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1 Introduction

Arithmetic quantum chaos refer to the investigation of quantum chaos endowed with arithmetic
structures; in physical terms, it is concerned with the study of the semi-classical properties of
quantum systems whose classical limit is a chaotic Hamiltonian system. There are many in-
teresting problems in this subject, which are often linked to objects and questions in number
theory (due to the arithmetic nature). Interested readers may pursue the articles [20], [4], [16],
etc. How the individual eigenstate localizes is one of the central topics. Under the condition of
ergodic geodesic flows, almost all eigenstates become equidistributed, but on the other hand,
scarrings are observed in various numerical experiments. Motivated by their result of no strong
scarring on closed geodesics, Rudnick and Sarnak [19] proposed the conjecture of quantum
unique ergodicity (QUE). This challenging problem and the analogue for holomorphic Hecke
eigenforms are just settled ingeniously in Soundararajan [24] and Holowinsky & Soundarara-
jan [8]. (See [22] and the webpage of AIM at “http://www.aimath.org/news/que/” for more
information and the development of the breakthrough.) In addition to equidistributions, these
works constitute an incentive to another vital topic - the norms of the eigenstates.

Let Γ = SL(2,Z) be the full modular group, and H be the upper half plane. Then Γ \ H
is a Riemannian manifold whose metric is y−2(dx2 + dy2). The eigenstates, which are the
eigenfunctions of the Laplacian ∆, are commonly known as the Maass (cusp) forms. The
Hecke-Maass forms are those forms which are simultaneously the eigenfunctions of all Hecke
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operators. For a Hecke-Maass form ϕj , it is shown (see [21, p.38-40]) that

t
1/6−ε
j ‖ϕj‖2 � ‖ϕj‖∞ � t

1/6+ε
j ‖ϕj‖2 (1.1)

where 1/4+ t2j is the eigenvalue of ∆ for ϕj , and ‖ · ‖∞ and ‖ · ‖2 are respectively the supremum
and L2 norms. An analogous result holds true for the holomorphic forms. Holomorphic cusp
forms of (even) weight k for Γ descend to functions on Γ \ H. Under the realization H =
SL(2,R)/SO(2,R), they are lifted to the unit cotangent bundle to Γ\H and form eigenfunctions
of a Laplacian ∆̃ with the eigenvalue k(k − 2)/4. A holomorphic cusp form f is primitive if it
is a common eigenfunction of all Hecke operators with the normalization T1f = f . In [25], Xia
proved that for any primitive form f of weight k for Γ = SL(2,Z),

k1/4−ε‖Ff‖2 � ‖Ff‖∞ � k1/4+ε‖Ff‖2 (1.2)

where F (z) = yk/2f(z).

At the first sight, the large supremum norms in (1.1) and (1.2) may not be expected in
light of the equidistribution property from QUE. Interestingly some large values are found in
the high horocycles. Let us illustrate with the holomorphc forms for the full modular group. A
primitive form of weight k admits the Fourier series expansion

f(z) =
∑
n≥1

λf (n)n(k−1)/2e(nz)

where e(x) = exp(2πix). Integrating over the horocycle =mz = y, we have for y ≤ k,∫ 1

0

yk|f(x+ iy)|2 dx = y
∑
n≥1

|λf (n)|2(ny)k−1e−4πny.

Clearly it is ≥ yke−4πy. Applying the vital inequality of Deligne |λf (n)| ≤ d(n) � nε, we can
give an upper bound via the observation that ξk−1+εe−4πξ is increaing on (0, ξ0) and decreasing
on (ξ0,∞), where ξ0 = (k − 1 + ε)/(4π). Hence it is also

� y

k

(
k

4πe

)k+ε

+
∫ ∞

0

tk−1+εe−4πt dt.

Since the L2-norm of f is

‖f‖22 =
2
π

Γ(k)
(4π)k

L(1, sym2f) = k−1/2+o(1)

(
k

4πe

)k
by [9] and [10], we deduce that

‖f‖22
y√
k

(
4πy
k

)k
ek−4πyk−ε �

∫ 1

0

yk|f(x+ iy)|2 dx� ‖f‖22
(
1 +

y√
k

)(k
y

)ε
. (1.3)

The lower bound in (1.2) follows by taking y = k/(4π), and it also alludes heuristically that
the size of f is small over low horocycles.

In addition to the eigenvalues, it was investigated the supremum norms in the level aspect.
Let Γ = Γ0(N) be a congruence subgroup where N is squarefree. Let {f1, · · · , fg} be the set
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of all primitive forms of weight 2 for Γ. In [1] and [17], it was derived very good estimates for

sup
z∈H

g∑
j=1

(=mz)2|fj(z)|2

‖fj‖2
,

where
‖f‖2 =

∫
Γ\H

y2|f(z)|2 dxdy
y2

.

Later Jorgenson and Kramer [15] investigated a more general context and obtained the result

sup
z∈H

g∑
j=1

(=mz)2|fj(z)|2/‖fj‖2 � 1 (1.4)

which is the best possible in order of magnitude. For individual primitive forms of weight k and
level N with nebentypus, Blomer and Holowinsky [3] recently proved the interesting nontrivial
result

‖Ff‖∞ � N−δ‖Ff‖2 (1.5)

with δ = 1/38 if f is primitive. As in above, we do not normalize the volume measure, and take

‖f‖22 = ‖Ff‖22 =
∫

Γ\H
yk|f(z)|2 dxdy

y2
.

Applying the argument for (1.3), it is easily shown that

‖Ff‖∞ � N−1/2−ε‖Ff‖2. (1.6)

By virtue of (1.4) (in which g is known to be about N), the true value of δ in (1.5) is anticipated
to be 1/2 up to o(1) and the lower estimate in (1.6) may be quite sharp. So it could be delicate
but is desired to find primitive forms with bigger supremum norms. Our purpose is to illustrate
their existence.

Theorem 1. Let N ≥ 1 be squarefree, k ≥ 2 an even integer and χ be a character mod N

of conductor N∗ with χ(−1) = (−1)k. Assume one of the following condition holds for the
Dirichlet L-function L(s, χ).

(1) L(s, χ) has no Siegel zero and N∗ ≤ exp(c
√

log2N) for some absolute constant c > 0.

