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Abstract

Given a connected graph G = (V,E) and three even-sized subsets A1, A2, A3 of V , when
does V have a partition (S1, S2) such that G[Si] is connected and |Si ∩Aj | is odd for all i = 1, 2
and j = 1, 2, 3? This problem arises in the area of integer flow theory and has theoretical interest
in its own right. The special case when |A1| = |A2| = |A3| = 2 has been resolved by Chakravarti
and Robertson, and the general problem can be rephrased as a problem on binary matroids that
asks if a given triple of elements is contained in a circuit. The purpose of this paper is to present
a complete solution to this problem based on a strengthening of Seymour’s theorem on triples
in matroid circuits. Since no commonly used graph operations correspond directly to reductions
used by Seymour to lift matroid connectivity, and since specializations of Seymour’s operations
on matroids to graphs involve edge contractions, which cannot be employed in our investigation
of a nowhere-zero 3-flow problem, a large portion of this paper is devoted to further development
and refinement of Seymour’s work so as to fulfill our needs.
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1 Introduction

Graphs considered in this paper may have multiple edges but contain no loops. Let G = (V,E)
be a graph. For each A ⊆ V , we use G[A] to denote the subgraph of G induced by A and write
Ā := V − A. For each B ⊆ Ā, let [A, B] denote the set of edges of G with one end in A and
the other in B. We call [A,B] a bond of G if ∅ 6= A 6= V , B = Ā, and both G[A] and G[B] are
connected. By a quadruple we mean a connected graph G = (V, E) together with three even-sized
subsets A1, A2, A3 of V , and we denote it by 〈G,A〉, where A = {A1, A2, A3}. We say that 〈G,A〉
is feasible if G has a bond [S1, S2] such that |Si ∩ Aj | is odd, for all i = 1, 2 and j = 1, 2, 3, and
infeasible otherwise. The bond problem is to decide whether a given quadruple 〈G,A〉 is feasible.
A bond with the desired property is called a feasible solution to the problem or to the quadruple.

In [4], Chakravarti and Robertson obtained a complete solution to the bond problem for the
case |A1| = |A2| = |A3| = 2, where they assumed that A1, A2, A3 are the ends of three edges
e1, e2, e3. Their theorem, when restricted to a 4-connected graph G with |A1∪A2∪A3| ≥ 4, asserts
that 〈G,A〉 is infeasible if and only if G has a plane representation in which e1, e2, e3 are contained
in a facial cycle. This theorem implies the following result of Jung [1]: Let G be a 4-connected
graph and let s1, t1, s2, t2 be four distinct vertices of G. Then G contains no disjoint paths from si

to ti, i = 1, 2, respectively, if and only if G has a plane representation in which vertices s1, s2, t1, t2
occur on a facial cycle in cyclic order. To see this implication, let A1 := {s1, s2}, A2 := {s2, t1},
and A3 := {t1, t2}. It is then a routine matter to check that 〈G,A〉 is feasible if and only if G has
disjoint paths from si to ti, i = 1, 2, respectively. For a complete solution to this disjoint paths
problem, see Seymour [7], Shiloach [3, 8], and Thomassen [11].

In addition to its theoretical interest, the bond problem has an interesting application in integer
flow theory: A subdivision of K4 (the complete graph with four vertices) is called a fully odd K4 if
each of the six edges of the K4 is subdivided into a path of odd length. As conjectured by Toft [9]
and proved independently by Thomassen [10] and Zang [12], every graph containing no fully odd
K4 is 3-colorable. With the same motivation as Tutte’s 3-, 4-, and 5-flow conjectures, we strongly
believe that the dual of this theorem also holds; that is, every 2-edge-connected graph with no
fully odd K4-partition admits a nowhere-zero 3-flow, where a fully odd K4-partition of a graph
G = (V, E) is a partition (V1, V2, V3, V4) of V such that G[Vi] is connected for each 1 ≤ i ≤ 4, and
that |[Vi, Vj ]| is odd for each pair 1 ≤ i < j ≤ 4. A crucial step in our proof of this 3-flow conjecture
is to characterize all infeasible quadruples.

The present paper is concerned with the bond problem in its general setting. As we shall
see in Section 2, this problem can be rephrased as a problem on binary matroids that asks if a
given triple of elements is contained in a circuit, and the latter has been resolved by Seymour [6].
The purpose of this paper is to present a structural characterization of all infeasible quadruples
based on a strengthening of Seymour’s theorem on triples in matroid circuits. It is worthwhile
pointing out that since no commonly used graph operations correspond directly to reductions
used by Seymour to lift matroid connectivity, and since specializations of Seymour’s operations on
matroids to graphs involve edge contractions, which cannot be employed in our investigation of
the aforementioned nowhere-zero 3-flow conjecture, a large portion of this paper will be devoted to
further development and refinement of Seymour’s work so as to fulfill our needs.

Let us introduce some notions before presenting our results. A quadruple 〈G,A〉 is called trivial
if some Ai = ∅, and is called cyclic if A1∆A2∆A3 = ∅ and acyclic otherwise, where ∆ stands for
the symmetric difference operator. We write V (A) = A1 ∪ A2 ∪ A3. Clearly, a trivial quadruple
is infeasible, and so is a cyclic quadruple (in which, for any bond [S, S̄], we have

∑3
i=1 |S ∩ Ai| an
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even number as every vertex in V (A) contributes 2 to the sum; thus some |S ∩ Ai| must be even,
showing the infeasibility). We say that A is linked by a cycle C if there are edge-disjoint paths Pi,j

with positive length (i = 1, 2, 3 and j = 1, 2, ..., ti, where ti ≥ 1) of C such that, for i = 1, 2, 3, paths
Pi,1, Pi,2, ..., Pi,ti are vertex-disjoint and Ai precisely consists of all ends of these paths. Clearly,
a necessary condition for A to be linked by a cycle C is that C contains all vertices in V (A) and
each |Ai| (i = 1, 2, 3) is a positive even number. We point out that 〈G,A〉 is infeasible if G has a
plane representation in which A is linked by a facial cycle C. For suppose that [S1, S2] is a feasible
solution. Then |[S1, S2]∩E(C)| ≤ 2 since C is a facial cycle. Consequently, there exists i ∈ {1, 2, 3}
such that Pi,1, Pi,2, ..., Pi,ti are all disjoint from [S1, S2]. Therefore, each of these paths is contained
in either G[S1] or G[S2], which implies that |Ai ∩ S1| and |Ai ∩ S2| are even, contradicting the
feasibility of [S1, S2].

We shall demonstrate in Section 5 that the bond problem can be easily reduced to the situation
when the given graph is 2-connected. We shall also use three other reductions to simplify our
problem. These operations are illustrated in Figure 1 and will be formally defined in Section 5. We
remark that all these reductions preserve the feasibility/infeasibility of a quadruple.

I:

II:

III:

IV:

uniform

or or

and

even

Figure 1: Reductions I, II, III, and IV.

Theorem 1.1 Let 〈G,A〉 be a quadruple. Then one of the following statements hold:

(i) 〈G,A〉 is feasible;
(ii) 〈G,A〉 admits one of reductions I-IV;
(iii) 〈G,A〉 is trivial or cyclic;
(iv) G has a plane representation in which A is linked by a facial cycle.

Since reductions I-IV preserve the feasibility/infeasibility, and since conditions (iii) and (iv)
imply the infeasibility, Theorem 1.1 completely characterizes feasible quadruples. In particular, if
G is 4-connected, this theorem says that 〈G,A〉 is infeasible if and only if (iii) or (iv) holds.

In our investigation of the aforementioned 3-flow problem, we have observed that the presence
of fully odd K4-partitions in a given graph G depends, to a large extent, on the locations of the
vertices in V (A). Therefore, we are in need of a transparent global structural description of G.
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As both reductions II and IV involve edge contractions, Theorem 1.1 cannot serve the purpose
of our future applications because, on one hand, the structural information of G (in particular,
whereabouts of the vertices in V (A)) will get lost under edge contractions; on the other hand,
nowhere-zero 3-flows are not preserved under edge expansions. (To the best of our knowledge, no
simple edge contractions have been used successfully to deal with integer flow problems to date.)
Therefore, we made a serious effort to improve Theorem 1.1.

In Section 8 we define weakly linkable quadruples. Roughly speaking, 〈G,A〉 is weakly linkable
if G is 2-connected and, modulo certain small separations, G has a plane representation in which
A is linked by a facial cycle. This is the same type of condition as the one used by Seymour [7] in
his solution to the 2-disjoint paths problem.

The main result of this paper is the following.

Theorem 1.2 A quadruple on a 2-connected graph is infeasible if and only if it is trivial, cyclic,
or weakly linkable.

We point out that Seymour’s theorem on triples in matroid circuits [6] plays an important role
in the proof of Theorem 1.1. However, the derivation of Theorem 1.2 relies only on Theorem 1.1
and requires more efforts on exploiting graph structures. What we have to do is to describe the
precise locations where the reductions are performed, which makes Theorem 1.2 much stronger
than Theorem 1.1.

We conclude this section by introducing a few more notations that will be used throughout the
paper. Let G = (V, E) be a graph. For X ⊆ V ∪E, we use G\X to denote the graph obtained from
G by deleting elements of X from G. If x ∈ V ∪ E, we write G\x instead of G\{x}. Let X ⊆ E.
We denote by G[X] the subgraph of G induced by edges in X, and by G/X the graph obtained
from G by contracting all edges in X. For H = G\X, we consider H + X as G. We also write G/x
instead of G/{x}, and write H + x instead of H + {x} if X = {x}.

2 The matroid formulation

In this section we show how to rephrase the bond problem as a matroid problem. We refer the
reader to Oxley [2] for basic matroid theory. Let 〈G,A〉 be a quadruple, where G = (V, E) and
A = {A1, A2, A3}. For each U ⊆ V , let χU be the characteristic vector of U (with length |V |),
which is considered as a vector over GF (2).

We first explain how G defines a binary matroid. For each edge e = xy of G, let χe = χ{x,y}.
Then it is routine to verify that a nonempty set C of edges forms a simple cycle in G if and only
if

∑
e∈C χe = 0 and

∑
e∈C′ χe 6= 0 for any nonempty proper subset C ′ of C. It means that simple

cycles of G are precisely circuits (minimal dependent sets) of the binary matroid represented by
vectors {χe : e ∈ E}. Similarly, spanning forests of G are precisely bases (maximal independent
sets) of this matroid, which, denoted by M(G), is known as the graphic matroid of G. To extend
M(G), we require the following lemma.

Lemma 2.1 Let T ⊆ V and F ⊆ E. Then χT is spanned by vectors in {χe : e ∈ F} if and only if
T ⊆ V (G[F ]) and every component of G[F ] contains exactly an even number of vertices in T .

Proof. Note that χT is spanned by vectors in {χe : e ∈ F} if and only if there exists F ′ ⊆ F
such that χT =

∑
e∈F ′ χe, if and only if there exists F ′ ⊆ F such that the odd-degree vertices of

4



G[F ′] are precisely those in T (in the literature such an F ′ is called a T -join of G[F ]). Thus the
lemma follows (see, for instance, (29.1) of Schrijver [5]).

Taking the even-sized subsets A1, A2, A3 of V into account, we reserve the symbol M for the
binary matroid represented by the vectors in the set {χA1 , χA2 , χA3} ∪ {χe : e ∈ E}. Since G is a
connected graph, from Lemma 2.1 we deduce that χAi is spanned by {χe : e ∈ E} for i = 1, 2, 3.
Hence, with r(·) denoting the rank function of M , we get

r(M) = r(M(G)) = r(E) = |V | − 1. (2.1)

To simplify our notation, let us think of the element set of M as A∪E (where A consists of a1, a2,
and a3 corresponding to χA1 , χA2 , and χA3 , respectively), instead of the set of vectors.

Lemma 2.2 Quadruple 〈G,A〉 is feasible if and only if M has a cocircuit containing A.

