
ON MODULAR SIGNS
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Abstract. We consider some questions related to the signs of Hecke eigenvalues
or Fourier coefficients of classical modular forms. One problem is to determine to
what extent those signs, for suitable sets of primes, determine uniquely the modu-
lar form, and we give both individual and statistical results. The second problem,
which has been considered by a number of authors, is to determine the size, in
terms of the conductor and weight, of the first sign-change of Hecke eigenvalues.
Here we improve the recent estimate of Iwaniec, Kohnen and Sengupta.

1. Introduction

There are many results in the arithmetic of modular forms which are concerned
with various ways of characterizing a given primitive cusp form f from its siblings,
starting from the fact that Fourier coefficients, hence the L-function, determine
uniquely a cusp form f relative to a congruence subgroup Γ of SL(2, Z). Among such
results are stronger forms of the multiplicity one theorem for automorphic forms or
representations, various explicit forms of these statements, where only finitely many
coefficients are required (say at primes p 6 X, for some explicit X depending on the
parameters defining f), and a number of interesting “statistic” versions of the last
problem, where X can be reduced drastically, provided one accepts some possible
exceptions. Among other papers, we can cite [4], [16], [3] or [8].

Some of these statements were strongly suggested by the analogy with the problem
of the least quadratic non-residue, which is a problem of great historic importance
in analytic number theory, and there are many parallels between the results which
have been obtained. However, this parallel breaks down sometimes. For instance,
in [13], Lau and Wu note that one result of [12] for the least quadratic non-residue
is highly unlikely to have a good analogue for modular forms. This result (see [12,
Th. 3]) is a precise estimate for the number of primitive real Dirichlet characters of
modulus q 6 D for which the least n with χ(n) = −1 is � log D, and the difficulty
is that this estimate can be understood by assuming that the values χ(p), for p of
moderate size compared with D, behave like independent random variables taking
values ±1 equally often. However, Hecke eigenvalues may take many more than
two values, and thus assuming that they coincide should definitely be a much more
stringent condition.

Date: November 13, 2009.
2000 Mathematics Subject Classification. 11F30, 11F41, 11K36, 11N35.
Key words and phrases. Fourier coefficients of modular forms, Hecke eigenvalues, Rankin-

Selberg convolution, symmetric powers, sieve methods, equidistribution, Sato-Tate conjecture.
The work of E.K. was supported in part by the National Science Foundation under agreement

No. DMS-0635607 during a sabbatical stay at the Institute for Advanced Study.
1



2 E. KOWALSKI, Y.-K. LAU & J. WU

In this paper, we consider a way to potentially recover a closer analogy: namely
(narrowing our attention to forms with real eigenvalues) instead of looking at the
values of the Hecke eigenvalues, we consider only their signs (where we view 0
as being of both signs simultaneously, to increase the possibility of having same
sign). Then classical questions for Dirichlet characters and modular forms have the
following analogues for signs of Hecke eigenvalues λf (p) of a classical modular form
f :

• What is the first sign-change, i.e., the smallest n > 1 (or prime p) for which
λf (n) < 0 (or λf (p) < 0)? (Analogues of the least quadratic non-residue).
Note a small difference with quadratic characters: it is not true here that the
smallest integer with negative Hecke eigenvalue is necessarily prime; finding
one or the other are two different questions.1

• Given arbitrary signs εp ∈ {±1} for all primes, what is the number of f (in a
suitable family) for which λf (p) has sign εp for all p 6 X, for various values
of X? (Analogue of the question in [12]).

• In particular, is there a finite limit X such that coincidences of signs of λf (p)
and εp for all p 6 X implies that f is uniquely determined? (Analogue of
the multiplicity one theorem).

Of these three problems, only the first one seems to have be considered earlier,
with the best current result due to Iwaniec, Kohnen and Sengupta [5]. We will
improve it, and obtain some first results concerning the other two problems. We
will also suggest further questions that may be of interest.

Before stating our main theorems, here are the basic notation about modular
forms (see, e.g., [6, Ch. 14] for a survey of these facts). We denote by H∗

k(N) the
finite set of all primitive forms of weight k for Γ0(N), where k > 2 is an even integer
and N > 1 is an integer. The restriction to trivial Nebentypus ensures that all
Fourier coefficients are real, and for any f ∈ H∗

k(N), we denote

f(z) =
∞∑

n=1

λf (n)n(k−1)/2e(nz), e(z) = e2iπz, (=mz > 0),

its Fourier expansion at infinity. Since f is primitive, the λf (n) are the normalized
eigenvalues of the Hecke operators Tn, and satisfy the well-known Hecke relations

(1.1) λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(
mn

d2

)
,

for all integers m > 1 and n > 1. In particular, λf is a multiplicative function of n
(so λf (1) = 1) and moreover the following important special case

(1.2) λf (p)2 = 1 + λf (p
2)

holds for all primes p - N .
Furthermore, it is also known that λf (n) satisfies the deep inequality

(1.3) |λf (n)| 6 τ(n)

1 E.g., as a random example, for the cusp form of weight 2 associated to the elliptic curve
y2 = x3 + x, the first negative coefficient is λ(9) = −3, and the first negative prime coefficient is
λ(13) = −6.
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for all n > 1, where τ(n) is the divisor function (this is the Ramanujan-Petersson
conjecture, proved by Deligne). In particular, we have λf (p) ∈ [−2, 2] for p - N , and
hence there exists a unique angle θf (p) ∈ [0, π] such that

(1.4) λf (p) = 2 cos θf (p).

Our other notation is standard in analytic number theory: for instance, π(x)
denotes the number of primes 6 x and P+(n) (resp. P−(n)) denotes the largest
(resp. smallest) prime factor of n, with the convention P+(1) = 1 (resp. P−(1) =
∞).

We now describe our results.

1.1. The first negative Hecke eigenvalue. For f ∈ H∗
k(N), k > 2 and N > 1, it

is well-known that the coefficients λf (n) change sign infinitely often. We denote by
nf the smallest integer n > 1 such that (n, N) = 1 and

(1.5) λf (n) < 0.

The analogue (or one analogue) of the least-quadratic non-residue problem is to
estimate nf in terms of the analytic conductor Q := k2N . Iwaniec, Kohnen &
Sengupta [5] have shown recently that

nf � Q29/60 = (k2N)29/60

(here, standard methods lead to nf �ε Q1/2+ε, so the significance is that the expo-
nent is < 1/2).

Our first result is a sharpening of this estimate:

Theorem 1. Let k > 2 be an even integer and N > 1. Then for all f ∈ H∗
k(N), we

have

(1.6) nf � Q10/21 = (k2N)10/21,

where the implied constant is absolute.

Theorem 1 will be proved by refining the method of Iwaniec, Kohnen and Sen-
gupta, which is based on sieve methods and a clever use of the Hecke relation (1.2);
see the introduction to Section 2 for a further discussion of the basic ideas. Also,
notice that, as observed by Iwaniec, Kohnen and Sengupta, an immediate improve-
ment of their bound follows from any subconvexity bound for L-functions on the
critical line. Like them, we do not need any such result to prove Theorem 1, but we
will state below the precise relation.

Note that we do not know if the estimate of Theorem 1 holds for the first negative
Hecke eigenvalue at a prime argument.