(2) L(s, χ) has a Siegel zero and N∗ ≤ c(ε)(log2N)1/ε for some ineffective positive constant
c(ε) and for any ε > 0.

(3) The Grand Riemann Hypothesis for L(s, χ) is valid (and N∗ ≤ N).

There exists a primitive form f of weight k with nebentypus χ for the congruence subgroup
Γ0(N) such that

supz∈H y
k/2|f(z)|√
〈f, f〉

≥ N−1/2 exp
(
(
1
2

+ o(1))

√
logN
log2N

)
3
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where logr is the rth iterated logarithm, so log2 = log log, and

〈f, g〉 =
∫

Γ0(N)\H
ykf(z)g(z)

dxdy

y2

denotes the Petersson inner product.

The method is simply to pass the problem to the central values of L-functions, and then ap-
ply the robust ”resonance” method, newly developed by Soundararajan [23]. Indeed Theorem 1
follows from the result below. Both will be proved in Section 3.

Theorem 2. Under the same conditions as in Theorem 1, there exists a primitive form f of
even weight k for Γ0(N) with nebentypus χ whose conductor satisfies one of (1)-(3) in Theorem 1
such that

|L(1/2, f)| ≥ exp
(
(
1
2

+ o(1))

√
logN
log2N

)
.

We end this section with some remarks.

Remark 1. The case for trivial nebentypus character corresponds to N∗ = 1, and χ = ψN

(and N is still assumed to be squarefree). Theorems 1 & 2 hence hold valid.

Remark 2. The conditions on L(s, χ) are imposed to suppress the character sum in (3.25).
To bypass the brute force treatment, a natural remedy is to select skillfully the factors for
resonance. In view of (3.23), it is tempted to align χ(p) by adding a rotating factor to r(p).
More concretely, suppose χ(p) = eiθ and r(p) = |r(p)|e−φ, then the factor <e (r(p) + χ(p)r(p))
equals

2|r(p)| cos
θ

2
cos(

θ

2
− φ)

which can, however, be very small, i.e. θ ≈ π or χ(p) ≈ −1. This case perhaps cannot occur
simultaneously for all p where r(·) is supported. But we have no method to take any advantage.
It is also very likely to relax the size of the conductor N∗ in conditions (1) or (2) if we allow
some exceptional nebentypus.

2 Preliminaries

Let N ≥ 1 be squarefree, k ≥ 2 an even integer and χ be a Dirichlet character mod N induced
by a primitive character χ∗ mod N∗ where N = N ′N∗. Thus, χ = ψN ′χ

∗ where ψN ′ is the
trivial character mod N ′. Assume χ(−1) = (−1)k and write Γ = Γ0(N). Define the slash
operator for A ∈ GL+

2 (R) by

f |A(z) := (detA)k/2j(A, z)−kf(Az).

where

j(A, z) = cz + d if A =

(
a b

c d

)
.
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A holomorphic cusp form of weight k and nebentypus χ for Γ is a holomorphic function f :
H→ C that satisfies f |γ(z) = χ(d)f(z), or equivalently

f
(az + b

cz + d

)
= χ(d)(cz + d)kf(z), for every γ =

(
a b

c d

)
∈ Γ

and decays rapidly at each cusp. The collection of these forms yield a finite dimensional vector
space Sk(N,χ). By primitive forms, we mean the normalized elements f ∈ S∗k(N,χ) (the space
of newforms, see [2] or [13, §14.7]) which are simultaneously the eigenfunctions of all Hecke
operators Tn and the involution operator W , i.e.

Wf(z) := (−1)kN−k/2z−kf(1/(Nz)) = ηff(z) (2.1)

for some ηf ∈ C. The normalization is taken such that the the Fourier expansion of f at the
cusp ∞ is

f(z) =
∑
n≥1

λf (n)n(k−1)/2e(nz)

where e(x) := e2πix and λf (n)n(k−1)/2 is the eigenvalue of Tn. We have λf (1) = 1,
|λf (p)| = 1 if p|N∗,
λf (p)2 = χ∗(p)p−1 if p|N ′ and

λf (m)λf (n) =
∑

d|(m,n)

χ(d)λf (
mn

d2
) for all m,n ≥ 1

(2.2)

from [14, Theorem 3] by setting af (n) = λf (n)n(k−1)/2 therein. In particular, λf (mn) =
λf (m)λf (n) if n|N∞. Moreover, it follows from [5] that |λf (p)| ≤ 2 for any prime p - N ,
whence there are αp, βp ∈ C with |αp| = |βp| = 1 for which

λf (p) = αp + βp and χ(p) = αpβp (p - N).

We thus deduce that

λf (pr) =
αr+1
p − βr+1

p

αp − βp
(p - N) (2.3)

and λf (n) = χ(n)λf (n) for (n,N) = 1.

The eigenvalue ηf of W satisfies |ηf | = 1 as W is an involution, and

µ(N ′)χ∗(N ′)τ(χ∗) = τ(χ) = ηfλf (N)
√
N. (2.4)

This can be seen through the proof of [11, Theorem 6.29], as follows. Let f ∈ Sk(N,χ) be a
primitive form. Using the identity(

1 u/N

1

)(
−1/N

N

)(
1 v/N

1

)
=

(
u (uv − 1)/N

N v

)
,

we have
f |(

1 u/N

1

)(
−1/N

N

) = χ(v)f |(
1 −v/N

1

)

5



LAU Yuk-Kam

where v is chosen to fulfil uv ≡ 1 (mod N). Define

g :=
∑

u (modN)

∗ f |(
1 u/N

1

)(
−1/N

N

) =
∑

v (modN)

χ(v)f |(
1 −v/N

1

) (2.5)

and

Kg(z) = g(−z). (2.6)

Then (2.4) follows from the first coefficient of Kg. From the second equality in (2.5),

g(z) =
∑

v (modN)

χ(v)f(z − v

N
) =

∞∑
n=1

b(n)n(k−1)/2e(nz) (2.7)

where

b(n) = λf (n)
∑

v (modN)

χ(v)e(−nv/N). (2.8)

By [6, Chapter 9], we have for (n,N) = 1,

b(n) = τ(χ)χ(n)λf (n).