Proof. Our proof is based on Proposition 2.1.16 of Oxley [2], which asserts that

Cocircuits of a matroid are precisely the minimal sets that meet every basis. (2.2)

To prove the “only if” part, let [S1, S2] be a bond of G such that |Si ∩Aj | is odd for all i = 1, 2
and j = 1, 2, 3 and set F := [S1, S2]. We aim to show that D := A ∪ F is a cocircuit of M . For
this purpose, let B be a basis of M . If A ∩ B 6= ∅, then D ∩ B 6= ∅; if A ∩ B = ∅, then B forms a
spanning tree of G, which implies D ∩ B = F ∩ B 6= ∅. Next, for any proper subset D′ of D, we
need to find a basis B′ with D′ ∩B′ = ∅. If D′ 6⊇ F , then G has a spanning tree T (obtained from
(G\F )∪ (F −D′)) which is disjoint from D′. In this case, by (2.1), we can take B′ = T . If D′ ⊇ F ,
we may assume that a1 6∈ D′. Let J ⊆ E−F such that J forms a spanning forest of G\F , which has
exactly two components (whose vertex sets are S1 and S2, respectively). If J ∪ {a1} is dependent,
then χA1 is spanned by {χe : e ∈ J}. It follows from Lemma 2.1 that every component of J has
an even number of vertices in A1, contradicting the definition of [S1, S2]. Therefore J ∪ {a1} is
independent in M , which, in combination of (2.1), implies that J ∪ {a1} is a basis of M , so we can
take B′ = J ∪ {a1}. Hence, by (2.2), D is a cocircuit of M .

To see the “if” part, suppose M has a cocircuit of the form D = A∪F with F ⊆ E. We propose
to show that F is a bond of G of the form F = [S1, S2] such that |Si ∩ Aj | is odd for all i = 1, 2
and j = 1, 2, 3, which implies that the quadruple 〈G,A〉 is feasible. Indeed, for every spanning tree
T of G, since T is a basis of M by (2.1), we have T ∩F = T ∩D 6= ∅. As D is a cocircuit of M , for
any proper subset F ′ of F , there exists a basis T ′ of M such that (A∪F ′)∩ T ′ = ∅. It follows that
T ′ is a spanning tree of G with T ′ ∩ F ′ = ∅. We can thus conclude from (2.2) that F is a cocircuit
of M(G) and hence is a bond of G, denoted by [S1, S2]. It remains to verify that both |S1 ∩ Aj |
and |S2 ∩ Aj | are odd for every 1 ≤ j ≤ 3. Since D is a cocircuit of M , by (2.2), M has a basis B
such that B ∩ (D − {aj}) = ∅; that is, B ⊆ (E − F ) ∪ {aj}. It follows that B consists of aj and
a spanning forest J of G\F (which has two components with vertex sets S1 and S2, respectively).
Since aj is not spanned by J , we deduce from Lemma 2.1 that both |S1 ∩ Aj | and |S2 ∩ Aj | are
odd.

3 Application of Seymour’s theorem

The result established by Seymour in [6] is actually stronger than what he stated in the paper. In
this section we extract this stronger version, which will be used in the proof of Theorem 1.1.
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Let N be a matroid on E(N) and let (X, Y ) be a partition of E(N). The order of (X, Y ) is
defined as

o(X, Y ) = rN (X) + rN (Y )− rN (N) + 1, (3.1)

where rN (·) denotes the rank in N . Let k be a positive integer with o(X,Y ) ≤ k. Then (X,Y ) is
called

• a k-separation if min{|X|, |Y |} ≥ k;
• an internal k-separation if min{|X|, |Y |} ≥ k + 1; and
• a vertical k-separation if max{rN (X), rN (Y )} < rN (N).

We say that N is k-connected (resp. internally k-connected, vertically k-connected) if N has no k′-
separation (resp. internal k′-separation, vertical k′-separation) for any k′ < k. It is well known that
a matroid is k-connected (resp. internally k-connected) if and only if its dual is k-connected (resp.
internally k-connected). However, the dual of a vertically k-connected matroid is not necessarily
vertically k-connected. By a k-circuit (resp. k-cocircuit) in N we mean a circuit (resp. cocircuit)
in N of cardinality k. A 3-circuit is also called a triangle.

In the rest of this section, N is a binary matroid and A = {a1, a2, a3} consists of three specified
elements of N . The following lemmas were proved by Seymour [6].

Lemma 3.1 ((2.3) of [6]) If N is 3-connected and vertically 4-connected, then N is internally
4-connected.

Lemma 3.2 ((2.9) of [6]) Suppose N is 3-connected and has no vertical 3-separation (X,Y ) with
A ⊆ X. Suppose a1, a2 are not contained in any triangle in N . Let a′3 be a new element and let N ′

be the unique binary matroid on E(N) ∪ {a′3} such that N ′\a′3 = N and {a1, a2, a
′
3} is a triangle

in N ′. Then N ′ is 3-connected and has no vertical 3-separation (X, Y ) with A ⊆ X. Moreover, N
has a circuit containing A if and only if N ′ has a circuit containing A.

Lemma 3.3 ((2.10) of [6]) Suppose N is 3-connected and has no vertical 3-separation (X, Y ) with
A ⊆ X. If A− {ai} is contained in a triangle for all i = 1, 2, 3, then N is vertically 4-connected.

Lemma 3.4 ((3.11) of [6]) Suppose N is 3-connected and internally 4-connected. Then A is not
contained in any circuit of N if and only if either A is a cocircuit or N = M(H) for a graph H,
such that members of A are edges in H incident with a common vertex.

Let us now use the above lemmas to derive a statement slightly stronger (see Lemma 3.1) than
Lemma 3.4.

Lemma 3.5 Suppose N is 3-connected and has no vertical 3-separation (X, Y ) with A ⊆ X. Then
A is not contained in any circuit of N if and only if either A is a cocircuit or N = M(H) for a
graph H, such that members of A are edges in H incident with a common vertex.

Proof. The “if” part is obvious. So we proceed to the “only if” part. Suppose N has no circuit
containing A. Let us apply the procedure described in Lemma 3.2 to all pairs {a1, a2}, {a2, a3}, and
{a1, a3}. Then we get a matroid N ′ that is 3-connected and has no vertical 3-separation (X, Y ) with
A ⊆ X. Moreover, A−{ai} is contained in a triangle in N ′ for all i = 1, 2, 3, while A is contained in
no circuit in N ′. By Lemma 3.3, N ′ is vertically 4-connected and hence, using Lemma 3.1, internally
4-connected. From Lemma 3.4 we see that A is a cocircuit of N ′ or N ′ = M(H ′) for a graph H ′,

6



such that members of A are edges in H ′ incident with a common vertex. Let Z = E(N ′)− E(N).
Then N = N ′\Z. In the first case, A contains a cocircuit of N , so A itself is a cocircuit of N
because |A| = 3 and N is 3-connected. In the second case, N = M(H ′)\Z = M(H ′\Z), which
proves that H = H ′\Z has the desired property.

In our application, we shall use a modified version of the preceding lemma. We say that two
elements in a 2-cocircuit (resp. 2-circuit) of a matroid are in series (resp. parallel) with each other,
and that a matroid N1 is a series-extension of a matroid N2 if N1 is obtained from N2 by adding
elements (possibly none), each of which is in series with an element of N2; this, in terms of dual
matroids, amounts to that N∗

1 is obtained from N∗
2 by adding elements (possibly none), each of

which is in parallel with an element of N∗
2 .

Corollary 3.6 Suppose N is a series-extension of a 3-connected matroid N ′ with A ⊆ E(N ′), and
N has no vertical 3-separation (X, Y ) with A ⊆ X. Then A is not contained in any circuit of N if
and only if either A is a cocircuit of N or N = M(H) for a graph H, such that members of A are
edges in H incident with a common vertex.

Proof. Notice that N ′ has no vertical 3-separation (X, Y ) with A ⊆ X, as N has no such
separations. Since N is a series-extension of a 3-connected matroid N ′ and A ⊆ E(N ′), the
following statements hold: (i) A is contained in a circuit of N if and only if A is contained in a
circuit of N ′; (ii) A is a cocircuit of N if and only if A is a cocircuit of N ′; and (iii) N = M(H)
for a graph H, such that members of A are edges in H incident with a common vertex if and only
if N ′ = M(H ′) for a graph H ′, such that members of A are edges in H ′ incident with a common
vertex. Thus the corollary follows instantly from Lemma 3.5.

We remark that assumptions in Corollary 3.6 in fact imply that N is 3-connected, except that
each ai ∈ A could be in a series family of size two.

We also need a characterization of graphs that have the same matroid. Suppose G is obtained
from disjoint graphs G1 and G2 by identifying u1, v1 ∈ V (G1) with u2, v2 ∈ V (G2), respectively.
Then the graph obtained from G1, G2 by identifying u1 with v2, and v1 with u2 is called a twist
of G. It is not difficult to see that if one graph is obtained from another graph by a sequence of
twisting operations then the two graphs have the same matroid. The following theorem of Whitney
(5.3.1 of [2]) asserts the converse.

Lemma 3.7 Two 2-connected graphs have the same matroid if and only if one can be obtained
from the other by a sequence of twisting operations.

The following is another fact we will use. We omit its proof since it follows immediately from
the definition of twist.

Lemma 3.8 Suppose G has a plane representation with a facial cycle C. If G′ is a twist of G then
G′ also has a plane representation with C as a facial cycle.

Now let us restrict our attention to the quadruple 〈G,A〉 and the matroid M discussed in
Section 2, the binary matroid represented by vectors in the set {χA1 , χA2 , χA3 , }∪{χe : e ∈ E(G)}.
Applying Corollary 3.6 with respect to M∗, we get the following result.
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Lemma 3.9 Suppose 〈G,A〉 is nontrivial and G is 2-connected. If M∗ is a series-extension of a
3-connected matroid containing A, and M∗ has no vertical 3-separation (F1, F2) with A ⊆ F1, then
〈G,A〉 is infeasible if and only if it is cyclic or G has a plane representation in which A is linked
by a facial cycle.

Proof. In view of Lemma 2.2, 〈G,A〉 is infeasible if and only if A is not contained in any circuit
of M∗; this, by Corollary 3.6, is equivalent to saying that one of the following statements holds:

(i) A is a circuit of M ;
(ii) M = M∗(H) for a graph H, such that a1, a2, a3 are edges v1v0, v2v0, v3v0 in H, respectively,

with a common vertex v0.

Since 〈G,A〉 is nontrivial, we deduce that:

(i) ⇔ χA1 + χA2 + χA3 = 0 over GF (2) ⇔ A1∆A2∆A3 = ∅ ⇔ 〈G,A〉 is cyclic.

It remains to prove that (ii) is equivalent to

(iii) G has a plane representation in which A is linked by a facial cycle C.

Suppose (ii) holds. Without loss of generality, we assume that H has no isolated vertices.
Since M(H) = M∗ is connected, by Proposition 4.1.8 of [2], H is 2-connected. It follows that,
for i = 1, 2, 3, edges in H that are incident with vi form a minimal edge cut {ai} ∪ Ei, where
Ei = [{vi}, V (H)−{vi}]−{ai}. Since M∗(H/A) = M∗(H)\A = M\A = M(G), matroid M(H/A)
is both graphic and cographic, which implies, by Theorem 5.2.2 of [2], that H/A is planar. Let
us consider H/A as a plane graph and let (H/A)∗ be its geometric dual. Since G is 2-connected,
M((H/A)∗) = M∗(H/A) = M(G) is connected and thus (H/A)∗ is 2-connected. Note that all
edges in E1 ∪E2 ∪E3 are incident with a common vertex of H/A, hence E1 ∪E2 ∪E3 is contained
in a facial cycle of (H/A)∗. By applying Lemma 3.7 and Lemma 3.8 to graphs (H/A)∗ and G we
deduce that G has a plane representation such that E1 ∪ E2 ∪ E3 is contained in a facial cycle C.
In addition, we also deduce from the 2-connectivity of (H/A)∗ that H/A has no loops and hence
the three sets E1, E2, and E3 are pairwise disjoint.

Since {ai} ∪ Ei is a cocircuit of M(H), it is a circuit of M , implying χAi +
∑

e∈Ei
χe = 0 and

hence Ai is the set of all odd-degree vertices in the graph G[Ei]. Recall that G[Ei] is a subgraph
of facial cycle C, so G[Ei] consists of some paths Pi,1, Pi,2, ..., Pi,ti (with positive lengths) on C
whose ends are precisely vertices in Ai for i = 1, 2, 3, where ti ≥ 1 as Ai 6= ∅. Since E1, E2, and E3

are pairwise disjoint, it is routine to check that A is linked by C. Hence (ii) ⇒ (iii).
To show the reverse implication we will use the following simple fact whose proof we omit. Let

N1, N2 be two binary matroids on the same ground set F . Suppose f ∈ F and Z ⊆ F − {f} such
that N1\f = N2\f , and {f} ∪ Z is a circuit in both N1 and N2. Then N1 = N2.

