two single-period

promotion in weeks 51 and 52, and the maximum expected profit is 83. Tables 9 to
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d α m State 1 State 2 State 3 State 4

0 1,47,50,52,95 -,-,-,-,158 -,-,-,-,276 1,2,3,4,67

0.5 1,47,50,52,95 -,-,-,-,158 -,-,-,-,276 1,2,3,4,67

0.9 1 [1,2],[50,51],95 -,-,-,-,158 -,-,-,-,276 1,2,3,4,67

1.5 [1,2,3,4],101 -,-,-,-,161 -,-,-,-,279 1,2,3,4,68

2 [1,2,3,4],109 [1,2,3,4],168 -,-,-,-,284 [1,2,3,4],70

0 45,48,50,52,169 -,-,-,-,234 -,-,-,-,355 1,2,3,4,138

0.5 45,48,50,52,169 -,-,-,-,234 -,-,-,-,355 1,2,3,4,138

0 0.95 1 [45,46],[50,51],169 -,-,-,-,234 -,-,-,-,356 1,2,3,4,138

1.5 [1,2,3,4],177 -,-,-,-,239 -,-,-,-,361 1,2,3,4,140

2 [1,2,3,4],187 [1,2,3,4],249 -,-,-,-,368 [1,2,3,4],145

0 47,49,50,51,963 -,-,-,-,1031 -,-,-,-,1155 1,2,3,4,929

0.5 47,49,50,51,963 -,-,-,-,1031 -,-,-,-,1155 1,2,3,4,929

0.99 1 [47,48],[50,51],971 -,-,-,-,1039 -,-,-,-,1162 1,2,3,4,937

1.5 [1,2,3,4],1039 [49,50,51,52],1106 -,-,-,-,1230 [48,49,50,51],1003

2 [1,2,3,4],1132 [20,21,22,23],1198 -,-,-,-,1322 [49,50,51,52],1094

Table 6: d = 0

d α m State 1 State 2 State 3 State 4

0 49,50,51,52,89 -,-,-,-,152 -,-,-,-,271 1,2,3,4,60

0.5 49,50,51,52,89 -,-,-,-,152 -,-,-,-,271 1,2,3,4,60

0.9 1 [49,50],[51,52],89 -,-,-,-,152 -,-,-,-,271 1,2,3,4,60

1.5 [1,2,3,4],95 -,-,-,-,155 -,-,-,-,274 1,2,3,4,61

2 [1,2,3,4],102 [1,2,3,4],161 -,-,-,-,278 [1,2,3,4],63

0 48,50,51,52,160 -,-,-,-,225 -,-,-,-,347 1,2,3,4,128

0.5 48,50,51,52,160 -,-,-,-,225 -,-,-,-,347 1,2,3,4,128

2 0.95 1 [48,49],[51,52],160 -,-,-,-,225 -,-,-,-,347 1,2,3,4,128

1.5 [1,2,3,4],167 -,-,-,-,230 -,-,-,-,351 1,2,3,4,130

2 [1,2,3,4],177 [1,2,3,4],239 -,-,-,-,359 [49,50,51,52],136

0 48,49,51,52,849 -,-,-,-,917 -,-,-,-,1041 1,2,3,4,815

0.5 48,49,51,52,849 -,-,-,-,917 -,-,-,-,1041 1,2,3,4,815

0.99 1 [48,49],[51,52],855 -,-,-,-,923 -,-,-,-,1047 1,2,3,4,821

1.5 [1,2,3,4],920 -,-,-,-,987 -,-,-,-,1110 [49,50,51,52],883

2 [1,2,3,4],1008 [34,35,36,37],1075 -,-,-,-,1199 [49,50,51,52],971

Table 7: d = 2
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d α m State 1 State 2 State 3 State 4

0 -,-,-,-,84 -,-,-,-,147 -,-,-,-,266 1,2,3,4,54

0.5 -,-,-,-,84 -,-,-,-,147 -,-,-,-,266 1,2,3,4,54

0.9 1 -,-,-,-,84 -,-,-,-,147 -,-,-,-,266 1,2,3,4,54

1.5 [1,2,3,4],88 -,-,-,-,149 -,-,-,-,268 1,2,3,4,54

2 [1,2,3,4],95 [41,42,43,44],154 -,-,-,-,273 [49,50,51,52],57

0 -,-,-,-,151 -,-,-,-,217 -,-,-,-,338 1,2,3,4,119

0.5 -,-,-,-,151 -,-,-,-,217 -,-,-,-,338 1,2,3,4,119

4 0.95 1 -,-,-,-,151 -,-,-,-,217 -,-,-,-,338 1,2,3,4,119

1.5 [1,2,3,4],157 -,-,-,-,221 -,-,-,-,342 48,49,50,51,121

2 [1,2,3,4],167 [1,2,3,4],229 -,-,-,-,350 [49,50,51,52],128

0 49,50,51,52,736 -,-,-,-,804 -,-,-,-,928 1,2,3,4,701

0.5 49,50,51,52,736 -,-,-,-,804 -,-,-,-,928 1,2,3,4,701

0.99 1 [49,50],[51,52],739 -,-,-,-,807 -,-,-,-,931 1,2,3,4,705

1.5 [1,2,3,4],801 -,-,-,-,868 -,-,-,-,992 [49,50,51,52],765

2 [1,2,3,4],885 [39,40,41,42],952 -,-,-,-,1076 [49,50,51,52],849

Table 8: d = 4

14 present the optimal strategy. Again we remark that when m = 0, it reduces to

the situation in [1] and the results are re-produced.

From the numerical results, we observe that there is no need to conduct pro-

motion to customers in State 3. For customers in State 2, promotion is useful only

when m is large. For customers in State 4, generally speaking, promotion should be

conducted in the very beginning in order to keep the customer. If we let the value

of m to increase, when it is greater than a certain threshold, the promotion pattern

differs from that with m = 0 (the situation that consecutive promotions have no

beneficial effect). From that level onwards, we can say consecutive promotion has a

significant benefit over single-period promotions. Also, when m is large, either no

promotion is used or 4-period promotions are employed. In other words, although

consecutive promotion gives up the opportunity to observe the states after one pe-

riod transition and set strategy accordingly, the benefit derived exceeds significantly

the cost of opportunity we gave up.

Finally, we remark that the new model actually gives better objective values

when compare to the previous model.

4 Summary

This paper is an extension of the work of Ching et al. [1]. In [1] they have

proposed a stochastic dynamic model for infinite and finite horizon with budget

constraint. Adopting the idea from Lin [6] that consecutive promotion is more

12



revenue-enhanced, we used an exponential decay function to increase the revenue

according to the duration of promotion. Both infinite and finite horizon are dis-

cussed. We have used Scilab to compute the numerical examples. The software is

very similar to the powerful mathematical tool Matlab. Scilab can be downloaded

at “http://www.scilab.org”. The model is then applied to the data in [1] of a com-

puter service company. The numerical results suggest that consecutive promotion

is recommended. Besides the intensity of promotion, it cannot be overlooked in an

optimal promotion planning.

In a real application, the parameters of the revenue-adjusting function as well as

the function itself can be estimated using practical data from manager. Consecutive

promotion can be realized not only by revenue enhancement but also adjustment

of the transition matrix. It is believed that if the consecutive promotion period is

longer, it is likely to have more loyal users.
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