1.2. Statistic study of the first sign-change. The upper bound (1.6) is probably
far from optimal. Indeed, one can show that under the Grand Riemann Hypothesis
we have

nf � (log(kN))2

where the implied constant is absolute. Our next result confirms this uncondition-
ally for almost all f . It closely parallels the case of Dirichlet characters (see [12]).
Precisely, we first recall that

|H∗
k(N)| � kϕ(N),
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where ϕ(N) is the Euler function, as k, N → +∞, and we prove:

Theorem 2. Let ν > 1 be a fixed integer and P be a set of prime numbers of
positive density in the following sense:∑

z<p62z
p∈P

1

p
>

δ

log z
(z > z0)

for some constants δ > 0 and z0 > 0. Let {εp}p∈P be a sequence of real numbers
such that |εp| = 1 for all p. Let k > 2 be an even integer and N > 1 be squarefree.
Then there are two positive constants C and c such that the number of primitive
cusp forms f ∈ H∗

k(N) satisfying

εpλf (p
ν) > 0 for p ∈ P, p - N and C log(kN) < p 6 2C log(kN)

is bounded by

�ν,P kN exp
(
−c

log kN

log log kN

)
.

Here C, c and the implied constant depend on ν and P only.

Taking P the set of all primes, εp = 1 and ν = 1 in Theorem 2, we immediately
get:2

Corollary 1. Let k > 2 be an even integer and N > 1 be squarefree. There is an
absolute positive constant c such that we have

nf � log(kN),

for all f ∈ H∗
k(N), except for f in an exceptional set with

� kN exp
(
−c

log kN

log log kN

)
elements, where the implied constants are absolute.

It is very natural to ask whether this result is optimal (as the analogue is known
to be for real Dirichlet characters). In this direction, we can prove the following:

Theorem 3. Let N be a squarefree number and k > 2 an even integer, and let (εp)
be a sequence of signs indexed by prime numbers. For any ε > 0, ε < 1/2, there
exists c > 0 such that

1

|H∗
k(N)|

|{f ∈ H∗
k(N) | λf (p) has sign εp for p 6 z, p - N}| >

(1

2
− ε

)π(z)

for z = c
√

(log kN)(log log kN), provided kN is large enough.

One may expect that the same result would be true for z 6 c log kN (note that(1

2

)π(c log kN)

> exp
(
−c1

log kN

log log kN

)
so this result would be quite close to the statistic upper-bound of Corollary 1, and
would essentially be best possible, confirming that the signs of λf (p) behave almost
like independent (and unbiased) random variables in that range of p).

2 The cases where ν > 2 can be interpreted as similar statements for the ν-th symmetric powers.
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Theorems 2 and 3 will be proved in Section 3, using the method in [13] and
quantitative equidistribution statements for Hecke eigenvalues, respectively.

1.3. Recognition of modular forms by signs of Hecke eigenvalues. Here we
consider whether it is true that a primitive form f is determined uniquely by the
sequence of signs of its Fourier coefficients λf (p), where we recall that we interpret
the sign of 0 in a relaxed way, so that 0 has the same sign as both positive and
negative numbers.

The answer to this question is, indeed, yes, and in fact (in the non-CM case)
an analogue of the strong multiplicity one theorem holds: not only can we exclude
finitely many primes, or a set of primes of density zero, but even a set of sufficiently
small positive density. Here, the density we use is the analytic density defined as
follows: a set E of primes has density κ > 0 if and only if

(1.7)
∑
p∈E

1

pσ
∼ κ

∑
p

1

pσ
∼ −κ log(σ − 1) (σ → 1+).

We will prove:

Theorem 4. Let k1, k2 > 2 be even integers, let N1, N2 > 1 be integers and f1 ∈
H∗

k1
(N1), f2 ∈ H∗

k2
(N2).

(1) If the signs of λf1(p) and λf2(p) are the same for all p except those in a set of
analytic density 0, then f1 = f2.

(2) Assume that neither of f1 and f2 is of CM type, for instance assume that N1

and N2 are squarefree. Then, if λf1(p) and λf2(p) have same sign for every prime
p, except those in a set E of analytic density κ, with κ 6 0.00109, it follows that
f1 = f2.

Recall that a form f ∈ H∗
k(N) is of CM type if there exists a non-trivial primitive

real Dirichlet character χ such that λf (p) = χ(p)λf (p) for all but finitely many
primes p. In that case, λf (p) = 0 for all p such that χ(p) = −1, and hence its signs
coincide (in our relaxed sense) with those of any other modular form for a set of
primes of density at least 1/2.

Of course, Theorem 4 is also valid for the natural density, since the existence
of the latter implies that of the analytic density, and that they are equal. As a
corollary, we get of course:

Corollary 2. For any sequence of signs (εp) indexed by primes, there is at most
one pair (k,N) and one f ∈ H∗

k(N) such that λf (p) has sign εp for all primes.

Theorem 4 is proved in Section 4; although the argument is quite short and
simple, it is of interest to note that it depends crucially on the deep results of Kim
and Shahidi proving the holomorphy of the 6-th symmetric power L-function of
(non-CM) holomorphic modular forms.

1.4. Further remarks and questions. The main remark is that, underlying most
of the problems we consider is the Sato-Tate conjecture, which we recall (see Mazur’s
survey [14]): provided f is not of CM type (for instance, if N is squarefree), one
should have

lim
x→+∞

1

π(x)
|{p 6 x | θf (p) ∈ [α, β]}| =

∫ β

α

dµST
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for any α < β, where µST is the Sato-Tate measure

µST =
2

π
sin2 θ dθ,

on [0, π]. Since µST ([0, π/2]) = µST ([π/2, π]), this indicates in particular that the
signs of λf (p) should be equitably shared between +1 and −1. This suggests and
motivates many of our results and techniques of proof.

We also remark that there is much ongoing progress on the Sato-Tate conjecture;
for f ∈ H∗

k(N), non-CM, a proof of the conjecture has been announced by Barnet-
Lamb, Geraghty, Harris and Taylor [1, Th. B]. However, knowing its truth does not
immediately simplify our arguments much (except parts of Section 4).

Finally, here are a number of further questions concerning our results:
– What is the optimal density κ one can obtain in Theorem 4? If one assumes that
f1 and f2 obey the pair-Sato-Tate conjecture, namely that for a1 < b1, a2 < b2 the
set of primes {

p | λf1(p) ∈ [a1, b1] and λf2(p) ∈ [a2, b2]
}

has density equal to µST ([a1, b1])µST ([a2, b2]) (in other words, the Fourier coefficients
at primes are independently Sato-Tate distributed), one may easily get the result for
any κ < 1

2
(corresponding to the probability for µST ⊗µST of having the same sign).

But this can only hold if f1 and f2 are not related by quadratic twists, of course (and
in that case, for elliptic curves, Mazur [14, Footnote 12] mentions progress made by
Harris). If, on the other hand, f2 = f1 ⊗ χ for a real character χ, the coefficients
are of the same sign for a set of primes of density exactly 1

2
.

– Another natural problem suggested by Theorem 4 is to estimate the size, as a
function of the weight and conductor, of the smallest integer nf1,f2 for which the
sign of λf1(n) and λf2(n) are different. If we enlarge slightly our setting to allow f2

to be an Eisenstein series such as the Eisenstein series of weight 4:

E4(z) = 1 + 240
∑
n>1

(∑
d|n

d3
)
e(nz),

where all Hecke eigenvalues are positive, then the question becomes (once more) that
of finding the first negative Hecke eigenvalue for f1, i.e., the problem considered in
Theorem 1. Hence, we know that

nf1,E4 � (k2
1N1)

10/21,

where the implied constant is absolute, but it would be interesting to obtain a more
general version, in particular a uniform one with respect to both f1 and f2.

At least our statistic result (Theorem 2) generalizes immediately if one of the
forms is fixed: taking P to be the set of all primes, ν = 1 and εp = sign λf2(p) if
λf2(p) 6= 0, and 1 otherwise, we get immediately the following corollary:

Corollary 3. Let k1, k2 > 2 be even integers and N1, N2 > 1 squarefree. For any
fixed f2 ∈ H∗

k2
(N2), there is an absolute positive constant c such that

nf1,f2 �f2 log(k1N1),

for all f ∈ H∗
k1

(N1) except for those in an exceptional set with

� k1N1 exp
(
−c

log k1N1

log log k1N1

)
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elements, where the implied constants depend only on f2.