Assuming (iii), there exist edge-disjoint paths Pi,j of C (i = 1, 2, 3 and j = 1, 2, . . . , ti, with
ti ≥ 1) such that, for i = 1, 2, 3, paths Pi,1, Pi,2, ..., Pi,ti are vertex-disjoint and their ends form Ai.
Set Ei := ∪ti

j=1E(Pi,j) for i = 1, 2, 3. Then the three sets E1, E2, and E3 are pairwise disjoint. For
i = 1, 2, 3, Ei satisfies χAi +

∑
e∈Ei

χe = 0 (over GF (2)) and Ei is a minimal set with this property,
which means that {ai} ∪ Ei is a circuit of M . On the other hand, we consider the dual graph G∗

of G. Since C is a facial cycle of G, there exists a vertex v∗ of G∗ such that edges incident with v∗

are precisely those in E(C). Let H be obtained from G∗ by replacing v∗ with a claw consisting of
edges ai = v0vi (i = 1, 2, 3) in a way that edges in Ei are incident with vi (i = 1, 2, 3) and edges
in E(C) − (E1 ∪ E2 ∪ E3) are incident with v0. Graph H is well defined because E1, E2, and E3
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are pairwise disjoint. Clearly, M∗(H)\A = M∗(H/A) = M(G) = M\A. In addition, since G is
2-connected and each Ei 6= ∅, H must also be 2-connected. As a result, each {ai}∪Ei is a circuit of
M∗(H). Now the simple fact mentioned in the last paragraph implies M∗(H) = M , which proves
(iii) ⇒ (ii).

4 Separations in graphs

Throughout this section, we assume that G = (V,E) is a 2-connected graph and 〈G,A〉 is a
nontrivial quadruple. Let M be the matroid as defined in Section 2 and let r(·) be the rank
function of M . For any F ⊆ E, let c(F ) denote the number of components of G[F ]. Since the
graphic matroid M(G) is a restriction of M to E, we have r(F ) = |V (G[F ])| − c(F ).

For any partition (E1, E2) of E, it follows from (3.1) and the submodular inequality of the rank
function that

o(E1, E2) = r(E1) + r(E2)− r(E) + 1 ≥ 1. (4.1)

For i = 1, 2, let Vi = ∅ if Ei = ∅, else let Gi := G[Ei], let Vi := V (Gi), and let G1
i , G

2
i , ..., G

ti
i be all

the components of Gi, where ti = c(Ei).

Lemma 4.1 Let V0 := V1 ∩ V2 and k := o(E1, E2). Then k = |V0| − t1 − t2 + 2. Furthermore,

(i) k = 1 iff E1 = ∅ or E2 = ∅;
(ii) k = 2 iff t1 = t2 = t = |V0|/2 and |V (Gj

i ) ∩ V0| = 2 for all i = 1, 2 and j = 1, 2, ..., t;
(iii) k = 3 iff |V (Gj

i ) ∩ V0| = 2 for all i = 1, 2 and j = 1, 2, ..., ti, except |V (Gj
i ) ∩ V0| = 4 for

exactly one Gj
i or except |V (Gj

i ) ∩ V0| = 3 for exactly two Gj
i .

Proof. By definition, r(Ei) = |Vi| − ti for i = 1, 2. Using (4.1) we obtain

k = (|V1| − t1) + (|V2| − t2)− (|V | − 1) + 1 = |V0| − t1 − t2 + 2,

as desired. Equivalently,
t1 + t2 = |V0|+ 2− k. (4.2)

We claim that

if E1 6= ∅ 6= E2, then |V (Gj
i ) ∩ V0| ≥ 2 for i = 1, 2 and j = 1, 2, ..., ti. (4.3)

To justify this, note that G1
i , G

2
i , ..., G

ti
i are pairwise vertex-disjoint for i = 1, 2 and each has at least

one edge. Since G is 2-connected, Gj
i (i = 1, 2 and j = 1, 2, . . . , ti) contains at least two vertices

from G3−i, which clearly belong to V0. Thus (4.3) holds. It follows that

if E1 6= ∅ 6= E2, then 0 < ti ≤ |V0|/2 for i = 1, 2. (4.4)

From (4.2) and (4.4), we conclude (i) instantly. Next, k = 2 if and only if t1 = |V0|/2 = t2. In view
of (4.3), we get (ii). Finally, k = 3 if and only if 2(t1 + t2) + 2 = 2|V0| (by (4.2)) if and only if the
graph structures are as described in (iii) (by (4.3)).

In what follows, we consider a partition (F1, F2) of E ∪ A = E(M) and its restriction (E1, E2)
to E, where Ei = Fi ∩ E for i = 1, 2. From (2.1), (3.1) and (4.1) we see that

r(Fi) ≤ r(E) for i = 1, 2 and o(F1, F2) = r(F1) + r(F2)− r(E) + 1 ≥ o(E1, E2) ≥ 1. (4.5)
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Lemma 4.2 M is connected.

Proof. Suppose the contrary: M has a 1-separation (F1, F2). Then o(F1, F2) ≤ 1 and |Fi| ≥ 1
for i = 1, 2. It follows from (4.5) that o(E1, E2) = 1. Thus symmetry and Lemma 4.1(i) allow us
to assume that E1 = ∅; that is, F1 ∩ E = ∅, which implies F1 ⊆ A and E ⊆ F2. By (4.5), we get
1 ≥ o(F1, F2) = r(F1) + r(F2) − r(E) + 1 = r(F1) + 1. So r(F1) = 0 and hence χAi = 0 for each
ai ∈ F1, contradicting the hypothesis that 〈G,A〉 is a nontrivial quadruple.

Lemma 4.3 If M is not a parallel-extension of 3-connected matroid containing A, then one of the
following holds:

(i) Ai = Aj for some 1 ≤ i < j ≤ 3;
(ii) E has a partition (E1, E2) with o(E1, E2) = 2 ≤ min{r(E1), r(E2)}, such that for each h in

{1, 2, 3}, there exists i = i(h) ∈ {1, 2} for which Ah ⊆ Vi and |Ah ∩ V (Gj
i )| is even for all

1 ≤ j ≤ ti.

Proof. Depending on the structure of M , we distinguish between two cases.
Case 1. M is a parallel-extension of a 3-connected matroid. In this case, the hypothesis of the

lemma allows us to assume that ai and aj are in parallel with each other for some 1 ≤ i < j ≤ 3.
It follows that Ai = Aj .

Case 2. M is not a parallel-extension of a 3-connected matroid. In particular, M is not
3-connected. By Lemma 4.2, M admits a 2-separations (F1, F2) with o(F1, F2)= 2. We claim that

M has a 2-separation (F1, F2) with min{r(F1), r(F2)} ≥ 2 = o(F1, F2). (4.6)

Otherwise, for every 2-separation (F1, F2) of M , we have min{r(F1), r(F2)} = 1, which means either
F1 or F2 consists of parallel elements. Let M̃ be the simple matroid associated with M (cf. page
52 of Oxley [2]). Then M̃ would have no 2-separations and hence is 3-connected. Clearly, we may
assume that M̃ contains A, for otherwise ai and aj would be in parallel with each other for some
1 ≤ i < j ≤ 3 and hence (i) holds. Therefore M is a parallel-extension of 3-connected matroid M̃
containing A, contradicting the hypothesis of the lemma. So (4.6) is established.

Let (F1, F2) be as exhibited in (4.6) and let (E1, E2) be the restriction of (F1, F2) to E. We
propose to show that (E1, E2) is as desired. Indeed, from (4.5) and (4.6) we see that max{r(E1),
r(E2)} ≤ max{r(F1), r(F2)} ≤ r(E)−1, so E1 6= ∅ 6= E2 and hence o(E1, E2) ≥ 2 by Lemma 4.1(i).
In view of (4.5) and (4.6), we further obtain o(E1, E2) = 2. It follows from (4.1) and (4.5) that
r(Ei) = r(Fi) ≥ 2 for i = 1, 2. Hence χAh

(h = 1, 2, 3) is spanned by {χe : e ∈ Ei} if ah ∈ Fi, we
can thus deduce (ii) from Lemma 2.1.

A subset of V or a subgraph of G is called uniform in quadruple 〈G,A〉 if its intersection with
V (A) = A1 ∪ A2 ∪ A3 is a subset of A1 ∩ A2 ∩ A3, or a subset of Ah − (Ai ∪ Aj), or a subset of
(Ah ∩Ai)−Aj for some permutation h, i, j of 1, 2, 3.

Let us now proceed to vertical 3-separations in M∗. By definition, a partition (F1, F2) of E ∪A
is a vertical 3-separation in M∗ if and only if r∗(F1) + r∗(F2)− r∗(E ∪A) + 1 = o(F1, F2) ≤ 3 and
r∗(Fi) < r∗(M) for i = 1, 2. Since r∗(X) = |X| − r(M) + r((E ∪ A)−X) for each X ⊆ E ∪ A, by
(2.1), it is easy to verify that the latter holds if and only if

r(F1) + r(F2) ≤ |V |+ 1, and r(Fi) < |Fi| for i = 1, 2. (4.7)

In the following lemma we use notation introduced in Lemma 4.1.
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Lemma 4.4 If M is a parallel-extension of a 3-connected matroid containing A, (F1, F2) is a
vertical 3-separation of M∗ with A ⊆ F1, and (E1, E2) is the restriction of (F1, F2) to E, then
|V (G`

2)| ≤ |E(G`
2)| for some 1 ≤ ` ≤ t2. Moreover, one of the following holds:

(i) A1∆A2∆A3 = ∅ or Ai = Aj for some 1 ≤ i < j ≤ 3;
(ii) o(E1, E2) = 2 and V2 − V0 is uniform;
(iii) o(E1, E2) = 3, A1∪A2∪A3 ⊆ V1, and |Ai∩V (Gj

1)| is even for every 1 ≤ i ≤ 3 and 1 ≤ j ≤ t1.

Proof. Since A ⊆ F1, we have E2 = F2 6= ∅ by (4.7). Therefore

t2∑

`=1

(|V (G`
2)| − 1) =

t2∑

`=1

r(E(G`
2)) = r(E2) = r(F2) < |F2| = |E2| =

t2∑

`=1

|E(G`
2)|,

which implies |V (G`
2)| ≤ |E(G`

2)| for some 1 ≤ ` ≤ t2.
Since Ai 6= ∅ for i = 1, 2, 3, we have r(A) ≥ 1. If r(A) < |A| = 3, then (i) holds. So we assume

hereafter that r(A) = |A| = 3.
Put k := o(E1, E2). Recall that k ≥ 1. If k = 1, then E1 = ∅ by Lemma 4.1(i). So F1 ⊆ A and

hence F1 = A by hypothesis. It follows from (4.7) that r(A) < |A|, contradicting the preceding
assumption. So k ≥ 2. By (4.5), we obtain 2 ≤ k ≤ o(F1, F2) ≤ 3. Observe that

if o(F1, F2) = 2, then min{r(F1), r(F2)} = 1. (4.8)

Otherwise, r(Fi) ≥ 2 for i = 1, 2. Consequently, as r(M) ≥ r(A) ≥ 3, M has a separation
(F ′

1, F
′
2) with o(F ′

1, F
′
2) = 2 and r(F ′

i ) ≥ 2 (i = 1, 2), and such that every parallel family of M is
completely contained in either F ′

1 or F ′
2. Let M̃ be a 3-connected matroid such that M is its parallel-

extension (see the hypothesis). Then the restriction of (F ′
1, F

′
2) to M̃ would be a 2-separation of

M̃ , contradicting its 3-connectivity.
Let us now consider two cases.
Case 1. o(F1, F2) = 2. In this case, k = 2. Since r(F1) ≥ r(A) = 3, by (4.8) we get

r(E2) = r(F2) = 1. It follows that |V2| = 2. As the 2-connectivity of G implies |V0| = |V1 ∩V2| ≥ 2,
we get V2 − V0 = ∅. Thus (ii) holds now.