In case χ is primitive, it holds even for (n,N) > 1 by [6]. Otherwise, we may derive the formula

b(n) = λf (n)τ(χ)χ∗(n)
∑

d|(n,N ′)

dµ(d). (2.9)

The proof goes along the argument in [6, p.67], where it yields immediately

τ(χ) = µ(N ′)χ∗(N ′)τ(χ∗). (2.10)

Putting χ = ψNχ
∗ and relaxing the condition (u,N) = 1 by Moebius formula, we may express∑
v (modN)

χ(v)e(−nv/N)

=
∑
d|N

µ(d)
∑

v (modN/d)

χ∗(dv)e
(
− nv

N/d

)

=
∑
d|N ′

µ(d)χ∗(d)
∑

t (modN∗)

χ∗(t)e
(
− nt

N/d

) ∑
l (modN ′/d)

e

(
− nl

N ′/d

)

with the substitution v = lN∗ + t. Therefore, this reduces to

N ′τ(χ∗)
∑

d|N ′, (N ′/d)|n

µ(d)χ∗(d)
d

χ∗
(

n

N ′/d

)
= µ(N ′)χ∗(N ′) τ(χ∗)χ∗(n)

∑
d|(n,N ′)

dµ(d).

Now (2.9) follows by (2.8) and (2.10).

6
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By (2.6) and (2.7),

Kg(z) =
∑
n≥1

b(n)n(k−1)/2e(nz). (2.11)

Next we evaluate with the first equality of (2.5). Relaxing the condition (u,N) = 1, we see
that ∑

u (modN)

∗ f |(
1 u/N

1

)(z) =
∑
ad=N

µ(a)d
∑
n≥1
d|n

λf (n)n(k−1)/2e(nz)

=
∑
ad=N

µ(a)d1/2λf (d)f |(
d

1

),

noting that d|N ⇒ λf (md) = λf (m)λf (d). As(
d

1

)(
−1/N

N

)
=

(
−1

N

)(
1

1/a

)

for N = ad, we have

g =
∑
ad=N

µ(a)d1/2λf (d)f |( −1

N

)(
1

1/a

). (2.12)

Observe from (2.6) and (2.1) that

K
(
f |A
)

= (Kf)|A for A =

(
α

δ

)
∈ GL+

2 (R),

and

K

(
f |( −1

N

)) = Wf.

We deduce from (2.12) that

Kg = ηf
∑
ad=N

µ(a)d1/2λf (d)f |(
1

1/a

),

and hence conclude with (2.11),∑
n≥1

b(n)n(k−1)/2e(nz)

= ηfN
1/2
∑
n≥1

∑
ad=N

µ(a)λf (d)λf (n)(an)(k−1)/2e(anz). (2.13)

We get our result by comparing the coefficient of e(z) with (2.9). Indeed, the equation (2.13)
yields the various properties of λf (p). From (2.9), we have

b(p) =


τ(χ)χ∗(p)λf (p) if p - N,
τ(χ)χ∗(p)(1− p)λf (p) if p | N ′,
0 if p | N∗.

7
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The coefficient of e(pz) in (2.13) is

p(k−1)/2 ×

{
ηf
√
N λf (N)λf (p) if p - N,

ηf
√
N λf (N/p)(|λf (p)|2 − 1) if p | N.

By virtue of (2.4), we see immediately that λf (p) = χ∗(p)λf (p) for p - N and |λf (p)|2 = 1 for
p|N∗. Moreover, for p|N ′ we obtain

χ∗(p)(1− p)(λf (p))2 = |λf (p)|2 − 1. (2.14)

This implies (p− 1)|λf (p)|2 =
∣∣|λf (p)|2 − 1

∣∣, i.e.

(p− 1)|λf (p)|2 = ±(|λf (p)|2 − 1).

Only the ”−” case is possible, for (p − 2)|λf (p)|2 is nonnegative. Thus |λf (p)|2 = p−1 and by
(2.14), λf (p)2 = χ∗(p)p−1.

Now we follow closely the investigation in [12] to derive tools for later use. Let H∗k(M,χ∗)
be the set of all primitive forms in Sk(MN∗, ψMχ

∗). By the theory of newforms and oldforms
(see [18], [2], [14]), we have the orthogonal decomposition

Sk(N,χ) =
⊕

LM=N ′

⊕
f∈H∗k(M,χ∗)

SpanC
{
f|l : l|L

}
(orthogonally), (2.15)

where f|l(z) := lk/2f(lz) and SpanCS denotes the subspace generated by elements in S over C.

Let M |N ′ and f ∈ Sk(MN∗, ψMχ
∗). Then f also lies in

Sk(N,χ) = Sk(N ′N∗, ψN ′χ∗).

The Petersson inner products in the two spaces differ by a scalar factor. More concretely, let
us denote the inner product in Sk(MN∗, ψMχ

∗) by

(f, g)M =
∫

Γ0(MN∗)\H
ykf(z)g(z)

dxdy

y2
. (2.16)

Then, for f, g ∈ Sk(MN∗, ψMχ
∗) we have

(f, g)N ′ =
ν(N ′)
ν(M)

(f, g)M (2.17)

where ν(M) := M
∏
p|M (1 + p−1). Note that ν(N) = [Γ0(1) : Γ0(N)]. Now we investigate a

trace formula for primitive forms, following the same analysis in [12, Section 2].

Lemma 2.1. Let LM = N ′ (squarefree). If f ∈ H∗k(M,χ∗) and li|L (i = 1, 2), then with the
notation in (2.16), we have

(f|l1 , f|l2)N ′ =
λf (`1)

√
`1

ν(`1)
λf (`2)

√
`2

ν(`2)
(f, f)N ′

where `i = li/(l1, l2) and (l1, l2) is the greatest common divisor of l1 and l2.

8
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Proof. Let F (s) = (E(z, s)f(l1z), f(l2z))N ′ where E(z, s) =
∑
γ∈Γ∞\Γ0(N)(=mγz)s and

N = N ′N∗. By the unfolding method, we get that

F (s) =
∫ ∞

0

ys+k−2

∫ 1

0

f(l1z)f(l2z) dxdy

=
Γ(s+ k − 1)
(4π)s+k−1

∑
l1n1=l2n2

λf (n1)λf (n2)(n1n2)(k−1)/2(l1n1)1−k−s.