2. Proof of Theorem 1

The basic ideas are similar to those of Iwaniec, Kohnen and Sengupta. For x >
y > z > 1, we define (as usual)

Θ(x, y, z) :=
∑
n6x

z<P−(n), P+(n)6y

1, Φ(x, y) := Θ(x, x, y).

Denote by ω(t) the Buchstab function, defined as the unique continuous solution
of the difference-differential equation{

tω(t) = 1 if 1 6 t 6 2,

(tω(t))′ = ω(t− 1) if t > 2.

It is very well-known that

(2.1) Φ(x, z) = ω

(
log x

log z

)
x

log z
+ O

(
z

log z
+

x

(log z)2

)
and ω(t) → e−γ as t → ∞, where γ is the Euler constant (see, e.g., [23, Theorem
III.6.3, p. 400]).

We need a lower bound for Θ(x, y, z), which is an improvement of [5, Lemma 3].

Lemma 2.1. Let δ ∈ (0, 1
2
). Then we have

Θ(x, y, z) >
x

log z

{
J(δ) + Oδ

(
log log z

log z

)}
uniformly for

y > 10, z = yδ, (y/ log y)2 6 x 6 (yz)2,

where

J(δ) = inf
t>4

ω(t)− (log 2+δ) sup
t>2

ω(t)− δ

2
log

(
2− δ

1− δ

)
− δ log(2 + 2δ) log(1 + 2δ)

2 + δ
.

The implied constant depends only on δ.

We defer the proof until the end of this section, and we now explain how to prove
Theorem 1. Thus, assume y > 1 is such that λf (n) > 0 for all integers n with
1 6 n 6 y and (n, N) = 1. Write x := yz with z := yδ and 0 < δ < 1

2
.

We consider the sum

(2.2) Sf (x) =
∑
n6x

(n,N)=1

λf (n) log

(
x

n

)
= S+

f (x) + S−f (x),

where

S+
f (x) :=

∑
n6x, (n,N)=1

λf (n)>0

λf (n) log

(
x

n

)
,
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and similarly for S−f (x) with λf (n) < 0. The goal is to obtain upper and lower
bounds for Sf (x), using the positivity assumption, which are incompatible if y is
too large.

For the upper bound, we simply use [5, (2.2)], which gives

(2.3) Sf (x) �
√

x(k2N)1/4 log(k2N)
∏
p|N

(1 + p−1/2),

with an absolute implied constant. This does not use the assumed positivity of
λf (n) for n 6 y, and in fact is easily obtained from the convexity bound for the
L-function of f on the critical line [5, (1.6)]. We note that, more generally, if we
have

L(f, 1/2 + it) � (k2N(1 + |t|)2)η,

for t ∈ R, where η > 0, then we get in the same way

(2.4) Sf (x) �
√

x(k2N)η
∏
p|N

(1 + p−1/2)

(the recent work of Michel and Venkatesh [15] provides such a uniform result for
some η < 1/4).

To derive a lower bound for Sf (x), we get separately lower bounds for S±f (x). The

key to our improvement of [5] is in getting a better lower bound for S+
f (x), though

there is a trade-off in the lower bound of S−f (x).

We start by the lower bound for S−f (x). From the multiplicativity of λf , our
assumption and the choice of x and y, it follows that each integer n > 1 which
occurs in the sum S−f (x), so that λf (n) < 0, has exactly one prime power factor pν

with y < pν < x and (p, N) = 1. Thus, using (1.1) and (1.3), we deduce

S−f (x) =
∑

dpν6x, pν>y, λf (pν)<0
(d,N)=(p,dN)=1

λf (dpν) log

(
x

dpν

)

> −
∑
d6z

(d,N)=1

λf (d)
∑

pν6x/d

(ν + 1) log

(
x

dpν

)
.

It is clear from the prime number theorem that∑
p6x/d

2 log

(
x

dp

)
=

2(x/d)

log(x/d)

{
1 + O

(
1

log(x/d)

)}

6
2x

d log y

{
1 + O

(
1

log y

)}
and ∑

pν6x/d, ν>2

(ν + 1) log

(
x

dpν

)
�

(
x

d

)1/2

(log x)2 �
√

xz

d
(log x)2 � x

d(log x)2
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for d 6 z. Inserting these into the preceding relation, we obtain

(2.5) S−f (x) > −2
x

log y

{
1 + O

(
1

log y

)} ∑
d6z, (d,N)=1

λf (d)

d
.

On the other hand, we deduce that

∑
d6z

(d,N)=1

λf (d)

d
=

∑
d6z, P+(d)6

√
z

(d,N)=1

λf (d)

d
+

∑
√

z<p6z
p-N

λf (p)

p

∑
d6z/p

(d,N)=1

λf (d)

d

6

{
1 + 2 log 2 + O

(
1

log z

)} ∑
d6z, P+(d)6

√
z

(d,N)=1

λf (d)

d

by Deligne’s bound |λf (p)| 6 2, the prime number theorem and positivity. Combin-
ing with (2.5), this yields

(2.6) S−f (x) > −
{

2 + 4 log 2 + O

(
1

log z

)}
x

log y
Λf (z),

where

(2.7) Λf (z) =
∑

d6z, P+(d)6
√

z
(d,N)=1

λf (d)

d
.

Next we derive a lower bound for S+
f (x). By positivity and (1.2), we have

λf (p)2 = 1 + λf (p
2) > 1 (p - N, p 6

√
y)

and hence λf (`) > 1 for squarefree ` with P+(`) 6
√

y and (`, N) = 1. Thus

S+
f (x) >

∑
d6z, P+(d)6

√
z

(d,N)=1

λf (d)
∑

`6x/d, (`,N)=1
p|`⇒

√
z<p6

√
y, ` squarefree

λf (`) log

(
x

d`

)

>
∑

d6z, P+(d)6
√

z
(d,N)=1

λf (d)
∑

`6x/d, (`,N)=1
p|`⇒

√
z<p6

√
y, ` squarefree

log

(
x

d`

)

>
∑

d6z, P+(d)6
√

z
(d,N)=1

λf (d)
∑

`6x/d
p|`⇒

√
z<p6

√
y

log

(
x

d`

)
−R,(2.8)
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where

R :=
∑

d6z, P+(d)6
√

z
(d,N)=1

λf (d)

{ ∑
p|N

p>
√

z

∑
`6x/(dp)

log

(
x

d`p

)
+

∑
p>
√

z

∑
`6x/(dp2)

log

(
x

d`p2

)}

� x(log x)
∑

d6z, P+(d)6
√

z
(d,N)=1

λf (d)

d

( ∑
p|N

p>
√

z

1

p
+

∑
p>
√

z

1

p2

)

� (log(2N))
x√
z

∑
d6z, P+(d)6

√
z

(d,N)=1

λf (d)

d
� x

z1/3

∑
d6z, P+(d)6

√
z

(d,N)=1

λf (d)

d
= xz−1/3Λf (z)

(see (2.7)), since we can obviously assume that z > (log(2N))6 without loss of
generality.

Now we estimate the sum over ` on the right-hand side of (2.8), with the help of
Lemma 2.1. Note that∑

`6x/d
p|`⇒

√
z<p6

√
y

log

(
x

d`

)
=

∫ x/d

y/(log y)2

Θ(s,
√

y,
√

z)

s
ds + O

(
y

(log y)2

)
.

Setting (x, y, z) = (s,
√

y,
√

z) where y/(log y)2 6 s 6 x/d, it is easy to check this
lemma is applicable, and we get∑

`6x/d
p|`⇒

√
z<p6

√
y

log

(
x

d`

)
>

2x

d log z

{
J(δ) + O

(
log log z

log z

)}
.