Case 2. o(F1, F2) = 3. In this case, combining (4.1), (4.5), and the equality r(F2) = r(E2),
we obtain r(F1) = r(E1) + 3− k. If k = 3, then r(F1) = r(E1). Hence χAi (i = 1, 2, 3) is spanned
by {χe : e ∈ E1}. By Lemma 2.1, we thus get (iii). If k = 2, then r(F1) = r(E1) + 1. By
symmetry we may assume the existence of a spanning forest B of G1 such that {a1} ∪B is a basis
of F1. Consequently, ai (i = 2, 3) is spanned by {a1} ∪ B, which implies that Ai − V1 = ∅ or
Ai − V1 = A1 − V1. Therefore (ii) holds, completing the proof.

5 Reductions

In this section, we introduce four reductions which reduce the input quadruple in the bond problem
to “smaller” ones. We begin with several definitions and facts on graph separations which will be
used to prove reducibility and feasibility of a quadruple.

Let H be a graph. A separation of H is a pair (X, Y ) of subgraphs of H with V (X) ∪ V (Y ) =
V (H), E(X) ∪ E(Y ) = E(H), E(X) ∩ E(Y ) = ∅, and E(X) 6= ∅ 6= E(Y ). If, in addition,
|V (X) ∩ V (Y )| = k, then (X, Y ) is called a k-separation at V (X) ∩ V (Y ).

The following simple fact ensures the existence of bonds in the most general sense.
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Lemma 5.1 Let H be a connected graph and let X1, X2 be nonempty disjoint subsets of V (H).
Then H has a bond [Y1, Y2] with Xi ⊆ Yi for i = 1, 2 if and only if there exist vertex-disjoint
connected subgraphs H1 and H2 of H such that Xi ⊆ V (Hi) for i = 1, 2.

It is well known that in a 2-connected graph that is not a triangle, every single edge can be
either deleted or contracted so that the resulting graph remains 2-connected. This fact can be used
to prove the following statement.

Lemma 5.2 Let H be a 2-connected graph and let X1, X2 be nonempty subsets of V (H). Then H
has a bond [Y1, Y2] of H such that |Xi ∩ Y1| = 1 for i = 1, 2.

Proof. We apply induction on E(H). Since the base case when H is a triangle is trivial, we
proceed to the induction step, and assume that the assertion holds for all 2-connected graphs H ′

with |E(H ′)| < |E(H)|. If there exists v ∈ X1 ∩X2, then Y1 = {v} yields a desired bond of H. So
we also assume X1 ∩ X2 = ∅. Let e = u1u2 be an edge of H with u1 ∈ X1 and u2 /∈ X1. Recall
that either H\e or H/e is 2-connected as H is not a triangle.

If H\e is 2-connected, then the induction hypothesis guarantees the existence of a bond [Y1, Y2]
of H\e, which also defines a bond of H, such that |Xi ∩ Y1| = 1 for i = 1, 2. So we assume that
H ′ = H/e is 2-connected. If u2 ∈ X2, setting Y1 = {u1, u2} yields a bond of H as desired. So
we assume u2 /∈ X2. Let v ∈ V (H ′) be the vertex resulted from the contraction of e, and let
X ′

1 := (X1 − {u1}) ∪ {v} and X ′
2 := X2. By induction hypothesis, there is a bond [Y ′

1 , Y
′
2 ] of H ′

with |X ′
i ∩ Y ′

1 | = 1 for i = 1, 2. Define Y1 := Y ′
1 if v 6∈ Y ′

1 and Y1 := (Y ′
1 −{v})∪ {u1, u2} otherwise,

and put Y2 := V (H)− Y1. Clearly, [Y1, Y2] is a bond of H as desired.

Let 〈G,A〉 be a nontrivial quadruple, where G = (V,E), and let M be the matroid as defined
in Section 2. For each edge e = xy ∈ E, it is easy to verify that M/e corresponds to the quadruple
〈G/e,A/e〉 in the same way as M does to 〈G,A〉, where, letting z ∈ V (G/e) be resulted from
contracting e, the triple A/e = {A′1, A′2, A′3} satisfies A′i = (Ai − {x, y}) ∪ {z} if |Ai ∩ {x, y}| = 1
and A′i = Ai − {x, y} otherwise for i = 1, 2, 3. In particular,

A′i is an even-sized subset of Ai ∪ {z} for i = 1, 2, 3. (5.1)

Moreover, a feasible solution [S′1, S
′
2] of the quadruple 〈G/e,A/e〉 with z ∈ S′1 gives a feasible

solution [V − S′2, S
′
2] = [(S′1 − {z}) ∪ {x, y}, S′2] of 〈G,A〉. Thus if 〈G/e,A/e〉 is feasible then so is

〈G,A〉. This simple fact can be extended to a quadruple obtained via a sequence of contractions.
Let 〈G/∅,A/∅〉 = 〈G,A〉. For any e ∈ F ⊆ E, we define the contraction of 〈G,A〉 (with respect to
F ), inductively, as 〈G,A〉/F = 〈G/F,A/F 〉 = 〈G/F,A/(F −{e})/e〉. It is straightforward to verify
that the result is independent of the order of the contractions. So the feasibility of 〈G/F,A/F 〉
implies the feasibility of 〈G,A〉, though the reverse is not necessarily true. The combination of this
fact with Lemma 5.1 instantly gives the following.

Lemma 5.3 Let H = (V ′, E′) be a subgraph of G with V (A) ⊆ V ′, and let F ⊆ E′. If 〈H,A〉/F
is feasible then so is 〈G,A〉.

Next we formally define reductions I–IV (illustrated in Section 1) and show that they preserve
the feasibility/infeasibility of quadruples. We point out that, when applied to a quadruple 〈G,A〉,
these reductions produce new quadruples 〈G′,A′〉 such that G′ is simpler than G, meaning that
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2|E(G′)|−|V (G′)| < 2|E(G)|−|V (G)|. In most cases, G′ is a proper minor of G, which leads to the
inequality. The reduced quadruples 〈G′,A′〉 will also maintain the evenness of A′ = {A′1, A′2, A′3},
meaning that |A′i| is always even for i = 1, 2, 3. In fact, the evenness in all reductions, except for
reduction II-2 (defined below), is guaranteed by the fact that A′ = A/F for some F ⊆ E(G).

Suppose that (G1, G2), where Gi = (Vi, Ei), i = 1, 2, is a 1-separation of G. Clearly, G1 and G2

are both simpler than G since they are proper minors of G. We say that 〈Gi,Ai〉 = 〈G,A〉/E3−i,
i = 1, 2, are obtained from 〈G,A〉 by a reduction I.

Lemma 5.4 Let 〈Gi,Ai〉, i = 1, 2, be obtained from 〈G,A〉 by reduction I. Then 〈G,A〉 is feasible
if and only if 〈Gi,Ai〉 is feasible, for some i ∈ {1, 2}.

Proof. The sufficiency follows from Lemma 5.3. To see the necessity, let [S1, S2] be a feasible
solution to 〈G,A〉. By symmetry, we may assume that the only common vertex of V1 and V2 belongs
to S1. Since G[S2] is connected, S2 must be a subset of V1 or V2, say V2. Thus [S1 ∩ V2, S2] is in
fact a bond of G2, which, by the definition of contraction, is a feasible solution to 〈G2,A2〉.

Note that the bond problem is trivial when G is 2-connected and A1 ∩ A2 ∩ A3 6= ∅, because
[{u}, V −{u}] is obviously a feasible solution for any u ∈ A1∩A2∩A3. This simple observation will
be used repeatedly in this paper. The remaining reductions II, III, and IV deal with 2-connected
graphs. As we shall see, they all maintain 2-connectedness of graphs.

Suppose that G is 2-connected and has a 2-separation (G1, G2) with Gi = (Vi, Ei), i = 1, 2,
such that V2 − V1 is uniform. Then 〈G,A〉 admits a reduction II (see Figure 2 below) if one of the
following occurs:

(II-1) G2 = v1uv2 is a path of length 2, u 6∈ A1 ∩A2 ∩A3, and {v1, u} = Ai for some i ∈ {1, 2, 3}:
Let 〈G′,A′〉 = 〈G,A〉/uv2.

(II-2) G2 is not a path of length at most three with V2 − V1 ⊆ V (A) : Let G′ be obtained from
G by replacing G2 with a path P between vertices in V1 ∩ V2 which is of length one if
|V (A)− V1| = 0, of length two if |V (A)− V1| is odd, and of length three if |V (A)− V1| > 0
is even. For i = 1, 2, 3, let A′i := Ai if Ai ⊆ V1 and A′i := (Ai ∩ V1)∪ (V (P )− V1) otherwise.
Set A′ := {A′1, A′2, A′3}.

In both cases, it is straightforward to verify the evenness for A′ and the fact that G′ is simpler than
G. We will say that 〈G′,A′〉 is obtained from 〈G,A〉 by a reduction II based on (G1, G2) in 〈G,A〉.

II-2
uniform

or or

v1

v2

Ai={    ,    }v1 u

II-1

u

v1

v’

v1

v2

v1

v2

v1

v2

v1

v2

G1 G2G1G1 G1 G1 G1

Figure 2: Reduction II based on 2-separation (G1, G2) at {v1, v2}.

Lemma 5.5 Let 〈G′,A′〉 be obtained from 〈G,A〉 by a reduction II. Then 〈G,A〉 is feasible if and
only if 〈G′,A′〉 is feasible.

Proof. In the case of (II-1), the sufficiency is implied by Lemma 5.3, and the necessity follows
from the fact that any feasible solution to 〈G,A〉 can be expressed as [S1, S2] such that v1 ∈ S1
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and {u, v2} ⊆ S2 because some Ai equals {v1, u}, and u has degree 2 in G and does not belong
to A1 ∩ A2 ∩ A3. In the rest of the proof, we assume (II-2). Let P = v1v2 . . . vh be the path used
to replace G2 in the reduction II-2, where h ∈ {2, 3, 4} and {v1, vh} = V1 ∩ V2. By the reduction,
P\{v1, vh} is uniform in 〈G′,A′〉.

Observe that G′ is also 2-connected, and that A1 ∩A2 ∩A3 = ∅ if and only if A′1 ∩A′2 ∩A′3 = ∅.
Hence A1 ∩ A2 ∩ A3 6= ∅ or A′1 ∩ A′2 ∩ A′3 6= ∅ implies the feasibilities of both 〈G,A〉 and 〈G′,A′〉.
It remains to consider the case when A1 ∩A2 ∩A3 = ∅ = A′1 ∩A′2 ∩A′3.

First, assume that 〈G,A〉 has a feasible solution [S1, S2]. Since A1 ∩ A2 ∩ A3 = ∅, uniform
V2 − {v1, vh} must be disjoint from at least one of A1, A2, A3, which implies Si 6⊆ V2 − {v1, vh} for
i = 1, 2. If V2 − {v1, vh} ⊆ Si for some i ∈ {1, 2}, then Si ∩ {v1, vh} 6= ∅, so [S3−i, V (G′) − S3−i]
is a feasible solution to 〈G′,A′〉. Hence, we may assume that V2 − {v1, vh} 6⊆ Si for i = 1, 2, and
further by symmetry that v1 ∈ S1 and vh ∈ S2. Let S′1 := (S1 ∩ V1) ∪ {v2} if |(S1 − V1) ∩ V (A)| is
odd, and let S′1 := S1 ∩ V1 otherwise. It is easy to see that [S′1, V (G′)− S′1] is a feasible solution to
〈G′,A′〉.