Writing `i = li/(l1, l2), then we have

(l1l2)k/2F (s) =
Γ(s+ k − 1)

(4π)s+k−1(l1, l2)s−1
(`1`2)1/2−s

∑
n≥1

λf (`1n)λf (`2n)n−s. (2.18)

As (`1, `2) = 1 and `1, `2 are squarefree, the Dirichlet series factors into∑
n≥1

λf (`1n)λf (`2n)n−s =
∏

1

∏
2

∑
3, (2.19)

where ∏
1 =

∏
p|`1

∑
α≥0

λf (pα+1)λf (pα)p−αs,

∏
2 =

∏
p|`2

∑
α≥0

λf (pα+1)λf (pα)p−αs,

∑
3 =

∑
(n,`1`2)=1

|λf (n)|2n−s.

For p|`1, we have (ψMχ∗)(p) = χ∗(p) and thus by (2.2) with MN∗ in place of N ,

λf (pα)λf (p) = λf (pα+1) + χ∗(p)λf (pα−1).

After a little calculation with

χ∗(p)λf (pα−1)λf (pα) = χ∗(p)αλf (pα−1)λf (pα) = λf (pα−1)λf (pα),

we see that ∏
1 = (1 + p−s)−1λf (p)

∑
α≥0

|λf (pα)|2p−αs,

whence by (2.19) and (2.18), we have

(l1l2)k/2F (s) =
Γ(s+ k − 1)

(4π)s+k−1(l1, l2)s−1

λf (`1)`1/2−s1∏
p|`1(1 + p−s)

λf (`2)`1/2−s2∏
p|`2(1 + p−s)

L(s, f ⊗ f)

with

L(s, f ⊗ f) =
∑
n≥1

|λf (n)|2n−s.

We conclude our lemma from the residue of F (s) at s = 1.

9
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For LMN∗ = N and f ∈ H∗k(M,χ∗), we define

ρf (L) =
∑
b|L

µ(b)b
(
|λf (b)|
ν(b)

)2

(2.20)

By (2.3), one can show that

ρf (L)−1 =
ν(L)
L

∑
l|L∞

λf (l2)χ∗(l)
l

. (2.21)

For d|L and f ∈ H∗k(M,χ∗), we introduce

fd = ρf (d)−1/2
∑
cl=d

µ(c)
λf (c)

√
c

ν(c)
f|l. (2.22)

Then these fd’s altogether yield an orthogonal basis for Sk(N,χ), indeed we have

Lemma 2.2. Under the same assumption as in Lemma 2.1 we have for d1, d2|L, (fd1 , fd2)N ′ =
δd1,d2(f, f)N ′ where δ·,· denotes the Kronecker delta.

Along the argument in [12], we unravel the construction of fd to explain the formula in
(2.22) and to derive the lemma. To complete an orthogonal basis for Sk(N,χ), it remains to
get an orthogonal basis for

SpanC{f|l : l|L},

with f ∈ H∗k(M,χ∗). We consider the linear combination

fd =
∑
l|L

xd(l)f|l

where xd(·) is supported on squarefree integers, and evaluate

δf (d1, d2) =
(fd1 , fd2)N ′

(f, f)N ′
. (2.23)

Now, by Lemma 2.1,

δf (d1, d2) =
∑
l1|L

∑
l2|L

xd1(l1)xd2(l2)
(f|l1 , f|l2)N ′

(f, f)N ′

=
∑
a|L

∑∑
`1|L , `2|L
(`1,`2)=1

xd1(a`1)xd2(a`2)
λf (`1)

√
`1

ν(`1)
λf (`2)

√
`2

ν(`2)

=
∑
a|L

∑
b|L

µ(b)b
(
|λf (b)|
ν(b)

)2

×
∑∑
`1|L , `2|L

xd1(ab`1)xd2(ab`2)
λf (`1)

√
`1

ν(`1)
λf (`2)

√
`2

ν(`2)

=
∑
c|L

ρf (c)yd1(c)yd2(c), (2.24)

10
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where ρf (c) is defined as in (2.20), and

yd(c) =
∑
`|L

xd(c`)
λf (`)

√
`

ν(`)
.

(Note that yd is supported on squarefree integers.) If f and g are arithmetical functions sup-
ported on squarefree integers, then we have by moebius inversion formula (for µ),

g(c) =
∑
`|L

f(c`), ∀ c ∈ N ⇔ f(l) =
∑
c|L

g(cl)µ(c), ∀ l ∈ N .

Hence we deduce that

xd(l) =
∑
c|L

µ(c)yd(cl)
λf (c)

√
c

ν(c)
. (2.25)

Our goal is, by (2.23), to make (δf (d1, d2)) into the identity matrix, so a natural choice is,
from (2.24),

yd(c) = ρf (c)−1/2 if c = d, or yd(c) = 0 otherwise.

Thus if l|d, then by (2.25),

xd(l) = µ(c)ρf (d)−1/2λf (c)
√
c

ν(c)

where c = d/l. Otherwise, xd(l) = 0. This yields Lemma 2.2.

In virtue of the decomposition (2.15), we get an orthogonal basis

Bk(N,χ) =
⋃

LM=N ′

⋃
f∈H∗k(M,χ∗)

{fd : d|L}

for Sk(N,χ). The nth coefficient of fd is given by

af (n) =
(

d

ρf (d)

)1/2

n(k−1)/2
∑
cl=d
l|n

µ(c)
λf (c)
ν(c)

λf

(
n

l

)
.

So we have ∑
f∈Bk(N,χ)

‖f‖−2 af (m)af (n)
(mn)(k−1)/2

=
∑

LM=N ′

∑
f∈H∗k(M,χ∗)

‖f‖−2ΛL,f (m,n) (2.26)

where

ΛL,f (m,n) =
∑
d|L

d

ρf (d)

∑
cl=d
l|m

µ(c)
λf (c)
ν(c)

λf

(
m

l

)∑
et=d
t|n

µ(e)
λf (e)
ν(e)

λf

(
n

t

)

and ‖f‖2 = (f, f)N ′ = (fd, fd)N ′ by Lemma 2.2. Assume (m,n,N ′) = 1, then (l, t) = 1 and d

is of the form btl in the last two sums. It follows that

ΛL,f (m,n)

=
∑
b|L

b

ρf (b)

(
|λf (b)|
ν(b)

)2 ∑
δ|L/b

δµ(δ)
ρf (δ)ν(δ)

∑
lt=δ

l|m, t|n

λf (l)λf (t)λf

(
m

l

)
λf

(
n

t

)
.