Inserting this into (2.8), it follows

(2.9) S+
f (x) >

2x

log z

{
J(δ) + O

(
log log z

log z

)}
Λf (z)

Combining (2.6) and (2.9) with (2.2) and noting that Λf (z) > 1 by positivity, we
conclude that

Sf (x) >
2x

log y

{
J(δ)

δ
− 1− 2 log 2 + O

(
1

log z

)}
.

According to [25, Lemme 12], we have

inf
u>3

ω(u) > 0.5608 and sup
u>2

ω(u) 6 0.5672.

Then a simple numerical computation gives

20J( 1
20

)− 1− 2 log 2 > 0.

Since J(δ) is a continuous function of δ, we take δ = 1
20

+ δ0 for a suitably small
positive constant δ0, so that we obtain finally the desired lower bound

(2.10) Sf (x) � x

log y
.
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Now we can quickly conclude: comparing this estimate with (2.3), it follows that

x � (k2N)1/2
(
log(k2N)

∏
p|N

(1 + p−1/2)
)2

,

and since x = yz = y1+δ, we have

y � (k2N)1/(2(1+δ))
(
log(k2N)

∏
p|N

(1 + p−1/2)
)2/(1+δ)

,

which implies the desired result (1.6). Note that if we used an estimate of the
type (2.4), we would get

nf �ε (k2N)2η/(1+δ)+ε = (k2N)40η/21+ε.

This completes the proof of Theorem 1, except for the proof of Lemma 2.1.

Proof of Lemma 2.1. First, it is clear that

Θ(x, y, z) = Φ(x, z)−
∑

1<q6x
P−(q)>y

Φ

(
x

q
, z

)
.

Since x/z > y and Φ(x/q, z) = 1 for x/z < q 6 x, we can split further as follows,

Θ(x, y, z) = Φ(x, z)−
∑

1<q6x/z
P−(q)>y

Φ

(
x

q
, z

)
− Φ(x, y) + Φ

(
x

z
, y

)
.

By the asymptotic formula (2.1), it follows that

(2.11)

Θ(x, y, z) = ω

(
log x

log z

)
x

log z
−

∑
1<q6x/z
P−(q)>y

ω

(
log(x/q)

log z

)
x

q log z

− ω

(
log x

log y

)
x

log y
+ O

(
x

(log z)2

)
.

Next we divide the sum on the right-hand side of (2.11) into two parts according
to 1 < q < x/z2 or x/z2 < q 6 x/z. In the first case, q must be a prime since
x/z2 6 y2. Thus

(2.12)
∑

y<p6x/z2

ω

(
log(x/p)

log z

)
1

p
6 sup

t>2
ω(t)

∑
y<p6x/z2

1

p
6 sup

t>2
ω(t) log 2 + O

(
1

log y

)
by using again x/z2 6 y2.

In the second case, we have 1 6 log(x/q)/ log z 6 2 and q has at most two prime
factors (because of x/z 6 y2z 6 y5/2). In view of our assumption x > (y/ log y)2 >
yz2 and the relation ω(t) = 1/t if 1 6 t 6 2, we can write∑

x/z2<q6x/z
P−(q)>y

ω

(
log(x/q)

log z

)
1

q
=

∑
x/z2<p6x/z

log z

p log(x/p)
+ S,
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where the second term, namely

S :=
∑

y<p16x/(yz)

∑
y<p26x/(zp1)

log z

p1p2 log(x/p1p2)
,

does not appear if x 6 y2z.
By integration by parts, the prime number theorem leads to

∑
x/z2<p6x/z

log z

p log(x/p)
=

log z

log x

∫ x/z

x/z2

dπ(t)

t(1− log t/ log x)

=
log z

log x

{
1 + O

(
1

log z

)} ∫ x/z

x/z2

dt

t(log t)(1− log t/ log x)

=
log z

log x

{
1 + O

(
1

log z

)} ∫ log(x/z)/ log x

log(x/z2)/ log x

du

u(1− u)

6
δ

2
log

(
2− δ

1− δ

)
+ O

(
log log z

log z

)
,

since

log(x/z)

log(x/z2)
6

log(y2/z(log y)2)

log(y2/z2(log y)2)
=

2− δ

2(1− δ)
+ O

(
log log y

log y

)
and

log z

log x
6

log z

log(y/ log y)2
=

δ

2
+ O

(
log log y

log y

)
for x > (y/ log y)2 and z = yδ.

Similarly when y2z 6 x 6 (yz)2, we have

S =

{
1 + O

(
1

log z

)}
log z

log x

∫ x/(yz)

y

dt1
t1 log t1

∫ x/(zt1)

y

dt2
t2(log t2)(1− log(t1t2)/ log x)

=

{
1 + O

(
1

log z

)}
log z

log x

∫ 1−log(yz)/ log x

log y/ log x

du1

u1

∫ 1−u1−log z/ log x

log y/ log x

du2

u2(1− u1 − u2)
.

For log y/ log x 6 u1 6 1− log(yz)/ log x, we have∫ 1−u1−log z/ log x

log y/ log x

du2

u2(1− u1 − u2)
=

1

1− u1

log

(
log(x1−u1/z)

log z

log(x1−u1/y)

log y

)
6

1

1− u1

log

(
log(x/yz)

log z

log(x/y2)

log y

)
6

1

1− u1

log(2 + 2δ)
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since x 6 (yz)2 and z = yδ. Inserting into the preceding formula, it follows that

S 6

{
1 + O

(
1

log z

)}
log z

log x
log(2 + 2δ)

∫ 1−log(yz)/ log x

log y/ log x

du

u(1− u)

=

{
1 + O

(
1

log z

)}
log z

log x
log(2 + 2δ) log

(
log(x/yz)

log(yz)

log(x/y)

log y

)
6

{
1 + O

(
1

log z

)}
δ

2 + δ
log(2 + 2δ) log(1 + 2δ),

as y2z 6 x 6 (yz)2 and z = yδ. This inequality is trivial when x 6 y2z for S = 0 in
this case. Thus we always have

(2.13)

∑
x/z2<q6x/z

P−(q)>y

ω

(
log(x/q)

log z

)
1

q
6

δ

2
log

(
2− δ

1− δ

)
+

δ log(2 + 2δ) log(1 + 2δ)

2 + δ

+ O

(
log log z

log z

)
.

Inserting (2.12) and (2.13) into (2.11), we obtain the required inequality. This
completes the proof. �

3. Statistical results

Our goal is now to prove Theorems 2 and 3. For the first, the main tool is the
following type of large sieve inequality.

Lemma 3.1 ([13], Theorem 1). Let ν > 1 be a fixed integer and let {bp}p be a
sequence of real numbers indexed by prime numbers such that |bp| 6 B for some
constant B and for all primes p. Then we have∑
f∈H∗

k(N)

∣∣∣∣ ∑
P<p6Q

p -N

bp
λf (p

ν)

p

∣∣∣∣2j

�ν kϕ(N)

(
96B2(ν + 1)2j

P log P

)j

+(kN)10/11

(
10BQν/10

log P

)2j

uniformly for

B > 0, j > 1, 2 | k, 2 6 P < Q 6 2P, N > 1 (squarefree).

The implied constant depends on ν only.