Next, assume that 〈G′,A′〉 has a feasible solution [S′1, S
′
2]. Since A′1 ∩A′2 ∩A′3 = ∅, the uniform

P\{v1, vh} contains neither S′1 nor S′2. Furthermore, if some S′i, i = 1 or 2, contains V (P )−{v1, vh},
then it contains v1 or vh or both, and [S′3−i, V −S′3−i] is a feasible solution of 〈G,A〉. So we assume
V (P ) − {v1, vh} 6⊆ S′i for i = 1, 2, which implies h = 4 and allows us to assume {v1, v2} ⊆ S′1 and
{v3, v4} ⊆ S′2. Since P has length 3, by (II-2) there exists v ∈ V (A)−V1 ⊆ V2−{v1, v4}. As (G1, G2)
is a 2-separation of the 2-connected graph G at {v1, v4}, the graph H = G2 + v1v4 is 2-connected
and thus contains a v-v1 path P1 and a v-v4 path P2 with V (P1) ∩ V (P2) = {v}. Observe that
P1\v and P2\v are vertex-disjoint subgraphs of the connected graph H\v. Lemma 5.1 guarantees
the existence of a bond [Y1, Y2] of H\v = (G2 + v1v4)\v such that V (Pi\v) (⊆ Yi) contains a
neighbor of v for i = 1, 2. Hence both [Y1 ∪ {v}, Y2] and [Y1, {v} ∪ Y2] are bonds of G2. Since
v ∈ V (A), there exists Y ∈ {Y1∪{v}, Y1} such that |(Y −{v1})∩V (A)| is odd, v1 ∈ Y , and v4 6∈ Y .
Thus |(Y − {v1}) ∩ Ai| ≡ |{v2} ∩ A′i| ≡ |S′1 ∩ V (P\{v1, v4}) ∩ A′i| (mod 2) for i = 1, 2, 3. Setting
S1 := (S′1 ∩ V1) ∪ Y yields a feasible solution [S1, V − S1] to 〈G,A〉.

Suppose G is 2-connected and has a 3-separation (G1, G2), where Gi = (Vi, Ei) is connected for
i = 1, 2, V1 ∩ V2 = {v1, v2, v3}, and V (A) ⊆ V1. In addition, either G2 = v1v2v3v1 is a triangle or
|E2| > 3 and some component of G2\{v1, v2, v3} is adjacent to all vi for i = 1, 2, 3. Then 〈G,A〉
admits a reduction III based on (G1, G2), which reduces the bond problem to one on 〈G′,A〉, where
G′ is obtained from G1 by adding a vertex v0, called the center, and adding three edges v0v1, v0v2,
and v0v3. Again, it is routine to verify that G′ is simpler than G.

Lemma 5.6 Let 〈G′,A〉 be obtained from 〈G,A〉 by a reduction III. Then 〈G,A〉 is feasible if and
only if 〈G′,A〉 is feasible.

Proof. When G2 is a triangle, it is routine to check that a solution [S′1, S
′
2] to 〈G′,A〉 gives rise

to a solution [S′1 − {v0}, S′2 − {v0}] to 〈G,A〉. When G2 is not a triangle, observe that 〈G′,A〉 is a
contraction of 〈H,A〉 for a subgraph H of G with V (A) ⊆ V1 ⊆ V (H) ∩ V (G′), so the sufficiency
follows instantly from Lemma 5.3.

To see the necessity, we assume that 〈G,A〉 has a feasible solution [S1, S2] with {v1, v2} ⊆ S2.
From the 2-connectivity of G, it is easy to see that [S1 − (V2 − {v3}), (V2 − {v3}) ∪ S2] is also a
feasible solution to 〈G,A〉. Hence [S1 ∩ V1, {v0} ∪ (S2 ∩ V1)] is a feasible solution to 〈G′,A〉.
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Suppose G is 2-connected. We say that 〈G,A〉 admits a reduction IV (see Figure 3) if G has
a 4-separation (G1 ∪ G2, G3) at {v1, v2, v3, v4}, where Gi = (Vi, Ei) with Ei 6= ∅ for i = 1, 2, 3,
V1 ∩V2 = ∅, V (A) ⊆ V1 ∪V2, and (Gj , G3 ∪G3−j) is a 2-separation of G at {v2j−1, v2j} for j = 1, 2.
Moreover, G3 contains vertex-disjoint paths P1 from v1 to v3 and P2 from v2 to v4, such that either

(IV-1) E3 = {v1v3, v2v4}, Ah = {v1, v3} for some h ∈ {1, 2, 3}, and |Ai ∩ Vj | is even for every
i ∈ {1, 2, 3} − {h} and j = 1, 2; or

(IV-2) |Ai ∩ Vj | is even for all i = 1, 2, 3 and j = 1, 2.

even-sized intersection
with every , = 1,2,3A ii

G1 G2G3

v1 v3

P2

P1
v1 v3

G1 G2

v2 v4 v'

(IV- )1

Ah={    ,    }

even-sized intersection
every , 1,2,3

with
A i hi -{ }{ }

G1 G2

v1 v3 v1 v3

G1 G2

v2 v4

G3 v1v3={ ,v2v4}

v1 v3

v'

(IV- )2

Figure 3: Reduction IV based on even 4-separation (G1 ∪G2, G3) at {v1, v2, v3, v4}.

We call (G1∪G2, G3) an even 4-separation, and say that 〈G′,A′〉 = 〈G1∪G2∪P2 +v1v3,A〉/E(P2)
is obtained from 〈G,A〉 by a reduction IV based on (G1 ∪ G2, G3). Observe that G′ = (V ′, E′)
contains the edge v1v3 and a vertex v′ to which E(P2) is contracted. Once again, G′ is simpler
than G as G′ is a proper minor of G.

Lemma 5.7 Let 〈G′,A′〉 be obtained from 〈G,A〉 by a reduction IV. Then 〈G,A〉 is feasible if and
only if 〈G′,A′〉 is feasible.

Proof. The sufficiency follows immediately from Lemma 5.3 as 〈G′,A′〉 = 〈G1 ∪ P1 ∪ P2 ∪
G2,A〉/(E(P1\v1)∪E(P2)). To verify the necessity, let [S1, S2] be a feasible solution to 〈G,A〉 and
let G′ = (V ′, E′). In the case of (IV-1), we deduce from Ah = {v1, v3} that v1v3 ∈ [S1, S2], which
allows us to assume v1 ∈ S1 and v3 ∈ S2. From the evenness of |Ai∩Vj | for every i ∈ {1, 2, 3}−{h}
and j = 1, 2, we see that v2v4 6∈ [S1, S2], for otherwise, V1 ⊆ S1 and V2 ⊆ S2, a contradiction. By
symmetry we may assume {v2, v4} ⊆ S1. Then [S2, V

′ − S2] is a feasible solution to 〈G′,A′〉.
It remains to consider the case of (IV-2). If {v2, v4} is contained in one of S1 and S2, say S2, in

view of the edge v1v3 ∈ E′, we see that S′1 = (S1 ∩ V1) ∪ (S1 ∩ V2) induces a connected subgraph
of G′ and further that [S′1, V

′ − S′1] is a feasible solution to 〈G′,A′〉. Thus we may assume v2 ∈ S1

and v4 ∈ S2. Since V (A) ⊆ V1 ∪V2, |Ai ∩Sj | is odd, and |Ai ∩Vj | is even for all i = 1, 2, 3, j = 1, 2,
by symmetry we may assume S1 ∩ V2 6= ∅. Since (G1 ∪ G3, G2) is a 2-separation of G at {v3, v4},
the connectivities of G[S1] and G[S2] imply that v3 ∈ S1 and that [S1 ∩ V2, S2 ∩ V2] is a bond of
G2. As |Ai ∩ V2| is even, we get

|S1 ∩ V2 ∩Ai| ≡ |S2 ∩ V2 ∩Ai| (mod 2), for i = 1, 2, 3. (5.2)

If S2 ∩ V1 = ∅ then, for i = 1, 2, 3, the cardinality of S2 ∩ V2 ∩ Ai = S2 ∩ Ai is odd. By (5.2),
|S1 ∩ V2 ∩ Ai| is also odd and thus [S1 ∩ V2, V

′ − (S1 ∩ V2)] is a feasible solution to 〈G′,A′〉. If
S2∩V1 6= ∅ then, similarly, v1 ∈ S2 and [S1∩V1, S2∩V1] a bond of G1. Put S′1 := (S2∩V1)∪(S1∩V2).
Then the edge v1v3 ∈ E′ ensures that [S′1, V

′ − S′1] is a bond of G′. Moreover, as S′1 ⊆ V , we have

15



|S′1 ∩ A′i| = |S′1 ∩ Ai| = |(S2 ∩ V1) ∩ Ai| + |(S1 ∩ V2) ∩ Ai|. Since V (A) ⊆ V1 ∪ V2, it follows from
(5.2) that |S′1 ∩ A′i| ≡ |S2 ∩ V1 ∩ Ai| + |S2 ∩ V2 ∩ Ai| = |S2 ∩ Ai| ≡ 1 (mod 2) for i = 1, 2, 3, so
[S′1, V

′ − S′1] is a feasible solution to 〈G′,A′〉.

6 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. Let 〈G,A〉 be a nontrivial quadruple and let
M be the matroid as defined in Section 2. Recall that M∗ is a series-extension of a 3-connected
matroid if and only if M is a parallel-extension of a 3-connected matroid. We say that the quadruple
〈G,A〉 is reducible if it admits one of reductions I–IV and irreducible otherwise.

The following lemma essentially asserts that the hypothesis of Lemma 3.9 is satisfied if 〈G,A〉
is irreducible.

Lemma 6.1 Suppose quadruple 〈G,A〉 is nontrivial, acyclic, and irreducible. If Ai 6= Aj for all
1 ≤ i < j ≤ 3, then G is 2-connected, M∗ is a series-extension of a 3-connected matroid containing
A, and M∗ has no vertical 3-separation (F1, F2) with A ⊆ F1.

Proof. Clearly, G is 2-connected as no reduction I applies to 〈G,A〉. Let us first prove that

(1) M∗ is a series-extension of a 3-connected matroid containing A.

Assuming the contrary, then M is not a parallel-extension of a 3-connected matroid containing
A. Thus Lemma 4.3 guarantees the existence of a partition (E1, E2) of E with o(E1, E2) = 2 ≤
min{r(E1), r(E2)}, such that for each h ∈ {1, 2, 3}, there exists an i ∈ {1, 2} for which

Ah ⊆ Vi, and |Ah ∩ V (Gj
i )| is even for all 1 ≤ j ≤ ti. (6.1)

It follows from Lemma 4.1(ii) that t1 = t2 = t = |V0|/2 and |V (Gj
i ) ∩ V0| = 2 for i = 1, 2

and j = 1, 2, ..., t, where V0 = V1 ∩ V2 and Gi = (Vi, Ei) := G[Ei] is the disjoint union of its
components G1

i , G
2
i , . . . , G

t
i for i = 1, 2. Symmetry allows us to assume that A1 ∪ A2 ⊆ V1. Thus

V (A) − V1 ⊆ A3 − (A1 ∪ A2) and hence V2 − V0 is uniform. Since 〈G,A〉 admits no reduction II,
from the definition we deduce that each Gj

2 (1 ≤ j ≤ t) is a path with all internal vertices (if any)
belonging to A3− (A1∪A2). Observe that G2 is not a path of length two, for otherwise its internal
vertex belongs to A3 − (A1 ∪ A2) and hence A3 ⊆ V2 by (6.1), which also implies that A3 consists
of two adjacent vertices in G2. So a reduction II-1 applies to 〈G,A〉, a contradiction. Let us show
that

Every Gj
1 (1 ≤ j ≤ t) is incident with two disjoint edges fj and gj in E2. (6.2)

Otherwise, t = 1 and G2 is a path of length at most two linking the two vertices in V0. Hence
either G2 is a path of length exactly two, contradicting the preceding observation, or |E2| = 1,
contradicting the inequality r(E2) ≥ 2. So (6.2) follows. Moreover,

Each G\{fj , gj} has precisely two components Hj
1 and Hj

2 , with Hj
1 = Gj

1. (6.3)

To justify this, let G′ be the graph obtained from G by replacing each Gj
1 (1 ≤ j ≤ t) with an edge

ej between the two vertices in V (Gj
1)∩V0. Then G′ is a Hamiltonian cycle, because G is 2-connected
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and each Gj
2 (1 ≤ j ≤ t) is a path. It follows that G′\{fj , gj} has precisely two components, one of

which consists of ej only. So (6.3) holds.
It follows from (6.3) that each pair {fj , gj} defines a 4-separation (Hj

1 ∪ Hj
2 ,Hj

3) of G, where
Hj

3 = G[{fj , gj}]. By (6.1) and the assumption that A1 ∪ A2 ⊆ V1, we see that A1 and A2 both
have even-sized intersections with V (Gj

1). If A3 has an even-sized intersection with some V (Gj
1),

then (Hj
1 ∪Hj

2 ,Hj
3) would be an even 4-separation satisfying (IV-2). So a reduction IV applies to

〈G,A〉. This contradiction implies that A3 has an odd-sized intersection with every V (Gj
1).