11
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Note that

λf (l)λf (m/l) =
∑

v|(l,m/l)

(ψMχ∗)(v)λf

(
m

v2

)
which is simply λf (m) if (l,m/l) = 1. We assume (m,N ′2)|N ′, thus (l,m/l) = 1 for l|N ′.
Under the assumption that (m,n,N ′) = 1 and (mn,N ′2)|N ′, we get that

ΛL,f (m,n) = λf (m)λf (n)
∑
b|L

b

ρf (b)

(
|λf (b)|
ν(b)

)2 ∑
δ|L/b

δµ(δ)
ρf (δ)ν(δ)

∑
lt=δ

l|m, t|n

1. (2.27)

As ((m,L), (n,L)) = 1, the multiple sum over b, δ, l, t in the last line equals

∏
p|(m,L)

(1− p

ρf (p)ν(p)
+

p

ρf (p)

(
|λf (p)|
ν(p)

)2

)

×
∏

p|(n,L)

(1− p

ρf (p)ν(p)
+

p

ρf (p)

(
|λf (p)|
ν(p)

)2

)

×
∏

p|L/(mn,L)

(1 +
p

ρf (p)

(
|λf (p)|
ν(p)

)2

),

which can be simplified into

ρf (L)−1
∏

p|(mn,L)

(p+ 1)−1

as
p

ρf (p)

(
|λf (p)|
ν(p)

)2

= ρf (p)−1 − 1

by (2.20). In summary, for (m,n,N ′) = 1 and (n,N ′2)|N ′ we have from (2.26) and (2.27),

∆N (m,n) :=
Γ(k − 1)
(4π)k−1

∑
f∈Bk(N,χ)

‖f‖−2 af (m)af (n)
(mn)(k−1)/2

=
Γ(k − 1)
(4π)k−1

∑
LM=N ′

ν((mn,L))−1ρf (L)−1

×
∑

f∈H∗k(M,χ∗)

‖f‖−2λf (m)λf (n).

Now we are ready to express the sum over primitive forms in terms of ∆N (m,n).

Suppose (m,N ′) = 1. Then ν((mn,L)) = ν(n,L) and ‖f‖2 = ‖f‖2N ′ = ν(L)‖f‖2M if
LMN∗ = N , see (2.16) and (2.17). By (2.21), we deduce that

∆N (m,n) =
∑

LM=N ′

1
Lν((n,L))

∑
l|L∞

χ∗(l)
l

∆∗MN∗(ml
2, n)

where

∆∗MN∗(m,n) =
Γ(k − 1)
(4π)k−1

∑
f∈H∗k(M,χ∗)

‖f‖−2
M λf (m)λf (n). (2.28)

12



Omega result for supremum norms of Hecke-eigenforms

This implies that for (m,N ′) = 1 and (n,N ′2)|N ′,

∆∗N (m,n) = ∆∗N ′N∗(m,n)

=
∑

LM=N ′

µ(L)
Lν((n,L))

∑
l|L∞

χ∗(l)
l

∆MN∗(ml2, n), (2.29)

by the following lemma.

Lemma 2.3. Let g be a completely multiplicative function and f be multiplicative. Suppose the
functions F and G satisfies that for all squarefree N and (m,N) = 1,

G(N,m) =
∑

LM=N

f(L)
∑
`|L∞

g(`)F (M,m`2)

Then we have
F (N,m) =

∑
LM=N

µ(L)f(L)
∑
`|L∞

g(`)G(M,m`2)

for squarefree N and (m,N) = 1.

Proof. This can be shown by direct verification. Assume N be squarefree and (m,N) = 1.
We have ∑

PR=N

µ(P )f(P )
∑
v|P∞

g(v)
∑

LM=R

f(L)
∑
`|L∞

g(`)F (M,mv2`2)

=
∑

QM=N

f(Q)
∑
q|Q∞

g(q)F (M,mq2)
∑
P |Q

µ(P )

= F (M,m),

noting that (mv2, R) = 1 for v|P∞ and each q decomposes uniquely into q = v`.

The Petersson trace formula states that

∆N (m,n) = δm,n + 2πik
∑
c≥1
N|c

c−1Sχ(m,n, c)Jk−1

(
4π
√
mn

c

)
(2.30)

where Sχ(m,n, c) =
∑
ad≡1 (c) χ(d)e((am+ dn)/c). Applying the Weil bound (in weak form)

Sχ(m,n, c)� c1/2+ε(m,n, c)1/2

and the estimate

Jk−1(x)� k−1/3 min
(

1,
x

k

)
,

we infer that the sum over c is

� k−1/3Nε−1/2(m,n,N)1/2
∑
c≥1

cε−1/2(m,n, c)1/2 min
(

1,
√
mn

kNc

)
.

If
√
mn/kN ≤ 1, then it is plainly

�
√
mn(m,n,N)1/2

k4/3N3/2−ε

∑
c≥1

cε−3/2(m,n, c)1/2

� (mn)1/2+ε

k4/3N3/2−ε (m,n,N)1/2.

13



LAU Yuk-Kam

Otherwise, it is

� k−1/3Nε−1/2(m,n,N)1/2
∑

1≤c≤
√
mn/(kN)

cε−1/2(m,n, c)1/2

+
√
mn(m,n,N)1/2

k4/3N3/2−ε

∑
c≥
√
mn/(kN)

cε−3/2(m,n, c)1/2

� (mn)1/4

k5/6N
(m,n,N)1/2(kNmn)ε.

We thus conclude from (2.30) the asymptotic formula,

∆N (m,n)

= δm,n +O

(
(kNmn)ε(m,n,N)1/2 (mn)1/4

k5/6N
min

(
1,

(mn)1/4

k1/2N1/2

))
.

In view of (2.29), we evaluate∑
LM=N ′

µ(L)
Lν((n,L))

∑
l|L∞

χ∗(l)
l

δml2,n (2.31)

and

(kNmn)ε(m,n,N∗)1/2 (mn)1/4

k5/6N
(2.32)

×
∑

LM=N ′

1
Lν((n,L))

∑
l|L∞

l−1/2+ε min
(

1,
(mn)1/4l1/2

k1/2(MN∗)1/2

)
,

where (m,N ′) = 1 and (n,N ′2)|N ′. Observing that l = 1 and (n,L) = 1 for a nonzero kronecker
delta, we infer that (2.31) equals∑

L|N ′

µ(L)
L

δm,n =
φ(N ′)
N ′

δm,n.