Proof of Theorem 2. The basic idea is that for all forms f with coefficients λf (p
ν)

of the same sign εp, the sums ∑
P<p62P

p∈P

εpλf (p
ν)

p

exhibit no cancellation due to variation of signs. The large sieve implies this is very
unlikely to happen, except if the λf (p

ν) are very small in absolute value. The Hecke
relations are used to control this other possibility by relating it to λf (p

2ν) being
large which can not happen too often either.3

3 Variants of this well-known trick have been used in a number of other contexts, as in [3], but
note that the large sieve inequality proved there would not work for this problem, due to the lack
of multiplicative stability of the sign conditions (it would also be much less efficient).
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For the details, we first denote

PN := {p ∈ P | p - N},

and define

E ∗
k (N, P ; P) :=

{
f ∈ H∗

k(N) | εpλf (p
ν) > 0 for p ∈ PN ∩ (P, 2P ]

}
,

E ν′

k (N, P ; P) :=

{
f ∈ H∗

k(N) |
∣∣∣∣ ∑

P<p62P
p∈PN

λf (p
2ν′)

p

∣∣∣∣ >
δ

2ν log P

}
(1 6 ν ′ 6 ν).

To prove Theorem 2, clearly we only need to show that there are two positive
constants C = C(ν, P) and c = c(ν, P) such that

(3.1) |E ∗
k (N, P ; P)| �ν,P kN exp

(
−c

log kN

log log kN

)
uniformly for

2 | k, N (squarefree), kN > X0, C log(kN) 6 P 6 (log(kN))10

for some sufficiently large number X0 = X0(ν, P).
The definition of E ∗

k (N, P ; P) and Deligne’s inequality allow us to write∑
f∈E ∗

k (N,P ;P)

∣∣∣∣ ∑
P<p62P
p∈PN

λf (p
ν)2

p

∣∣∣∣2j

6
∑

f∈E ∗
k (N,P ;P)

∣∣∣∣ ∑
P<p62P
p∈PN

(ν + 1)εp
λf (p

ν)

p

∣∣∣∣2j

6
∑

f∈H∗
k(N)

∣∣∣∣ ∑
P<p62P
p∈PN

(ν + 1)εp
λf (p

ν)

p

∣∣∣∣2j

.

Choosing

bp =

{
(ν + 1)εp if p ∈ P,

0 otherwise

in Lemma 3.1, we find that

(3.2)

∑
f∈E ∗

k (N,P ;P)

∣∣∣∣ ∑
P<p62P
p∈PN

λf (p
ν)2

p

∣∣∣∣2j

6
∑

f∈H∗
k(N)

∣∣∣∣ ∑
P<p62P

p -N

bp
λf (p

ν)

p

∣∣∣∣2j

� kN

(
96(ν + 1)4j

P log P

)j

+ (kN)10/11P νj/2.

In view of the Hecke relation (1.1), the left-hand side of (3.2) is

>
∑

f∈E ∗
k (N,P ;P)\(∪ν

ν′=1
E ν′

k (N,P ;P))

( ∑
P<p62P
p∈PN

1

p
−

∑
16ν′6ν

∣∣∣∣ ∑
P<p62P
p∈PN

λf (p
2ν′)

p

∣∣∣∣)2j

>
∑

f∈E ∗
k (N,P ;P)\(∪ν

ν′=1
E ν′

k (N,P ;P))

( ∑
P<p62P
p∈PN

1

p
− δ

2 log P

)2j

.
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Let ω(n) be the number of distinct prime factors of n. Using the hypothesis on
P and the classical inequality

ω(n) 6 {1 + o(1)} log n

log log n
,

we infer that∑
P<p62P
p∈PN

1

p
− δ

2 log P
>

∑
P<p62P

p∈P

1

p
−

∑
P<p62P

p |N

1

p
− δ

2 log P

>
δ

2 log P
− ω(N)

P
>

δ/2− 2/C

log P
>

δ

6 log P
,

provided C > 6/δ. Combining this with (3.2), we infer that

|E ∗
k (N, P ; P) \ (∪ν

ν′=1E
ν′

k (N, P ; P))| � kN

(
3456(ν + 1)4j log P

δ2P

)j

+ (kN)10/11P j.

Now we bound the size of the sets E ν′

k (N, P ; P) to finish the proof. Taking

B = 1, ν = 2ν ′, Q = 2P and bp =

{
1 if p ∈ P

0 otherwise

in Lemma 3.1, we get(
δ

2 log P

)2j

|E ν′

k (N, P ; P)| 6
∑

f∈H∗
k(N)

∣∣∣∣ ∑
P<p62P

p -N

bp
λf (p

2ν′)

p

∣∣∣∣2j

� kN

(
96(2ν ′ + 1)2j

P log P

)j

+ (kN)10/11

(
10(2P )ν′/5

log P

)2j

.

Hence,

(3.3) |E ν′

k (N, P ; P)| � kN

(
3456ν4j log P

δ2P

)j

+ (kN)10/11P νj (1 6 ν ′ 6 ν)

provided P > 2(20ν/δ)10/(3ν).
Combining this with (3.3), we finally obtain

(3.4) |E ∗
k (N, P ; P)| � kN

(
3456(ν + 1)4j log P

δ2P

)j

+ (kN)10/11P νj

uniformly for

2 | k, N (squarefree), C log(kN) 6 P 6 (log(kN))10, j > 1.

Now, take

j =

[
δ∗

log(kN)

log P

]
where δ∗ = δ2/(10(ν + 1))4. We can ensure j > 1 once X0 is chosen to be suitably
large. A simple computation gives that(

3456(ν + 1)4j log P

δ2P

)j

� exp
(
−c

log kN

log log kN

)
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for some positive constant c = c(ν, P) and P νj � (kN)1/1000, provided X0 is large
enough. Inserting them into (3.4), we get (3.1) and complete the proof. �

We now come to the lower bound of Theorem 3. Our basic tool here is an equidis-
tribution theorem for Hecke eigenvalues which is of some independent interest: it
shows (quantitatively) that, after suitable average over H∗

k(N), the Hecke eigenval-
ues corresponding to the first primes are independently Sato-Tate distributed (thus,
it is related to the earlier work of Sarnak [20] for Maass forms and Serre [21] and
Royer [19] for holomorphic forms).

First, we recall the definition (1.4) of the angle θf (p) ∈ [0, π] associated to any
f ∈ H∗

k(N) and prime p - N . We also recall that the Chebychev functions Xn,
n > 0, defined by

(3.5) Xn(θ) =
sin((n + 1)θ)

sin θ

for θ ∈ [0, π], form an orthonormal basis of L2([0, π], µST ). Hence, for any ω > 1,
the functions of the type

(θ1, . . . , θω) 7→
∏

16j6ω

Xnj
(θj)

for nj > 0, form an orthonormal basis of L2([0, π]ω, µ⊗ω
ST ).

Proposition 1. Let N be a squarefree number, k > 2 an even integer, s > 1 an
integer and z > 2 a real number. For any prime p 6 z coprime with N , let

Yp(θ) =
s∑

j=0

ŷp(j)Xj(θ)

be a “polynomial” of degree 6 s expressed in the basis of Chebychev functions on
[0, π]. Then we have∑

f∈H∗
k(N)

ωf

∏
p6z

(p,N)=1

Yp(θf (p)) =
∏
p6z

(p,N)=1

ŷp(0) + O(Cπ(z)Dsz(τ(N) log 2N)2(Nk5/6)−1)

where

ωf =
Γ(k − 1)

(4π)k−1〈f, f〉
N

ϕ(N)
, 〈f, f〉 the Petersson norm of f,

C = max
p,j

|ŷp(j)|,

and D > 1 and the implied constant are absolute.

By linearity, clearly, we get an analogue result for∑
f∈H∗

k(N)

ωfϕ((θp)p6z), ϕ =
∑

j

ϕj,

where each ϕj is a function which is a product of polynomials as in the statement.