From (6.1) and (6.2) we deduce that A3 ⊆ V2, |A3 ∩ V (Gj
2)| is even, and A3 ∩ V (Gj

1) consists
of precisely one vertex in V0 for each 1 ≤ j ≤ t. Suppose f1 = a1b1 and g1 = c1d1, with {a1, c1} ⊆
V0 ∩ V (G1

1). Renaming the edges if necessary, we assume a1 ∈ A3 and c1 /∈ A3. Observe that
b1 ∈ A3, for otherwise, let f1 ∈ E(G`

2) for some `. Since G`
2 is a path with all internal vertices (if

any) belonging to A3−(A1∪A2), we have V (G`
2) = {a1, b1}, contradicting the fact that |A3∩V (G`

2)|
is even. Next, b1 ∈ V0, for otherwise, b1 has degree two and is incident with precisely two edges
f1 and f ′1. Since each Gj

2 (1 ≤ j ≤ t) is a path with all internal vertices (if any) belonging to
A3 − (A1 ∪ A2), we see from (6.1) and the fact c1 6∈ A3 that f ′1 is incident with neither c1 nor d1.
Thus {f ′1, g1} defines an even 4-separation satisfying (IV-2) and hence a reduction IV applies to
〈G,A〉, a contradiction again.

Without loss of generality, we assume that f1 = f2. Recalling the statements established in the
preceding paragraph, we have A3 ∩ V (G2

1) = {b1}. Observe that g1 6= g2, for otherwise, {f1, g1}
defines an even 4-separation (G1

1 ∪ G2
1,H

1
3 ) satisfying (IV-1) and hence a reduction IV applies

to 〈G,A〉, a contradiction. If g1 and g2 are disjoint, then {g1, g2} defines an even 4-separation
(H1 ∪H2,H3) satisfying (IV-2), with H1 = (G1

1 ∪G2
1) + f1, H2 = G\V (H1) and H3 = G[{g1, g2}],

so a reduction IV applies to 〈G,A〉. This contradiction implies that d1 is the common end of g1

and g2 and d1 ∈ V2 − V0. Since |A3 ∩ V (Gj
1)| = 1 for j = 1, 2 and {a1, b1} ⊆ A3, the ends of g1

and g2 in V0 are outside A3. Let G`
2 be the component of G2 containing g1 and g2. Note that G`

2

consists of g1 and g2 only. Since |A3 ∩ V (G`
2)| is even, we have d1 /∈ A3 and hence d1 /∈ V (A).

It follows that (G\d1, G
`
2) is a 2-separation satisfying (II-2) and hence a reduction II-2 applies to

〈G,A〉. This contradiction proves (1).
It remains to verify that

(2) M∗ has no vertical 3-separation (F1, F2) with A ⊆ F1.

Assume, on the contrary, that (F1, F2) is a vertical 3-separation of M∗ with A ⊆ F1. Let (E1, E2)
be the restriction of (F1, F2) to E and let Gi = (Vi, Ei) := G[Ei] for i = 1, 2. Put V0 := V1 ∩ V2.
By Lemma 4.4, we have

Some component H2 of G2 contains a cycle. (6.4)

Let H1 := G\(V (H2)− V0) and {v1, v2, . . . , vh} := V (H1) ∩ V (H2) ⊆ V0. The assumption and (1)
imply that Lemma 4.4 (ii) or (iii) holds. Thus, by Lemma 4.1(ii) and (iii), we have 2 ≤ h ≤ 4. Let
us now consider two cases.

Case 1. Lemma 4.4(ii) holds; that is, o(E1, E2) = 2 and V2−V0 is uniform. In this case, h = 2
by Lemma 4.1(ii) and H2\{v1, v2} is uniform. In view of (6.4), a reduction II-2 applies to 〈G,A〉
based on (H1,H2), a contradiction.

Case 2. Lemma 4.4(iii) holds; that is, o(E1, E2) = 3, V (A) ⊆ V1, and |Ai ∩ V (Gj
1)| is even for

every 1 ≤ i ≤ 3 and 1 ≤ j ≤ t1.
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When h = 2, clearly 〈G,A〉 admits a reduction II-2 based on (H1,H2) in which H2 is replaced
by an edge v1v2.

When h = 3, if H2 = v1v2v3v1 is a triangle, or some component of H2\{v1, v2, v3} is adjacent to
all of v1, v2, and v3 then, by (6.4), G admits a reduction III based on (H1,H2); else, by symmetry
and the 2-connectivity of G, we may assume the existence of a 2-separation (H ′

1,H
′
2) of G at {v1, v2}

such that H ′
1 ⊃ H1, H ′

2 ⊆ H2\v3, and |E(H ′
2)| > 1, yielding a reduction II-2 for 〈G,A〉 based on

(H ′
1,H

′
2).

When h = 4, by Lemma 4.1, we see that Gj
i contains exactly two vertices from V0 for all i = 1, 2

and j = 1, 2, ..., ti, except for the one denoted by H2. It is easy to see that H1 consists of all Gj
i

with Gj
i 6= H2. Moreover, if we replace (in H1) each such Gj

i with an edge between the vertices of
V (Gj

i ) ∩ V0, then in the resulting graph all vertices have degree two, except for v1, v2, v3, v4 which
have degree one. Hence H1 consists of two components J1 and J2 with |V (Jj)∩{v1, v2, v3, v4}| = 2
for j = 1, 2, V (A) ⊆ V (J1)∪V (J2), and |Ai∩V (Jj)| is even for all i = 1, 2, 3 and j = 1, 2. Since G is
2-connected, there are two disjoint paths between V (J1)∩{v1, v2, v3, v4} and V (J2)∩{v1, v2, v3, v4},
which are fully contained in H2. Thus 〈G,A〉 admits a reduction IV-2 based on (J1 ∪ J2,H2).

So 〈G,A〉 is reducible in all subcases, this contradiction completes the proof of (2) and hence
of the lemma.

Proof of Theorem 1.1. Suppose 〈G,A〉 is nontrivial, acyclic, and irreducible. If Ai 6= Aj for
all i, j with 1 ≤ i 6= j ≤ 3, then the assertion follows instantly from Lemma 6.1 and Lemma 3.9.
In the opposite case, symmetry allows us to assume that A1 = A2. Since 〈G,A〉 is irreducible,
G is 2-connected. Thus Lemma 5.2 guarantees the existence of a bond [S1, S2] of G such that
|S1 ∩A2| = |S1 ∩A3| = 1. Clearly, [S1, S2] is a feasible solution to 〈G,A〉.

7 More on infeasible quadruples

In this section we prove three more lemmas that will be used in proving Theorem 1.2. The first is
a corollary of Theorem 1.1.

Lemma 7.1 Suppose 〈G,A〉 is nontrivial and acyclic. If G has a plane representation in which
V (A) is contained in a facial cycle C, then 〈G,A〉 is infeasible if and only if A is linked by C.

Proof. Let us first show that 〈G,A〉 is feasible if and only if 〈C,A〉 is feasible. To justify this,
note that the “if” part follows instantly from Lemma 5.3. To establish the “only if” part, let [S1, S2]
be a feasible solution to 〈G,A〉. Since C is a facial cycle and [S1, S2] is bond, G[Si]∩C (i = 1, 2) is
either empty or a path in C or the whole C. On the other hand, since V (A) ⊆ V (C) and |Si ∩Aj |
is odd for all i = 1, 2 and j = 1, 2, 3, we deduce that Si ∩ V (C) (i = 1, 2) induces a path on C
having an odd-sized intersection with each of A1, A2, A3. It follows that [S1 ∩ V (C), S2 ∩ V (C)] is
a feasible solution to 〈C,A〉, as desired.

It remains to prove that 〈C,A〉 is infeasible if and only if A is linked by C. The “if” part was
proved in Section 1 so we only need to show the “only if” part. Suppose 〈C,A〉 is infeasible. Let
C ′ be a disjoint copy of C and let H be the cubic planar graph obtained from C ∪ C ′ by adding
a perfect matching linking the corresponding vertices. It follows from what we proved in the last
paragraph that 〈H,A〉 is infeasible. Note that |V (C)| ≥ 4, for otherwise A1 ∩ A2 ∩ A3 6= ∅, which
would mean that 〈C,A〉 is feasible. Therefore, H is triangle-free and 3-connected. It is routine to
verify that 〈H,A〉 is irreducible. By Theorem 1.1, A is linked by C.
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It is worthy of noting that contractions in reductions I, II-1, and IV-1 might reduce a nontrivial
and acyclic instance 〈G,A〉 to a trivial or cyclic one. When this happens, although the reduction
confirms the infeasibility of 〈G,A〉, it only provides us with information on A and it loses all
information on G. Since we want to understand the structure of a nontrivial acyclic infeasible
quadruple, we wish to keep a quadruple that way after each reduction. The following lemma says
that this is possible. This result is a strengthening of Theorem 1.1 when G is 2-connected.

Lemma 7.2 Suppose quadruple 〈G,A〉 is nontrivial, acyclic, and infeasible. If G is 2-connected,
then 〈G,A〉 can be reduced by reductions II, III, IV to a nontrivial and acyclic quadruple 〈G′,A′〉,
such that G′ is 2-connected and has a plane representation in which A′ is linked by a facial cycle.

Remark. Since any reduction of a trivial or cyclic quadruple remains trivial or cyclic, respectively,
this lemma also implies that when 〈G,A〉 is reduced to 〈G′,A′〉, all intermediate quadruples are
nontrivial, acyclic, and infeasible as well. This observation also follows from the proof below.

Proof. Suppose the lemma is false. We consider a counterexample 〈G,A〉 with 2|E(G)|−|V (G)|
as small as possible. By Theorem 1.1, 〈G,A〉 admits one of reductions II-IV, which we denote by
π. It follows from Lemmas 5.5–5.7 that the result, 〈G′,A′〉, of applying π is infeasible. Moreover,
since G′ is 2-connected and is simpler than G (meaning 2|E(G′)|− |V (G′)| < 2|E(G)|− |V (G)|), we
deduce from the minimality of 〈G,A〉 that 〈G′,A′〉 is either trivial or cyclic. Let A = {A1, A2, A3}.

Note that π is not reduction II-2 or III, because otherwise from their definitions it is clear that
〈G′,A′〉 would be both nontrivial and acyclic. Therefore, we may assume that reductions II-2 and
III do not apply to 〈G,A〉, and thus π must be reduction II-1 or IV.

Suppose π is reduction II-1, based on a 2-separation (G1, G2) of G at {v1, v2}, where G2 = v1uv2

and {v1, u} = Ai for some i, say i = 1. Since 〈G′,A′〉 is trivial or cyclic, either {u, v2} = A2 or A3,
or {u, v2} ⊇ A1∆A2∆A3. It is a routine matter to check that G1\{v1, v2} is uniform in all these
cases. Using our assumption that II-2 does not apply to 〈G,A〉 we conclude that G1 is a path and
thus G is a cycle, contradicting the fact that G is a counterexample (by Lemma 7.1).

It remains to consider the case when π is reduction IV. Suppose the reduction is based on
4-separation (G1 ∪G2, G3) of G at {v1, v2, v3, v4}, where G3 contains disjoint paths P1 from v1 to
v3 and P2 from v2 to v4. In the subcase of (IV-1), some Ah = {v1, v3}, say h = 1. Since 〈G′,A′〉
is trivial or cyclic, either {v2, v4} = A2 or A3, or {v2, v4} ⊇ A1∆A2∆A3. An argument similar to
what was used in the last case shows that both G1 and G2 would be paths, and G would be a cycle,
leading to a contraction. In the subcase of (IV-2), the parity condition implies that neither {v1, v3}
nor {v2, v4} can be Ah for any h = 1, 2, 3. Let i ∈ {1, 2} such that {vi, vi+2} 6⊇ A1∆A2∆A3 and let
us assume that π is performed such that vi and vi+2 get identified. Then 〈G′,A′〉 is both nontrivial
and acyclic, a contradiction, which proves the lemma.