Denoting Y = k1/2N1/2/(mn)1/4, we see that (2.32) is

� (kNmn)ε(m,n,N∗)1/2 (mn)1/4

k5/6N

∑
LM=N ′

1
L

∑
l|L∞

l−1/2+ε min(1, l1/2L1/2/Y )

Splitting accordingly, the double sum is

� Y −1
∑

LM=N′
L≤Y 2

1
L1/2

∑
l|L∞
l≤Y 2/L

lε +
∑

LM=N′
L≤Y 2

1
L

∑
l|L∞
l>Y 2/L

l−1/2+ε +
∑

LM=N′
L>Y 2

1
L

∑
l|L∞

l−1/2+ε.

Note that ∑
l|L∞
l≥A

la � Aa+ε
∑
l|L∞

l−ε � Aa+εεcω(L)

for some constant c > 0, where ω(L) is the number of distinct prime factors of L. Separating
into Y ≥ 1 or not, we infer that (2.32) is

� (kNmn)ε(m,n,N∗)1/2 (mn)1/4

k5/6N
min

(
1,

(mn)1/4

k1/2N1/2

)
.
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This yields an asymptotic formula for (2.29): for (m,N ′) = 1 and (n,N ′2)|N ′,

∆∗MN∗(m,n) (2.33)

=
φ(N ′)
N ′

δm,n +O

(
(kNmn)ε(m,n,N∗)1/2 (mn)1/4

k5/6N
min

(
1,

(mn)1/4

k1/2N1/2

))
.

3 Proof of Theorems

Let f ∈ H∗k(N ′, χ∗) be a primitive form in Sk(N,χ) and admit the series f(z) =
∑
n≥1 λf (n)n(k−1)/2e(nz),

normalized as in §2. By [7] and [9], its L2-norm

‖f‖2 =
∫

Γ0(N)\H
yk|f(z)|2 dxdy

y2

satisfies

N(logN)−1+o(1) �k ‖f‖2 �k N(logN)1+o(1). (3.1)

This is well-known (see [11, Chapter 7] for instance) that∫ ∞
0

f(iy)yk/2
dy

y
= (2π)−k/2Γ(k/2)L(1/2, f). (3.2)

By Deligne’s bound, we get that for y ≥ 1,

f(iy)� e−2πy
∑
n≥1

n(k−1)/2+εe−2πn �k e
−2πy.

When 0 ≤ y ≤ N−1/2, we have by (2.1),

ηff(iy) = ikN−k/2y−kf(i/Ny),

and thus, ∫ 1/N

0

yk/2f(iy)
dy

y
= ikηf

∫ ∞
1

yk/2f(iy)
dy

y
.

Therefore, by (3.2),∫ 1

1/N

yk/2f(iy)
dy

y
= (2π)−k/2Γ(k/2)L(1/2, f) +Ok(1),

whence it follows

sup
1/N≤y≤1

yk/2|f(iy)| �k (logN)−1
(
|L(1/2, f)| −O(1)

)
. (3.3)

This reduces the problem to pick f with large |L(1/2, f)|.

To this end we apply the resonance method of Soundararajan. (Readers are referred to his
paper [23] for the best exposition.) Define

Λ(s, f) =
(√

N

2π

)s
Γ(s+ (k − 1)/2)L(s, f).
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Then we have the functional equation (see [11, (7.17)])

Λ(s, f) = ikηfΛ(1− s, f).

Let G(s) = Γ(A− s)Γ(A+ s)/Γ(A)2 where A > 0 is a large parameter up to our disposal. The
standard argument using the residue theorem gives(√

N

2π

)1/2

Γ(k/2)L(1/2, f)

=
1

2πi

∫
(2)

Λ(1/2 + s, f)Ns/2G(s)
ds

s
− ikηf

2πi

∫
(−2)

Λ(1/2− s, f)Ns/2G(s)
ds

s
.

After a change of variable −s into s, the second integral in the last line equals∫
(2)

Λ(1/2 + s, f)N−s/2G(s)
ds

s
.

Thus,

L(1/2, f) =
∑
n≥1

λf (n)√
n
V

(
n

N

)
+ ikηf

∑
n≥1

λf (n)√
n
V (n)

= S1(f) + S2(f), say, (3.4)

where

V (y) =
Γ(k/2)−1

2πi

∫
(2)

Γ(s+ k/2)G(s)(2πy)−s
ds

s

satisfies V (y) = V (y).

Clearly V (y) � y−A if y ≥ 1. Thus, for any ε > 0, the sum in S1(f) over n ≥ N1+ε is
negligible by setting A = A(ε) to be a sufficiently large constant. Similarly we may neglect the
terms with n ≥ Nε in S2(f). We split n into n = n′h2 where (n′, N ′2)|N ′ and h|N ′∞, then
λf (n) = λf (n′)χ∗(h)/h by (2.2). Hence,

S1(f) =
∑

n≤N1+ε

′ λf (n)√
n

∑
h|N ′∞

χ∗(h)
h2

V

(
nh2

N

)
+O(N−1)

=
∑

n≤N1+ε

′ λf (n)√
n
V ∗
(
n

N

)
+O(N−1) (3.5)

where the summation
∑′ runs over n satisfying the condition (n,N ′2)|N ′, and

V ∗(y) :=
∑
h|N ′∞

χ∗(h)
h2

V (yh2)

=
Γ(k/2)−1

2πi

∫
(2)

Γ(s+ k/2)G(s)
∏
p|N ′

(1− χ∗(p)p−(2+2s))−1(2πy)−s
ds

s

=
∏
p|N ′

(1− χ∗(p)p−2)−1 +O(y1/4Nε). (3.6)
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Here and in the sequel, we allow the implied constants to be dependent of k and ε.

Let X = N1/11 and L = 1
2

√
(logX)(log2X). Define the multiplicative function r(·) sup-

ported on squarefree integers with

|r(p)| =

 L/(
√
p log p) if L2 ≤ p ≤ exp((logL)2) and p - N,

0 otherwise.

