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APPLICATIONS OF DEGREE ESTIMATE FOR

SUBALGEBRAS

YUN-CHANG LI AND JIE-TAI YU

Abstract. Let K be a field of positive characteristic and K〈x, y〉
be the free algebra of rank two over K. Based on the degree esti-
mate done by Y.-C. Li and J.-T. Yu, we extend the results of S.J.
Gong and J.T. Yu’s results: (1) An element p(x, y) ∈ K〈x, y〉 is a
test element if and only if p(x, y) does not belong to any proper re-
tract of K〈x, y〉; (2) Every endomorphism preserving the automor-
phic orbit of a nonconstant element ofK〈x, y〉 is an automorphism;
(3) If there exists some injective endomorphism φ of K〈x, y〉 such
that φ(p(x, y)) = x where p(x, y) ∈ K〈x, y〉, then p(x, y) is a coor-
dinate. And we reprove that all the automorphisms of K〈x, y〉 are
tame. Moreover, we also give counterexamples for two conjectures
established by Leonid Makar-Limanov, V. Drensky and J.-T. Yu
in the positive characteristic case.

Let K be a field and An = K[x1, · · · , xn] or An = K〈x1, · · · , xn〉. A

polynomial p ∈ An is called a test element of An, provided for all

K-endomorphisms φ of An fixing p are automorphisms of An. A sub-

algebra R is a retract of An if there exists a K-endomorphism π of An

such that R = π(An) and π fixes every element of R. Test elements and

retracts of groups and other algebraic structures are defined in a similar

way. Test elements and retracts of algebras and groups have recently

been studied in [3, 7, 8, 9, 13, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29].

It is easy to know by the definition that a test element does not belong

to any proper retract of An. The converse is proved by Turner [30] for

free groups, by Mikhalev and Zolotykh [24] and by Mikhalev and J.-T.

Yu [22, 23] for free Lie algebras and free Lie superalgebras respectively,
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by Mikhalev, Umirbaev and J.-T. Yu [19] for free nonassociative alge-

bras, and by S.-J. Gong and J.-T. Yu [10] for A2 in characteristic zero

case.

Now consider another related topic. The set S(p) = {φ(p)|φ ∈ Aut(An),

p ∈ An} is called the automorphic orbit of p. In a free group, the auto-

morphic orbit of some element is defined similarly. Certainly an auto-

morphism preserves the automorphic orbit of an element. The converse

is proved by Shpilrain [27] and Ivanov [11] for free groups of rank two,

by D. Lee [14] for free groups of any rank, by Mikhalev and J.-T. Yu

[23] for free Lie algebras, by Mikhalev, Umirbaev and J.-T. Yu [19] for

free nonassociative algebras, by van den Essen and Shpilrain [9] for A2

when p is a coordinate, by Jelonek [12] for polynomial algebras over C

when p is a coordinate and by S.-J. Gong and J.-T. Yu [10] for A2 in

characteristic zero case.

In section 1 we extend S.-J. Gong and J.-T. Yu’s above results regarding

test elements, retracts, and automorphic orbits to the free associative

algebra A2 = K〈x, y〉 over a field K of positive characteristic. Most

of the steps are the same, and the only difference is that we give a

new method instead of using the AMS theorem since it is not true for

positive characteristic case.

The following degree estimate [15] in arbitrary characteristic plays a

crucial role in this paper.

Theorem 0.1 (Degree estimate). Let An = K〈x1, · · · , xk〉 be a free

associative algebra over a field K of arbitrary characteristic and let

f, g ∈ A be algebraically independent. Suppose that v(f) and v(g) are

algebraically dependent and neither deg(f) divides deg(g) nor deg(g)

divides deg(f). Then for any P ∈ F 〈x, y〉 we have

deg(P (f, g)) ≥ D(f, g)wdeg(f),deg(g)(P ) where D(f, g) =
deg([f, g])

deg(fg)

In section 2, we consider another topic. J.-T. Yu and Makar-Limanov

raised the following two conjectures in [32] and in [6] respectively.
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Conjecture 0.2 (J.-T. Yu). Let K be a field of characteristic zero

and f and g be algebraically independent polynomials in K〈x, y〉 such

that the homogeneous components of maximal degree of f and g are

algebraically dependent. Let f and g generate their own centralizers

in K〈X〉 respectively. Suppose that deg(f) ∤ deg(g), deg(g) ∤ deg(f).

Then

deg([f, g]) > min{deg(f), deg(g)}.

Conjecture 0.3 (Makar-Limanov and J.-T. Yu). Let Char(K) = 0,

g ∈ K〈X〉 generate its own centralizer and let the homogeneous compo-

nent of maximal degree of g is an n-th power of an element of K〈X〉.

Then, for every m > n which is not divisible by n, the formal power

series gm/n ∈ K((X)) has a monomial of positive degree containing a

negative power of an indeterminate in X.

If Conjecture 0.2 is true, it would give a nice description of the group

of tame automorphisms of K〈x, y, z〉 algorithmically, much better than

the description of the group of tame automorphisms of K[x, y, z](see

[32]).

In [6] Vesselin Drensky and J.-T. Yu analyze the structure of K〈X〉 as

a K[u]-bimodule in characteristic zero case for some fixed monomial

u ∈ K〈X〉 which is not a proper power of another monomial and give

the counterexamples for both conjectures.