In the end of this section we introduce a simplification of reduction IV-2, which will be useful
in proving Theorem 1.2. Let 〈G,A〉 be a quadruple and (G1 ∪G2, G3) be a 4-separation of G that
satisfies all requirements in the definition of reduction IV-2. Then reduction IV’ (see Figure 4 below)
reduces 〈G,A〉 to quadruple 〈G′,A〉, instead of 〈G′,A〉/v2v4, where G′ = G1 ∪ G2 + {v1v3, v2v4}.
Note that G′ is a proper minor of G (and thus is simpler than G) as long as |E(G3)| > 2.

Clearly, reduction IV’ maintains the 2-connectivity of a graph, as well as the nontriviality and
acyclicity of a quadruple (since A remains unchanged). In addition, we also have the following.

Lemma 7.3 Let 〈G′,A〉 be obtained from 〈G,A〉 by a reduction IV’. Then 〈G,A〉 is feasible if and
only if 〈G′,A〉 is feasible.
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Figure 4: Reductions IV′.

Proof. Note that both 〈G,A〉 and 〈G′,A〉 can be reduced to the same 〈H,B〉 by reductions
IV. Using Lemma 5.7 twice, we deduce that 〈G,A〉 is feasible if and only if 〈H,B〉 is feasible if and
only if 〈G′,A〉 is feasible.

8 Weakly linkable quadruples

The purpose of this section is to establish Theorem 1.2, which provides a global structure for
infeasible quadruples that are nontrival and acyclic. We begin with a few definitions. Let G = (V,E)
be a graph, G1 = (V1, E1) be its subgraph, X be the set of vertices in V1 that are not incident
with any edge in E − E1, and H = (U,F ) be a graph with F ∩ E = ∅ and U ∩ V = V1 − X.
Then (G\(X ∪ E1)) ∪H is the result of substituting G1 with H. Let 〈G,A〉 be a quadruple with
A = {A1, A2, A3}. A triad is a subgraph of G with three edges vx, vy, vz such that x, y, z are
distinct, v is not in V (A), and v has degree three in G. A path in G is an A-path if its set of
internal vertices X satisfies: ∅ 6= X ⊆ V (A), X is uniform, and every x ∈ X has degree two in
G. Let C be a cycle in G. A C-rectangle is a 4-cycle v1v2v4v3v1 such that v1v2, v3v4 are not in C,
v1v3, v2v4 are in C, and v1v3, v2v4 form a bond of G that separates V (G) into V1, V2 with |Ai ∩ Vj |
even for all i = 1, 2, 3 and j = 1, 2

A quadruple 〈G,A〉 is linkable by a cycle C if G has a plane representation in which C is a
facial cycle and A is linked by C. We call 〈G,A〉 weakly linkable if there is a quadruple 〈G′,A′〉
that is linkable by a cycle C ′, in which there exist a set R of C ′-rectangles, a set P of A′-paths
(they have to be in C ′), a set T of triads, and a set F of edges (which are considered as single edge
subgraphs), all being mutually edge-disjoint, such that 〈G,A〉 is obtained by

(i) substituting each Z in F ∪ T with a graph HZ for which HZ\V (Z) has a component that
is adjacent to all (two or three) vertices in V (HZ) ∩ V (Z);

(ii) substituting each R = v1v2v4v3v1 in R with a graph HR for which there are two vertex
disjoint paths, one from v1 to v3 and one from v2 to v4;

(iii) substituting each P in P with a graph HP for which HP +uv is 2-connected, where u, v are
ends of P ; in this case, if X = V (P )−{u, v}, we also choose nonempty Y ⊆ V (HP )−{u, v}
with |Y | ≡ |X| (mod 2), and, for each Ai that meets X, we replace Ai with (Ai −X) ∪ Y .

We will call (〈G′,A′〉, C ′, {HQ : Q ∈ Q}), where Q = R∪ P ∪ T ∪ F , a certificate for 〈G,A〉.
Remark 1. It is clear from this definition that, by reversing the constructions, every weakly
linkable quadruple on a 2-connected graph can be reduced to a linkable quadruple by reductions
II-2, III, and IV’. Since linkable quadruples are infeasible, we deduce from Lemmas 5.5, 5.6, 7.3, and
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7.1 that weakly linkable quadruples on 2-connected graphs are infeasible. Conversely, Theorem 1.2
asserts that every nontrivial acyclic infeasible quadruple on a 2-connected graph is weakly linkable.

Remark 2. If Ai consists of the two ends of edge ei (i = 1, 2, 3) and e1e2e3 is a path of length three,
then 〈G,A〉 is nontrivial and acyclic. Assuming that G is 2-connected, we deduce from Theorem
1.2 that 〈G,A〉 is infeasible if and only if it is weakly linkable. Note that in any certificate we must
have R∪P = ∅, thus 〈G,A〉 is infeasible if and only if, “up to” 2- and 3-separations, G has a plane
representation such that e1, e2, e3 are contained in a facial cycle. As discussed in the introduction,
this is exactly Seymour’s solution on the 2-linkage problem [7].

The remainder of this section is a proof of Theorem 1.2. We begin with a lemma.

Lemma 8.1 Suppose G is 2-connected and 〈G,A〉 is weakly linkable. Then there exists a certificate
(〈G′,A′〉, C ′, {HQ : Q ∈ Q}) such that each HQ is 2-connected.

Proof. Choose a certificate (〈G′,A′〉, C ′, {HQ : Q ∈ Q}) such that
(1) λ(Q) =

∑{|E(HQ)| : Q ∈ Q} is minimized, and
(2) subject to (1), |Q| is maximized.

Suppose that some HQ is not 2-connected. Let B = V (HQ)∩V (G′). Note that |B| = 2, 3, or 4. We
first prove that HQ is connected. Suppose otherwise. If |B| < 4 then a component of HQ contains
at most one vertex from B. Since G is 2-connected, this component must consist of a single vertex
in B, which is impossible by constructions (i) and (iii). Thus |B| = 4 and Q is a C ′-rectangle
R = v1v2v4v3v1 as defined in construction (ii). It follows that HQ consists of two components
H1 and H2, which contain {v1, v3} and {v2, v4}, respectively. By Lemma 7.1, 〈G′\{v1v2, v3v4},A′〉
remains linkable by C ′. Thus we get a better certificate (with |Q| bigger) by deleting R from R
and adding e1 = v1v3 and e2 = v2v4 to F with Hei = Hi (i = 1, 2). This contradiction shows that
HQ is connected.

Now we assume that HQ admits a 1-separation (H1,H2) over a cut vertex z. If |B| = 2, instead
of simulating entire HQ with one path Q we simulate H1 and H2 with two paths. In other words,
we substitute Q in G′ with a new path Q1zQ2, where the lengths of Q1, Q2 are determined by
reduction II-2 (as in reducing H1,H2), and we also modify A′ accordingly. Let HQi = Hi (i = 1, 2).
We delete Q from Q and add Qi (i = 1, 2) to Q, provided that HQi has three or more vertices (so
it can be used in constructions (i) and (iii)). By Lemmas 5.5 and 7.1, it is not difficult to see that
we get a new certificate with either a smaller λ(Q) (if some Hi has only two vertices) or a bigger
|Q|, a contradiction. The argument for the case |B| = 3 is almost identical so we omit the detail.

If |B| = 4 then Q is a C ′-rectangle R = v1v2v4v3v1. From construction (ii) we may assume (by
renaming vertices of R if necessary) one of the following holds:

• v1, v3 ∈ V (H1 − z) and v2, v4 ∈ V (H2 − z);
• v1 ∈ V (H1 − z) and v2, v3, v4 ∈ V (H2 − z);
• z = v3, v1 ∈ V (H1), and v2, v4 ∈ V (H2).

Just like what we did before, in the first case we simulate H1,H2 by two triads; in the second case
we simulate H1,H2 by an edge and a rectangle, respectively; in the third case we simulate H1,H2

by an edge and a triad, respectively. It is possible that we want to simulate Hi by a triad but
it does not satisfy the requirement in construction (i). In this case Hi can be simulated by three
edges. It is also possible that we want to simulate a graph by an edge yet the graph does not satisfy
the requirement in construction (i). This can only happen when the graph has only two vertices.
In this case we may leave the graph in G′ and we do not need to simulate it. In all these cases, it
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is straightforward to verify that we end up with a new certificate with either a smaller λ(Q) or a
bigger |Q|, a contradiction, which completes the proof.

Proof of Theorem 1.2. The “if” part is given by Remark 1 above. To prove the “only if” part
we assume that the result is false. Namely, there exists a nontrivial acyclic infeasible quadruple
〈G∗,A∗〉 on a 2-connected graph that is not weakly linkable. We choose such a counterexample
with 2|E(G∗)| − |V (G∗)| as small as possible. By Lemma 7.2, there exists π, a reduction II, III,
or IV, such that applying π to 〈G∗,A∗〉 results in a nontrivial acyclic infeasible quadruple 〈G,A〉.
Since G is 2-connected and is simpler than G∗ (meaning 2|E(G)| − |V (G)| < 2|E(G∗)| − |V (G∗)|),
the minimality of 〈G∗,A∗〉 implies that 〈G,A〉 is weakly linkable. Let (〈G′,A′〉, C ′, {HQ : Q ∈ Q})
be a certificate, where Q = R∪ P ∪ T ∪ F . In the following we consider all possibilities for π and
we deduce a contradiction in every case by showing that 〈G∗,A∗〉 is weakly linkable.

Case 1a. π is reduction II-1. Let 〈G,A〉 = 〈G∗,A∗〉/u∗v2, where u∗ has degree two in G∗. Let
v1 be the other neighbor of u∗ in G∗ and let u be the new vertex in G. Since {u∗, v1} = A∗i for
some i, we may assume i = 1. It follows that A1 = {u, v1} in A.

We first consider the subcase when A1 ⊆ V (HQ)− V (C ′) := U , for some Q ∈ Q. This can only
happen when Q ∈ P. It follows that U is uniform in 〈G,A〉, U ∩V (A) = A1 and |(V (G)−U)∩Ai|
is even (i = 1, 2, 3). Let x1, x2 be the ends of Q and let H∗

Q be the subgraph of G∗ obtained by
uncontracting u to u∗v2. By 2-connectivity we may assume that H∗

Q has disjoint paths from xi

to vi (i = 1, 2), respectively. Since A1 = {v1, u} ⊆ U , Q = x1v1ux2. Let G′′ and C ′′ be obtained
from G′ and C ′, respectively, by substituting Q with a new path x1v1u

∗v2x2. Let A′′i (i = 1, 2, 3)
be obtained from A′i by deleting internal vertices of Q and adding v1, v2, or u∗ according to if they
belong to A∗i . Notice that 〈G′,A′〉 = 〈G′′,A′′〉/u∗v2. By Lemmas 5.5 and 7.1, 〈G′′,A′′〉 is linkable
by C ′′. Let G′′′ = G′′+ {x1x2, v1v2}. Then R = x1v1v2x2x1 is a C ′′-rectangle, as |(V (G)−U)∩Ai|
is even (i = 1, 2, 3). Moreover, by Lemma 7.1, 〈G′′′,A′′〉 is linkable. Now we see that 〈G∗,A∗〉 is
weakly linkable since it has a certificate (〈G′′′,A′′〉, C ′′, {HS : S ∈ Q′}), where Q′ = (Q−{Q})∪{R}
and HR = H∗

Q − u∗.
The next subcase is when some HQ − V (C ′) contains exactly one vertex from A1. Using the

same argument as we used in the previous subcase we can see that 〈G∗,A∗〉 is weakly linkable. The
only difference is that, instead of replacing Q ∈ P with a rectangle R we need to replace Q with a
triad T , or, in a degenerate case, with an edge (which would be added to F).

The above two subcases imply that A1 ⊆ V (G′), and thus A1 ⊆ V (C ′). We claim that we may
assume e = uv1 ∈ E(G′). Suppose otherwise, that e belongs to some HQ. Then G′ + e is planar (e
can be drawn along an uv1-path of Q) and 〈G′ + e,A′〉 remains linkable by C ′ (by Lemma 7.1). In
addition, if Q ∈ R then HQ\e satisfies the requirement in construction (ii), because the required
disjoint paths in HQ do not contain e, which follows from the definition of a rectangle and the fact
that A1 consists of the two ends of e. The same reasons also imply that Q remains a C ′-rectangle
in 〈G′ + e,A′〉. Therefore, (〈G′ + e,A′〉, C ′, {HS\e : S ∈ Q}) is also a certificate for 〈G,A〉, and
thus the claim is proved.