Proof. Using the fact that for any np > 0, we have

(3.6)
∏
p6z

(p,N)=1

Xnp(θf (p)) = λf

( ∏
p6z

(p,N)=1

pnp

)
,
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(which is another form of the Hecke multiplicativity), we expand the product and
get ∏

p6z
(p,N)=1

Yp(θf (p)) =
∑

d|PN (z)s

( ∏
p|PN (z)

ŷp(vp(d))
)
λf (d)

where vp(d) is the p-adic valuation of an integer and PN(z) is the product of the
primes p 6 z, p - N .

We now sum over f and appeal to the following Petersson formula for primitive
forms: ∑

f∈H∗
k(N)

ωfλf (m) = δ(m, 1) + O(m1/4τ(N)2(log 2mN)2(Nk5/6)−1),

for all m > 1 coprime with N (this is a simplified version of that in [7, Cor. 2.10];
note our slightly different definition of ωf , which explains the absence of ϕ(N)/N
on the right-hand side); the result then follows easily from simple estimates for the
sum over d of the remainder terms. �

We now deduce Theorem 3 from this, assuming εp = 1 for all p (handling the
other choices of signs being merely a matter of complicating the notation).

To simplify notation, we write P = PN(z) the product of primes 6 z coprime
with N , and ω the number of such primes.

First, if we wanted only to have λf (p) > 0 for a fixed (finite) set of primes
(i.e., for z fixed), we would be immediately done: Proposition 1 shows4 that the
(θf (p))p|P become equidistributed as kN → +∞ with respect to the product Sato-
Tate measure, if we weigh modular forms with ωf , and hence∑

f∈H∗
k(N)

p|P⇒λf (p)>0

ωf → µST ([0, π/2])ω =
(1

2

)ω

which is of the desired type, except for the presence of the weight.5 However, we
want to have

λf (p) > 0 for p 6 z, (p, N) = 1,

where z grows with kN , and this involves quantitative lower bounds for approxi-
mation in large dimension, which requires more care. We use a result of Barton,
Montgomery and Vaaler [2] for this purpose; although it is optimized for uniform
distribution modulo 1 instead of the Sato-Tate context, but it is not difficult to
adapt it here and this gives a quick and clean argument.6

Precisely, we consider [0, π]ω, with the product Sato-Tate measure, and we will
write θ = (θp) for the elements of this set; we also consider [0, 1]ω and we write
x = (xp) for elements there.

4 For Maass forms, this is essentially one of the early results of Sarnak [20].
5 Using the trace formula instead of the Petersson formula (as in [19]), the unweighted analogue

of Proposition 1 holds with a product of local Plancherel measures, but each still gives measure
1/2 to the two signs.

6 This result was also used recently by Y. Lamzouri [11, §7], in a somewhat related context.
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For any positive odd integer L, we get from [2, Th. 7] two explicit trigonometric
polynomials7 on [0, 1]ω, denoted AL(x), BL(x), such that

AL(θ/π)−BL(θ/π) 6
∏
p6z

(p,N)=1

χ(θp)

for all θ = (θp) ∈ [0, π]ω, where χ(θp) is the characteristic function of [0, π/2] ⊂ [0, π]
(precisely, we consider the functions denoted A(x), B(x) in [2], with parameters
N = ω and un = 0, vn = 1/2 for all n 6 ω; since (vn − un)(L + 1) = (L + 1)/2 is a
positive integer, we are in the situation Φu,v ∈ BN(L) of loc. cit.).

Thus we have the lower bound

(3.7)
∑

f∈H∗
k(N)

λf (p)>0 for p|P

ωf >
∑

f∈H∗
k(N)

ωf

(
AL(θf/π)−BL(θf/π)

)
,

where θf = (θf (p))p.
Moreover, as we will explain below, AL(θ/π) is a product of polynomials over

each variable, and BL(θ/π) is a sum of ω such products, and we can now apply
Proposition 1 (and the remark following it) to the terms on the right-hand side.
More precisely, we claim that the following lemma holds:

Lemma 3.2. With notation as above, we have:
(1) For any ε ∈ (0, 1/2), there exists constants L0 > 1, and c > 0, such that the

contribution ∆ of the constant terms of the Chebychev expansions of AL(θ/π) and
BL(θ/π) satisfies

∆ >
(1

2
− ε

)π(z)

,

if L is the smallest odd integer > cπ(z) and if L > L0.
(2) All the coefficients in the expansion in terms of Chebychev functions of the

factors in AL(θ/π) or in the terms of BL(θ/π) are bounded by 1.
(3) The degrees, in terms of Chebychev functions, of the factors of AL(θ/π) and

of the terms of BL(θ/π), are 6 2L.

Using this lemma, fixing ε ∈ (0, 1/2) and taking L as in Part (1) (we can obviously
assume L > L0, since otherwise z is bounded) we derive from Proposition 1 that∑

f∈H∗
k(N)

ωf

(
AL(θf/π)−BL(θf/π)

)
= ∆ + O(Dzπ(z)(τ(N) log 2N)2(Nk5/6)−1)

for some absolute constants D, with ∆ > (1/2− ε)π(z). This is then � (1/2− ε)π(z),
provided

Dzπ(z)(τ(N) log 2N)2(Nk5/6)−1 �
(1

2
− ε

)π(z)

.

This condition is satisfied for

z 6 c
√

(log kN)(log log kN)

7 Meaning, standard trigonometric polynomials of the type
∑

` α`e(` · x).
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where c > 0 is an absolute constant, and this gives Theorem 3 when counting with
the weight ωf . But, using well-known bounds for 〈f, f〉, we have

ωf � kN(log kN)(log log 6N) � kN(log kN)2,

with an absolute implied constant. Hence, for z = c
√

(log kN)(log log kN), we get

1

|H∗
k(N)|

|{f ∈ H∗
k(N) | λf (p) > 0 for p 6 z, p - N}| � 1

(log kN)2

(1

2
− ε

)π(z)

�
(1

2
− 2ε

)π(z)

if kN is large enough, and so we obtain Theorem 3 as stated.

Proof of Lemma 3.2. We must now refer to the specific construction in [2]. We start
with AL(x): we have the product formula

AL(x) =
∏
p|P

αL(xp),

where αL is a trigonometric polynomial in one variable of degree 6 L, i.e., of the
type

αL(x) =
∑
|`|6L

α̂L(`)e(`x),

with α̂L(0) = 1/2 (see [2, (2.2), Lemma 5, (2.17)]). In particular, the constant term
(in the Chebychev expansion) for AL(θ/π) is given by(∫ π

0

αL(θ/π) dµST

)ω

,

and we will bound it below. For the moment, we observe further that, from [2,
Lemma 5], we know that 0 6 αL(x) 6 1 for all x ∈ [0, 1], and so we can simply
bound all the coefficients in the Chebychev expansion, using the Cauchy-Schwarz
inequality and orthonormality:∣∣∣∫ π

0

αL(θ/π)Xn(θ) dµST

∣∣∣2 6
∫ π

0

|αL(θ/π)|2 dµST ×
∫ π

0

|Xn(θ)|2 dµST

6
∫ π

0

dµST ×
∫ π

0

|Xn(θ)|2 dµST = 1.

It is also clear using the definition of Xn(θ) that the n-th coefficient is zero as
soon as n + 2 > 2L.

We now come to BL(x), which is a sum of ω product functions, as already indi-
cated: we have

BL(x) =
∑
p|P

βL(xp)
∏
q|P
q 6=p

αL(xq),
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where βL(x) is another trigonometric polynomial of degree L, given explicitly by

βL(x) =
1

2L + 2

(∑
|`|6L

(
1− |`|

L + 1

)
e(`x) +

∑
|`|6L

(
1− |`|

L + 1

)
e(`(x− 1/2))

)
=

1

2L + 2

(
2 + 2

∑
16`6L

(
1− `

L + 1

)
(1 + (−1)`) cos(2π`x)

)
,

(see [2, p. 342, (2.3), p. 339]).
We now see immediately that Part (3) of the lemma is valid, and moreover, we

see that |βL(x)| 6 1, so the same Cauchy-Schwarz argument already used for αL

implies that Part (2) holds.
To conclude, we look at the constant term in the Chebychev expansion for BL,

which is given by

ω
(∫ π

0

αL(θ/π) dµST

)ω−1
∫ π

0

βL(θ/π) dµST .