The choice of r(p) stems from a delicate optimization by Soundararajan, see [23, Theorem 1].
Introduce ω(f) = (4π)1−kΓ(k − 1)‖f‖−2

N ′ , and

RX(f) =

∣∣∣∣∣∣
∑
a≤X

r(a)λf (a)

∣∣∣∣∣∣
2

=
∑
a,b≤X

r(a)r(b)χ(a)
∑
d|(a,b)

χ(d)λf

(
ab

d2

)
, (3.7)

by (2.2). Firstly we recall the definition in (2.28). Squaring out RX(f), we infer by (2.33) (and
noting that (ab,N) = 1 for nonvanishing r(a)r(b) from the definition of r),∑

f∈H∗k(N ′,χ∗)

ω(f)RX(f)

=
∑
a,b≤X

r(a)r(b)∆∗N (a, b)

=
∑
a,b≤X

r(a)r(b)
{
φ(N ′)
N ′

δa,b +O(Nε−1/2(ab)1/4+ε)
}

=
φ(N ′)
N ′

∑
a≤X

|r(a)|2 +O

(
Nε−1/2X3/2

( ∑
a≤X

a−1/2|r(a)|
)2)

. (3.8)

We apply Rankin’s trick to deal with the first summand. Generally suppose f is a nonnega-
tive multiplicative function supported on squarefree integers and

∑
p f(p)2(pα−1)2 � 1. Then

we have for any d and Y ,∑
a≤Y

(a,d)=1

f(a) =
∏
p-d

(1 + f(p)) +O(Y −α
∏
p-d

(1 + f(p)pα)

=
∏
p-d

(1 + f(p))
(

1 +O
(
Y −α exp

(∑
p

f(p)(pα − 1)
)))

. (3.9)

Taking Y = X, f(p) = |r(p)|2, d = 1 and α = 1/(logL)3 (so that pα − 1 ≤ 2α log p for
L2 ≤ p ≤ exp((logL)2)), then∑

p

|r(p)|2(pα − 1) ≤ 2αL2
∑
L2≤p

(p log p)−1

≤ αL2 (1 + o(1))
logL

≤ 1 + o(1)
2

α logX. (3.10)
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We deduce that ∑
a≤X

|r(a)|2 =
∏
p

(1 + r(p)2)
{

1 +O(X−α/3)
}
.

As above, ∑
p

p−1/2|r(p)|(pα − 1))� αL log2 L (3.11)

and ∑
p

p−1/2|r(p)| � L(logL)−1. (3.12)

We have from (3.9) the crude bound,∑
a≤X

a−1/2|r(a)| � eL � Nε. (3.13)

It follows from (3.8) that∑
f∈H∗k(N ′,χ∗)

ω(f)RX(f) =
φ(N ′)
N ′

∏
p

(1 + r(p)2)
{

1 +O(X−α/3)
}

(3.14)

+O(Nε−1/2X3/2),

and is thus � Nε.

Next from (3.5) and (3.7), it follows that∑
f∈H∗k(N ′,χ∗)

ω(f)RX(f)S1(f)

=
∑

n≤N1+ε

′ 1√
n
V ∗
(
n

N

) ∑
a,b≤X

r(a)r(b)χ(a)
∑
d|(a,b)

χ(d) (3.15)

×
∑

f∈H∗k(N ′,χ∗)

ω(f)λf (n)λf

(
ab

d2

)

+O

N−1
∑

f∈H∗k(N ′,χ∗)

ω(f)RX(f)

 .

By the estimate for (3.14), the O-term in (3.15) is clearly � Nε−1.

Applying (2.33) to ∆∗N (ab/d2, n), the multiple sum in (3.15) is equal to

φ(N ′)
N ′

∑
a,b≤X

χ(a)
r(a)r(b)√

ab

∑
d|(a,b)

χ(d)dV ∗
(

ab

d2N

)

+O

(
Nε−1

∑
a,b≤X

|r(a)r(b)|(ab)1/4
∑

n≤N1+ε

′
n−1/4(ab, n,N∗)1/2

)
. (3.16)

Thus the O-term is � Nε−1/4X5/2
(∑

a≤X a
−1/2|r(a)|

)2 � Nε−1/4X5/2.
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Together with (3.6), we express (3.15) as∑
f∈H∗k(N ′,χ∗)

ω(f)RX(f)S1(f)

=
φ(N ′)
N ′

∏
p|N ′

(1− χ∗(p)p−2)−1
∑
a,b≤X

χ(a)
r(a)r(b)√

ab

∑
d|(a,b)

χ(d)d (3.17)

+O(Nε−1/4X
( ∑
a≤X

a−1/2|r(a)|
)2) +O(Nε−1/4X5/2),

where the first O-term comes from the O-term in (3.6). It is � Nε−1/4X, so absorbed by the
last term. The ultimate task is to deal with the sum∑

a,b≤X

χ(a)
r(a)r(b)√

ab

∑
d|(a,b)

χ(d)d

=
∑
d

|r(d)|2
∑
a≤X/d
(a,d)=1

r(a)χ(a)√
a

∑
b≤X/d
(b,d)=1

r(b)√
b

=
∑
d≤
√
X +

∑
d>
√
X , say, (3.18)

where the empty sum means zero. The tail section
∑
d>
√
X over d ≥

√
X is plainly

� X−α/2
∑
d

dα|r(d)|2
( ∑

(a,d)=1

a−1/2|r(a)|
)2

� X−α/2
∑
d

dα|r(d)|2
∏
p-d

(1 + p−1/2|r(p)|)2

� X−α/2
∏
p

(
(1 + p−1/2|r(p)|)2 + pα|r(p)|2),

which equals ∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + |r(p)|2)

×O
(
X−α/2 exp

(
4
∑
p

|r(p)|p−1/2 +
∑
p

|r(p)|2(pα − 1)
))
.

By (3.10) and (3.12), the above O-term is absorbed into O(X−α/3), so∑
d>
√
X = O(X−α/3)

∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + |r(p)|2). (3.19)

The main contribution arises from∑
d≤
√
X

|r(d)|2
∑
a≤X/d
(a,d)=1

r(a)χ(a)√
a

∑
b≤X/d
(b,d)=1

r(b)√
b
.