We further claim that we may assume e ∈ E(C ′). Suppose otherwise. Let C ′
1, C

′
2 be the two

uv1-paths of C ′. Since A is linked by C ′ and |A1| = 2, one of C ′
i, say C ′

1, satisfies V (C ′
i) ⊇ V (A).

In addition, since C ′ is a facial cycle and e is a chord, {u, v1} defines a 2-separation (G′
1, G

′
2) of G′

with G′
i contains C ′

i (i = 1, 2). By flipping G′
2 it is clear that G′ can be redrawn so that C ′′ = C ′

1+e
is a facial cycle. By Lemma 7.1, 〈G′,A′〉 is also linkable by C ′′. Now it is routine to verify that
(〈G′,A′〉, C ′′, {HQ : Q ∈ Q}) is also a certificate for 〈G,A〉, and so the claim is proved.

22



Let G′′ and C ′′ be obtained by uncontracting u∗v2 in G′ and C ′, respectively. For i = 1, 2, 3,
let A′′i be obtained from A′i−{u} by adding u∗ and/or v2, according to if they belong to A∗i . Then
〈G′,A′〉 = 〈G′′,A′′〉/u∗v2. By Lemmas 5.5 and 7.1, 〈G′′,A′′〉 is linkable by C ′′. Moreover, it is
straightforward to verify that (〈G′′,A′′〉, C ′′, {HQ : Q ∈ Q}) is a certificate for 〈G∗,A∗〉, which
completes the proof for Case 1a.

In the rest of the proof we assume that

the result of any reduction II-1 in 〈G∗,A∗〉 is either trivial or cyclic. (8.1)

We also assume that the certificate of 〈G,A〉 is chosen according to Lemma 8.1.

Case 1b. π is reduction II-2. Suppose the reduction is applied to 2-separation (G1, G2) of G∗

such that G2 is substituted by a path P (so G = G1 ∪ P ). If some edge of P belongs to some
HQ, Lemma 8.1 implies that the entire P is a subgraph of HQ. Let H∗

Q be obtained from HQ by
substituting P with G2. It follows that replacing HQ with H∗

Q results in a certificate for 〈G∗,A∗〉, a
contradiction. Therefore, P is a subgraph of G′ and is edge disjoint from all Q in Q. Now it is clear
that adding P to P and letting HP = G2 again results in a certificate for 〈G∗,A∗〉, a contradiction.

Since reduction II-2 does not make a quadruple trivial or cycle, we assume in the following that

〈G∗,A∗〉 admits no reduction II-2. (8.2)

Case 2. π is reduction III. Suppose the reduction is applied to 3-separation (G1, G2) of G∗

such that G2 is substituted by a triad T (so G = G1 ∪ T ). If edges of T do not belong to any HQ,
then adding T to T and letting HT = G2 would result in a certificate for 〈G∗,A∗〉, a contradiction.
So we assume that some HQ is 2-connected and hence contains an edge of T . By the choice of our
certificate, HQ contains at least two edges from T . We claim that we can get a certificate (which
may not satisfy the conclusion of Lemma 8.1 any more) such that the entire T is a subgraph of HQ.

Let vx, vy be two edges of T that are in HQ and let e = vz be the other edge of T . If e is also
in HQ then we do not need to do anything. So we assume that e is not in HQ and thus v is not in
Q. Since elements in {HQ : Q ∈ Q} are edge-disjoint, by Lemma 8.1, e is not in HS for any S ∈ Q,
and v is incident only with e and some edges of Q. Let G′′ be obtained from G′ − v by joining z
with all neighbors of v, except for z (so G′′ is isomorphic to G′/e). Let C ′′ be the facial cycle of
G′′ that corresponds to C ′. Let Q′ be obtained from Q by the same operation. Since v 6∈ V (A′),
if Q is a triad, an A′-path, or a C ′-rectangle, then Q′ is a triad, an A′-path, or a C ′′-rectangle,
respectively. In addition, 〈G′′,A′〉 is linkable by C ′′. Therefore, we have a desired certificate if we
replace G′ with G′′ and Q with Q′, and if we take HQ′ = HQ + e.

Let the entire T be a subgraph of HQ. Let H∗
Q be obtained from HQ by substitute T with G2.

Then it is easy to see that replacing HQ with H∗
Q results in a certificate for 〈G∗,A∗〉, a contradiction.

Case 3a. π is reduction IV-1. Let v1, v2, v3, v4 and G1, G2 be as in the definition of IV-1 and let
A1 = {v1, v3}. Let 〈G,A〉 = 〈G∗,A∗〉/v2v4 and let v′ be the new vertex. We also consider G1, G2

as subgraphs of G, where we rename v2, v4 with v′.
If v1v3 does not belong to any HQ then, by Lemma 8.1, every HQ is a subgraph of G1 or G2.

Therefore, the uncontraction 〈G′′,A′′〉 of v2v4 in 〈G′,A′〉 is well defined. Let C ′′ ⊆ G′′ be the facial
cycle corresponds to C ′. Then it is easy to see that (〈G′′,A′′〉, C ′′, {HQ : Q ∈ Q}) is a certificate
for 〈G∗,A∗〉, a contradiction.
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Next we assume that v1v3 belongs to some HQ. By Lemma 8.1, HQ also contains v′. Let
B = V (HQ) ∩ V (G′). We claim that |B| = 2. If |B| = 3 then Q is a triad. Note that {v1, v3} ⊆ B
since, by construction (i), V (HQ) − B is disjoint from V (A). Since G and HQ are 2-connected,
G[E(G) − E(HQ)] is connected and thus has a v1v3-path. This path avoids edge v1v3 and so it
contains v′. Consequently, B = {v1, v3, v

′}, which is impossible since no component in HQ\B (or
even in G\B) is adjacent to all vertices in B. If |B| = 4 then Q is a C ′-rectangle u1u2u4u3u1,
where u1u3 is in C ′. Again v1, v3 ∈ B. Moreover, since A1 = {v1, v3}, the parity condition on
rectangles implies that A1 = {u1, u2} or {u3, u4}, say the former. Let C1 be the u1u2-path in C ′

not containing u1u3. Then C1 can be converted into a u1u2-path in G that meets HQ only on the
ends. This is impossible since every v1v3-path in G\v1v3 must contain v′. Thus the claim is proved.

From |B| = 2 we can deduce that G1 or G2 (say G2) is a subgraph of HQ. Otherwise, since
|V (G1) ∩ V (G2)| = 1 and, by the 2-connectivity of G, V (Gi) − V (HQ) (i = 1, 2) has at least
two neighbors in V (Gi) ∩ V (HQ), it would follow that G\V (HQ) has at least three neighbors in
V (HQ), contradicting the fact |B| = 2. Notice from |B| = 2 that HQ\B is uniform in 〈G,A〉.
Thus v3 ∈ A1 ∩ V (HQ\B) implies V (HQ\B) ∩ V (A) ⊆ A1. It follows that in G∗, G2\{v3, v4}
does not contain any vertex in V (A), which, by (8.2), implies V (G2) = {v3, v4}. We may assume
B 6= {v1, v

′} because otherwise HQ would be the triangle v1v3v
′v1 and Q would be the path v1v3v

′,
which would mean that deleting Q from Q and adding v1v

′ to G′ result in a certificate for 〈G,A〉
that satisfies the requirement in the first subcase of Case 3a (where v1v3 does not belong to HQ for
any Q ∈ Q), and thus we would be done.

By the parity condition in IV-1, |A∗1∩{v3, v4}| = |{v3}| = 1 but |A∗i ∩{v3, v4}| is even (i = 2, 3).
It follows that 〈G∗,A∗〉/v3v4 is acyclic, as the new vertex belongs to exactly one member ofA∗/v3v4.
By (8.1), 〈G∗,A∗〉/v3v4 must be trivial, and so there exists h ∈ {2, 3} such that A∗h = {v3, v4}.
Since B 6= {v1, v

′}, either v1 or v′ is in HQ\B. However, since HQ\B is uniform in 〈G,A〉, both
possibilities contradict A∗h = {v3, v4} because in the first case v1 ∈ A∗h and in the second case
v′ 6∈ V (A), which leads to v2 ∈ A∗h. This contradiction settles Case 3a.

Case 3b. π is reduction IV-2. Let v1, v2, v3, v4, v
′ and G1, G2, G3 be as in the definition of IV-2.

Similar to Cases 3a, G1, G2 are also considered as subgraphs of G, where we rename v2, v4 with v′.
We first claim that Gi\V (G3) meets V (A∗), for i = 1, 2. Suppose the claim is false for, say, i = 2.
By (8.2), V (G2) = {v3, v4}. Then, by the parity condition in IV-2, (G2 ∪ G3)\{v1, v2} is uniform
in A∗, which implies, by (8.2) again, that v1v3, v2v4 are the only edges of G3 and v3, v4 ∈ V (A∗).
If v′v3 does not belong to any HQ then it belongs to C ′, as v3 ∈ V (A∗). It is easy to see that
uncontracting v2v4 in 〈G′,A′〉 leads to a certificate for 〈G∗,A∗〉, a contradiction. So v′v3 belongs
to some HQ. By Lemma 8.1, this HQ also contains v1v3. It follows that v3 belongs to HQ\V (G′),
which implies Q ∈ P, as v3 ∈ V (A). Let H∗

Q be obtained by the uncontraction of v2v4 in HQ. Since
{v3, v4} is uniform in A∗ and HQ\V (G′) is uniform in A, H∗

Q\V (G′) must be uniform in A∗. Thus
replacing HQ with H∗

Q results in a certificate for 〈G∗,A∗〉. This contradiction proves the claim.
If v1v3 is not in any HQ, then, by Lemma 8.1, every HQ is a subgraph of G1 or G2. It follows that

v′ and v1v3 belong to C ′. Moreover, uncontracting v2v4 in 〈G′,A′〉 and adding edges v1v2, v3v4 would
create a rectangle R = v1v2v4v3v1, and thus a certificate for 〈G∗,A∗〉, where we take HR = G3.
This contradiction implies that v1v3 belongs to some HQ. By Lemma 8.1, this HQ also contains v′.
Let H∗

Q be obtained from HQ by putting G3 back. That is, H∗
Q = G∗[E(G∗)− E(G\E(HQ))].

If some Gi, say i = 2, is a subgraph of HQ, then, since G2\V (G3) meets V (A∗), as claimed
above, Q must be a path in P and HQ\V (G′) is uniform in A. Since V (G2\v′) ⊆ V (HQ\V (G′)),
V (G2\v4) is uniform in A∗. By the parity condition in IV-2, |A∗i ∩ V (G2)| must be even for all
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i = 1, 2, 3. Hence V (G2) is uniform in A∗, which in turn implies that H∗
Q\V (G′) is uniform in A∗,

contradicting (8.2).
For i = 1, 2, let Hi = Gi[E(Gi) − E(HQ)] be subgraphs of G. Since v1v2 ∈ E(HQ) and

v′ ∈ V (HQ), the 2-connectivity of G implies |V (Hi) ∩ V (HQ)| ≥ 2 for i = 1, 2. It follows from
V (H1) ∩ V (H2) ⊆ {v′} that |V (HQ) ∩ V (G′)| ≥ 3. Thus HQ\V (G′) is disjoint from V (A), and so
H∗

Q−V (H1∪H2)−{v2, v4} is disjoint from V (A∗). If |V (HQ)∩V (G′)| = 3, then v′ ∈ V (HQ)∩V (G′)
and H∗

Q − V (H1 ∪ H2) = H∗
Q − V (H1 ∪ H2) − {v2, v4} is disjoint from V (A∗). In this case triad

Q = {ux, uy, uv′} can be converted into a rectangle R = xyv4v2x, which leads to a certificate
for 〈G∗,A∗〉 if we take HR = H∗

Q. If |V (HQ) ∩ V (G′)| = 4, the parity conditions in IV-2 and
C ′-rectangle imply that {v2, v4} is disjoint from V (A∗) and thus H∗

Q\V (H1 ∪H2) is disjoint from
V (A∗). In this case by replacing HQ with H∗

Q we get a certificate for 〈G∗,A∗〉. This completes
Case 3b and also the proof of Theorem 1.2.
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