Using the expression

βL(θ/π) =
1

2L + 2

(
2 + 2

∑
16`6L

(
1− |`|

L + 1

)
(1 + (−1)`) cos(2`θ)

)
,

where the second term doesn’t contribute after integrating against sin2 θ = (1 −
cos 2θ)/2 (the term with ` = 1 is zero), we get the formula

∆ =
(∫ π

0

αL(θ/π) dµST

)ω−1(∫ π

0

αL(θ/π) dµST −
ω

L + 1

)
for the contribution of AL(x)−BL(x).

Now we come back to a lower bound for the constant term for αL. The point
is that, as L → +∞, αL converges in L2([0, 1]) to the characteristic function χ of
[0, 1/2]: from [2, (2.6)], and the definition of αL, we get

|χ(x)− αL(x)| 6 βL(x), 0 6 x 6 1,

and from the Fourier expansion of βL we have

‖βL‖2
L2 6

1

(2L + 2)2
× (4L + 4) → 0.

Hence, we know that

2

π

∫ π

0

αL(θ/π) sin2 θ dθ →
∫ π

0

χ(θ/π) dµST = 1/2.

For given ε ∈ (0, 1/2), the integral is > (1/2− ε/2) if L > L0, for some constant
L0. Then, if L + 1 > 2ε−1ω, we derive

∆ >
(1

2
− ε

2

)ω−1(1

2
− ε

)
>

(1

2
− ε

)ω

,

which gives Part (1) of the lemma. �
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4. Proof of Theorem 4

The simple idea of the proof of Theorem 4 is that the assumption translates to
λf1(p)λf2(p) > 0 for all primes p (with few exceptions), but it is well-known from
Rankin-Selberg theory that if f1 6= f2, we have

(4.1)
∑

p

λf1(p)λf2(p)

pσ
= O(1) (σ → 1+)

(see, e.g, [6, §5.12] for a survey and references; the underlying fact about auto-
morphic forms is due to Mœglin and Waldspurger). Thus we only need to find a
lower bound for the left-hand side (which is a sum of non-negative terms) which is
unbounded as σ tends to 1+. Since Rankin-Selberg theory also gives

(4.2)
∑

p

λf1(p)2

pσ
∼ − log(σ − 1) (σ → 1+),

the only difficulty is that one might fear that the coefficients of f1 and f2 are such
that whenever λf1(p) is not small, the value of λf2(p) is very small.8 In other words,
we must show that the smaller order of magnitude of (4.1) compared with (4.2) is
not due to the small size of the summands, but to sign compensations.

In the non-CM case, this would be quite easy if we knew (or used) the Sato-Tate
conjecture, but we can avoid it by using small symmetric power L-functions. Here
is the precise lemma that we will use:

Lemma 4.1. Let N > 1 be an integer, k > 2 be an even integer and f ∈ H∗
k(N) a

primitive cusp form of level N and weight k which is not of CM type. Then there
exists a constant α > 0 and δ > 1

2
such that∑

|λf (p)|>α

1

pσ
> δ

∑
p

1

pσ
+ O(1),

for σ > 1. In fact, one can take α = 0.231 and δ = 1
2

+ 1
24

.

Lemma 4.1 does not hold for CM forms, because we then have λf (p) = 0 for a
set of primes of density 1

2
. But the distribution of λf (p) is even better known in the

CM case, so we will be able to treat the case (1) of Theorem 4 involving CM forms
without too much difficulty.

Proof. It is convenient here to work with the Chebychev polynomials Un instead
of the Chebychev functions Xn considered in the previous section: recall that for
n > 0, we have

Xn(θ) = Un(2 cos θ)

where Un ∈ R[x] is a polynomial of degree n. Then (3.6) gives Un(λf (p)) = λf (p
n)

for any f ∈ H∗
k(N), p - N , and n > 0.

We then claim that there exists a polynomial

Y = β0 + β2U2 + β4U4 + β6U6 ∈ R[x]

with the following properties:
(i) β0 > 1

2
;

8 See the remark after the proof for an example of which potential situations must be excluded.
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(ii) for some α > 0 and x ∈ [−2, 2], we have

(4.3) Y (x) 6 χA(x),

where A := {x ∈ [−2, 2] | |x| > α}.
Assuming this, we conclude as follows: by (ii), we have∑

|λf (p)|>α

1

pσ
>

∑
p-N

Y (λf (p))

pσ
= β0

∑
p-N

1

pσ
+

∑
16i63

β2i

∑
p-N

U2i(λf (p))

pσ
.

By the holomorphy and non-vanishing at s = 1 of the second, fourth and sixth
symmetric power L-functions (see [9, Th. 3.3.7, Prop. 4.3] for the last two, noting
that non-CM forms are not dihedral, and [22] for a survey concerning those L-
functions), since Un(λf (p)) is exactly the p-th coefficient of the n-th symmetric
power for p - N , standard analytic arguments show that∑

p-N

U2i(λf (p))

pσ
= O(1)

for σ > 1 and i = 1, 2, 3. Hence the result follows with δ = β0 > 1
2
.

Now to check the claim, and verify the values of α and δ, we just exhibit a suitable
polynomial, namely

Y = 1
2

+ 1
24

+ 1
4
U2 − 1

4
U4 + 136

1000
U6 = 17

125
x6 − 93

100
x4 + 227

125
x2 − 283

3000
,

since

(4.4)

{
U0 = 1, U1 = x, U2 = x2 − 1, U4 = x4 − 3x2 + 1,

U5 = x5 − 4x3 + 3x, U6 = x6 − 5x4 + 6x2 − 1.

This polynomial is even, and its graph on [−2, 2] is in Figure 1 (see Remark 1
below for an explanation of the origin of this polynomial).

Figure 1

The value of α is an approximation (from below) to the real root

α0 = 0.23107202470801418176315245050693402580 . . .

of Y in [0, 2]; the maximum value of Y on [0, 2] is very close to 1. �
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Proof of Theorem 4. We first consider Part (2), i.e., the case where f1 and f2 are
not of CM type. Let E be the exceptional set of primes where the signs of λf1(p)
and λf2(p) do not coincide. As already noticed, the assumption implies that for all
primes p /∈ E, we have λf1(p)λf2(p) > 0. Moreover, we have |λf1(p)λf2(p)| 6 4 for
all p, by the Deligne bound. Hence, with α > 0 and δ > 1

2
as in Lemma 4.1, we have∑

p

λf1(p)λf2(p)

pσ
=

∑
p/∈E

λf1(p)λf2(p)

pσ
+

∑
p∈E

λf1(p)λf2(p)

pσ

> α2
∑

|λf1
(p)|>α, |λf2

(p)|>α

p/∈E

1

pσ
− 4κ| log(σ − 1)|+ O(1)

> α2

( ∑
p

−
∑
p∈E

−
∑

|λf1
(p)|6α

−
∑

|λf2
(p)|6α

)
1

pσ
− 4κ| log(σ − 1)|+ O(1)

> α2

{(
1− κ− 2(1− δ)

) ∑
p

1

pσ

}
− 4κ| log(σ − 1)|+ O(1)

=
(
α2(2δ − κ− 1)− 4κ

)
| log(σ − 1)|+ O(1),

for any σ > 1. Since 2δ > 1, we find that the left-hand side goes to +∞ as σ → 1+
under the condition

κ <
α2(2δ − 1)

4 + α2
=

53361

48640332
= 0.001097052 . . .