For d ≤
√
X, the same argument as in (3.9) with (3.11) gives∑

a≤X/d
(a,d)=1

a−1/2r(a)χ(a)

=
∏
p-d

(1 + p−1/2r(p)χ(p))(1 +O(X−α/3))
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and an analogous estimate for the sum over b. Thus, we obtain

(1 +O(X−α/3))
∑
d≤
√
X

|r(d)|2
∏
p-d

(1 + p−1/2r(p)χ(p))
∏
p-d

(1 + p−1/2r(p))

and with the Rankin trick again, the sum over d ≤
√
X is∑

d≤
√
X

= (1 +O(X−α/3))
∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + |r(p)|2

)
.

Together with (3.19), we conclude that (3.18) equals

(1 +O(X−α/3))
∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + |r(p)|2

)
,

and with (3.17), ∑
f∈H∗k(N ′,χ∗)

ω(f)RX(f)S1(f) (3.20)

=
φ(N ′)
N ′

(1 +O(X−α/3))
∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + |r(p)|2

)
+O(Nε−1X5/2).

By (2.2) and (2.4), ηf = κλf (N) where κ =
√
N ′ τ(χ)/

√
N∗ is indepedent of f and has

absolute value
√
N ′. The contribution of∑

f∈H∗k(N ′,χ∗)

ω(f)RX(f)S2(f) (3.21)

is negligible. Since∑
n≤Nε

n−1/2V (n)λf (n)λf (N) =
∑

nh≤Nε
(n,N)=1, h|N∞

λf (n)
n1/2

λf (hN)
h1/2

V (nh),

(3.21) is equal to

κ
∑

nh≤Nε
(n,N)=1, h|N∞

(nh)−1/2V (nh)
∑
a,b≤X

r(a)r(b)

×
∑

f∈H∗k(N ′,χ∗)

ω(f)λf (a)λf (b)λf (n)λf (hN)

+O(N−1
∑

f∈H∗k(N ′,χ∗)

ω(f)RX(f)).

Removing the even power of p|N ′ in hN by (2.2), we can apply the formula (2.33) to deduce

(3.21) � N ′
1/2
N∗1/2

∑
a,b≤X

|r(a)r(b)|
∑
n≤Nε

n−1/2(abnN)1/4Nε−1

� X3/2Nε−1/4(
∑
a≤X

a−1/2|r(a)|)2

� X3/2Nε−1/4.
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Altogether we infer with (3.4) and (3.20) that∑
f∈H∗k(N ′,χ∗)

ω(f)RX(f)L(1/2, f) (3.22)

=
φ(N ′)
N ′

(1 +O(X−α/3))
∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + r(p)2

)
+O(X5/2Nε−1/4).

Note that∑
p

|r(p)|2 = L
∑

L2≤p≤exp((logL)2)

1
p(log p)2

+O(L
∑

L2≤p|N

1
p(log p)2

)

= (1 + o(1))
L

(2 logL)2
+O(

logN
L(logL)3

)

= (
1
4

+ o(1))
L

(logL)2

for L2 � logN and∏
p

(
(1 + p−1/2r(p)χ(p))(1 + p−1/2r(p)) + |r(p)|2

)
=

∏
p

(1 + |r(p)|2)× exp
(∑

p

p−1/2<e
(
r(p) + χ(p)r(p)

)
+O(1)

)
.

By (3.14) and (3.22), we infer that∑
f∈H∗k(N ′,χ∗) ω(f)RX(f)L(1/2, f)∑

f∈H∗k(N ′,χ∗) ω(f)RX(f)
(3.23)

= (1 +O(X−1/(3(logL)3))) exp
(∑

p

p−1/2
(
r(p) + χ(p)r(p)

)
+O(1)

)
.

We set r(p) = |r(p)| for simplicity, then∑
p

p−1/2
(
r(p) + χ(p)r(p)

)
(3.24)

= L
∑

L2≤p≤exp((logL)2)

1
p log p

+O

(
L

∑
L2≤p|N

1
p log p

+ L

∣∣∣∣ ∑
L2≤p≤exp((logL)2)

χ∗(p)
p log p

∣∣∣∣)

= (1 + o(1))
L

2 logL
+O

 logN
L(logL)2

+ L

∣∣∣∣ ∑
L2≤p≤exp((logL)2)

χ∗(p)
p log p

∣∣∣∣
 .

To control ∑
L2≤p≤exp((logL)2)

χ∗(p)
p log p

(3.25)
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in the O-term, we invoke the following result (see [6, Chapter 20]): let

ψ(x, χ) =
∑
n≤x

χ(n)Λ(n)

where χ is a non-principal character mod q and Λ(·) is the von-Mangoldt function, then for
q ≤ exp(c

√
log x),

ψ(x, χ) = −x
β

β
+O(x exp(−c

√
log x))

where c > 0 is an absolute constant and β is the possible Siegel zero for L(s, χ). It is known
that the Siegel zero does not exist for non-real character χ and satisfies, if exists,

β ≤ 1− C(ε)q−ε

for some ineffective constant C(ε) > 0. Under the Grand Riemann Hypothesis (GRH), the
much better estimate

ψ(x, χ)�
√
x(log x)2

for q ≤ x (and non-principal χ) will be available.

Using them, we obtain easily that∑
L2≤p≤exp((logL)2)

χ∗(p)
p log p

� 1
(logL)2

,

if either

(i) L(s, χ) has no Siegel zero and N∗ ≤ exp(c
√

logL) ≤ exp(c′
√

log2N), or

(ii) L(s, χ) has a Siegel zero and N∗ ≤ c(ε)(logL)1/ε ≤ c(ε)(logL)1/ε, or

(iii) GRH is true (and N∗ ≤ N).

Under the condition (i), (ii) or (iii), we can ensure the O-term in (3.24) to be o(L/ logL), hence
by (3.23), ∑

f∈H∗k(N ′,χ∗) ω(f)RX(f)L(1/2, f)∑
f∈H∗k(N ′,χ∗) ω(f)RX(f)

= exp((1 + o(1))
L

2 logL
)

= exp
(

(
1
2

+ o(1))

√
logN
log2N

)
.

This completes the proof of Theorem 2 with the positivity of RX(f), and by (3.3) and (3.1),

sup
1/N≤y≤1

yk/2|f(iy)| � exp
(

(
1
2

+ o(1))

√
logN
log2N

)

� exp
(

(
1
2

+ o(1))

√
logN
log2N

)
N−1/2‖f‖,
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which yields Theorem 1.
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