(with the values of Lemma 4.1). However, as already mentioned, the theory of
Rankin-Selberg L-functions shows that if f1 6= f2, we have∑

p

λf1(p)λf2(p)

pσ
= O(1) (σ → 1+),

since there is no pole (or zero) of L(s, f1 × f2) at s = 1 (recall that f1 and f2 have
real coefficients so f2 = f̄2). So we must indeed have f1 = f2.

There remains to consider Part (1) of Theorem 4 when one of the forms is of CM
type (and the exceptional set E now has density 0). We will be brief since there are
less difficulties here. The main point is the following well-known result concerning
the distribution of the angles θf (p) for a CM form f ∈ H∗

k(N), with k > 2: there
exists a real, non-trivial, primitive Dirichlet character χf such that λf (p) = 0 when
χf (p) = −1 (a set of primes If of density 1/2), and for p /∈ If , the θf (p) ∈ [0, π] for
p 6 x become uniformly distributed as x → +∞, i.e., we have

2

π(x)

∑
p/∈If

p6x

e2imθf (p) → 0,

for all non-zero integers m ∈ Z (see, e.g., [17, p. 197], where this is explained for
elliptic curves, with slightly different notation). In particular, for any α > 0, the
density of the set of primes where |λf (p)| > α exists and is equal to

1

π
arccos(α/2)
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and this density goes to 1/2 as α → 0.
Now assume f1 is a CM form and f2 is not; according to Lemma 4.1, we find

α > 0 and a set of primes P2 of analytic density δ > 1/2 where |λf2(p)| > α, and
then the set P2 ∩ If1 has analytic density > 0, thus for small enough α′, it contains
a set G with positive analytic density where |λf1(p)| > α′. Hence we have∑

p

λf1(p)λf2(p)

pσ
>

∑
p∈G

λf1(p)λf2(p)

pσ
+ o(log |σ − 1|−1)

> αα′
∑
p∈G

1

pσ
+ o(log |σ − 1|−1), as σ → 1+,

which is in fact a contradiction (since f1 can not be equal to f2).
Finally, assume f1 and f2 are CM forms. Because of independence of primitive real

characters, the union If1 ∪If2 has density at most 3/4 (the complement contains the
set of primes totally split in a Galois extension of Q of degree at most 4). For small
enough α > 0, the complement must contain a set of primes of positive analytic
density where |λf1(p)| > α, |λf2(p)| > α, and we can conclude as before that the
Rankin-Selberg convolution has a pole at s = 1, so that f1 = f2 in that case also. �

It is known that the 8-th symmetric power are holomorphic for non-CM forms
(still due to Kim and Shahidi); using this, one could improve the constant slightly.
However, it seems more interesting to show that using the sixth symmetric power
(and thus the deep results of Kim and Shahidi) is necessary. For this, note that the
sequences {xp}p primes and {yp}p primes defined by x2 = y2 = 0 and for primes p > 3
by

xp =

{
0 if p ≡ 3 (mod 4),

(−1)(p−1)/4
√

2 if p ≡ 1 (mod 4),

yp =

{
(−1)(p−3)/4

√
2 if p ≡ 3 (mod 4),

0 if p ≡ 1 (mod 4),

have the “right” moments of order 1 to 5 for being Sato-Tate distributed,9 i.e., we
have ∑

p

Xk(xp)

pσ
= O(1) and

∑
p

Xk(yp)

pσ
= O(1)

for σ > 1 and 1 6 k 6 5, and yet xpyp > 0 for all p, in fact xpyp = 0, so that we
most certainly have ∑

p

xpyp

pσ
= O(1) (σ > 1).

Remark 1. We now explain how the polynomial of Lemma 4.1 was found. First –
confirming the previous remark – there is no polynomial

Y = β0 + β2X2 + β4X4 ∈ R[x], with β0 > 1
2
,

such that Y 6 χI for some interval I = [α, 2] ⊂ (0, 2]; indeed, such a polynomial
would have to satisfy

9 The sixth moment fails: it is 4 instead of 5 for the Sato-Tate distribution.
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(iv) Y (0) 6 0;
(v) Y 6 1 on [0, 2];
(vi) β0 > 1

2
.

But then, expressing Y ∈ R[x] in the basis of powers of x, we check that

Y (0) + Y (
√

2) = (β0 − β2 + β4) + (β0 − β2 + β4 + 2β2 − 6β4 + 4β4) = 2β0

so condition (vi) leads to Y (0) + Y (
√

2) > 1, and if Y (0) 6 0, this means that
Y (
√

2) > 1, showing that (iv) and (v) are then incompatible. (This formula is a
very special case of “Gaussian quadrature” using zeros of orthogonal polynomials.)

Looking at this argument, however, reveals that it barely fails: the polynomial

Y0 = 1
2

+ 1
4
X2 − 1

4
X4 = x2 − 1

4
x4 = x2(1− 1

2
x)(1 + 1

2
x)

satisfies 0 6 Y0 6 1 on [0, 2] and β0 = 1
2
; in fact

Y0(0) = 0, β0 = 1
2
, max

x∈[0,2]
Y0(x) = Y0(

√
2) = 1.

So we constructed our polynomial by “deforming” slightly this example, increasing
the constant coefficient to make it > 1

2
and compensating with a small multiple of

X6. We did spend some time trying to adjust the parameters to maximize α2(2δ−1)
4+α2 ,

but we do not know what is the best possible result with polynomials of degree 6.
Maybe the method of Rankin (cf. [18, 26]) could be helpful to solve this optimization
problem.

Remark 2. Lemma 4.1 is somewhat “dual” to well-known investigations of conse-
quences of holomorphy of the first symmetric power L-functions towards the Sato-
Tate conjecture, explained in particular in Serre’s letter to Shahidi included as an
Appendix to [22] (and refined most recently by Kim and Shahidi [9, §4]). In those
works, one is interested in finding c ∈ [−2, 2], as large as possible, such that λf (p) > c
for infinitely many p and λf (p) < −c for infinitely many p. In our lemma, the value
of c (i.e., α) is not the most important, but the density of the set of primes has to
be quite large.

Remark 3. The limit of the argument we used (for non-CM forms) is fairly easy to
determine: if the Sato-Tate conjecture is valid, we have all even symmetric power
L-functions at our disposal and hence we can use polynomials Y approximating
arbitrarily closely (in L1 or L2) to χA(x) for any α ∈ (0, 2]. The value δ = β0 is then
the probability under µST distribution of A = {x : |x| > α}, namely

β0 =
2

π
arccos

(α

2

)
− 1

π
sin

(
2 arccos

(α

2

))
and we are led to maximize over [0, 2] the quantity

κ =
α2

4 + α2

( 4

π
arccos

(α

2

)
− 2

π
sin

(
2 arccos

(α

2

))
− 1

)
we find numerically that the best value is around α ' 0.522179, allowing to take
κ < 0.021875 . . . (i.e., knowing only the individual Sato-Tate conjecture, we can
allow a bit more than 2% of the primes to be in the exceptional set).
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Remark 4. As a final remark, one can think of other ways (than looking at signs) of
reducing Fourier coefficients of modular forms to a fixed finite set: the most obvious,
at least if f has integral coefficients λf (n)n(k−1)/2, is to look at the coefficients modulo
some fixed prime number `. However, the situation there can be drastically different:
for instance, for all (infinitely many) elliptic curves with full rational 2-torsion, given
for instance by equations

y2 = (x− a)(x− b)(x− c)

with a, b, c distinct integers, the reduction modulo 2 of the odd prime coefficients
of the corresponding L-function (or modular form) is the same!
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