However, in the positive characteristic case, Conjecture 0.3 no long

makes sense since even the leading monomial of g is an n-th power, g

may not be an n-th power in K((X)). Hence, in section 2, we modify

Conjecture 0.3 to make sense for arbitrary characteristic and if re-

stricted to characteristic zero, it is equivalent to Conjecture 0.3. Then

for positive characteristic, we give counterexamples for both conjec-

tures.

1. Test elements, retracts and automorphic orbits

Recall that p ∈ A2 is called of outer rank 2 if to each pair coordinates

(f, g) of A2, both f and g appears in h(f, g) = p(x, y). Then we have
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Lemma 1.1. Let K be an arbitrary field. If p(x, y) ∈ A2 does not

belong to any proper retract, then it is of outer rank 2.

Proof. If p is of outer rank 1, let p(x, y) = h(f) where h(u) ∈ K[u]

and (f, g) is a pair of coordinates of A2. Then φ : f 7→ f ; g 7→ 0 is

a retraction fixing p(x, y) with the corresponding retract K[f ]. This

contradicts, and hence p is of outer rank 2. �

Lemma 1.2. Let K be an arbitrary field, φ be a proper retraction fixing

p(x, y) ∈ A2 − K and the corresponding retract is R. Then φ also

fixes a primitive element r(x, y) of p(x, y)(a primitive element r(x, y)

means that if r(x, y) = h(r1(x, y)) for some polynomial h(u) ∈ K[u]

and r1(x, y) ∈ A2, then deg(h(u)) = 1. A primitive element r(x, y)

of p(x, y) means that p(x, y) = h(r) for some h(u) ∈ K[u] and r is

primitive). Moreover, R = K[r].

Proof. It is proved by Casta in [3] (Lemma 1.3 and Theorem 3.5).

�

The proofs for the following five lemmas are similar to [10] for zero

characteristic case. Here we just using the degree estimate in [15]

instead of [17].

Lemma 1.3. Let K be an arbitrary field, p(x, y) ∈ A2−K, and φ is a

noninjective endomorphism of A2. If φ(p) = p, then φm is a retraction

fixing p(x, y) for some positive integer m.

Lemma 1.4. Let f(x, y), g(x, y) ∈ K〈x, y〉 and p(x, y) ∈ K〈x, y〉 be of

outer rank 2. Then wdeg(f),deg(g)(p(x, y)) ≥ deg(f) + deg(g). Moreover,

if there exists a monomial in p(x, y) whose degree is greater than 2

containing both x and y, then wdeg(f),deg(g)(p(f, g)) > deg(f) + deg(g).

Lemma 1.5. Let φ = (f, g) be an injective endomorphism of K〈x, y〉

and p(x, y) ∈ K〈x, y〉 is of outer rank 2. Then deg(p(f, g)) ≥ deg([f, g]).

Lemma 1.6. Let φ = (f, g) be an injective endomorphism but not an

automorphism of K〈x, y〉. Then [φk(x), φk(y)] ≥ k + 2 for all k ∈ N .

Lemma 1.7. Let p(x, y) be of outer rank 2. Then if φ = (f, g) is an

injective endomorphism but not an automorphism, φ(p(x, y)) 6= p(x, y).

Now we are ready to give the main results of this section.
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Theorem 1.8. An element p(x, y) ∈ K〈x, y〉 is a test polynomial if

and only if p(x, y) doesn’t belong to any proper retract.

Proof. The same as that [10] for zero characteristic case. �

Theorem 1.9. If an endomorphism φ preserve the automorphic orbit

of a nonconstant element p ∈ K〈x, y〉, then φ is an automorphism of

K〈x, y〉.

Proof. We may assume φ(p(x, y)) = p(x, y). By the definition of test

elements, we may assume p(x, y) is not a test element. By Theorem

1.8 , we may assume p(x, y) belongs to some proper retract, by a result

of J.-T. Yu([31], Lemma 2.3), we may assume p(x, y) is of outer rank

2. By Lemma 1.7 , we may assume φ is noninjective. Suppose that

p = f(r), where f ∈ K[t] − K and r is primitive. By Lemma 1.3 ,

π = φm is a retraction of K〈x, y〉 onto K[r] for some positive integer

m. As φ preserves the automorphic orbit of p, so does π = φm. Hence,

we have reduced our proof to the following. �

Lemma 1.10. Let π = (h1(r), h2(r)) be a proper retraction of K〈x, y〉

onto K[r] for some primitive element r. Then π does not preserve the

automorphic orbit of f(r) where s(x, y) = f(r) is of outer rank 2.

Proof. Suppose on the contrary, namely π preserves the automorphic

orbit of f(r). Then to each automorphism α there exists some au-

tomorphism β such that πα(f(r)) = β(f(r)), or f(πα(r)) = f(β(r))

equivalently. Since f(t) 6∈ K, πα(r) and β(r) are algebraically depen-

dent and hence they are generated by one element. Notice here, since

r is primitive, so is β(r). If not, then there exists some h(t) ∈ K[t]

with degt(h(t)) ≥ 2 and r1 ∈ K〈x, y〉 such that β(r) = h(r1). Then

r = h(β−1(r1)). Since degt(h(t)) ≥ 2, it contradicts to r being prim-

itive. Hence β(r) is also primitive. Then, since πα(r) and β(r) are

algebraically dependent, πα(r) = g(β(r)) for some g(t) ∈ K[t], and

hence g(β(r)) ∈ K[r] since πα(r) = π(α(r)) ∈ K[r].

By Lemma 1.2 , β(r) ∈ K[r] as well, and since r generates β(r) as well

as β(r) being primitive again, β(r) = ar + b where a, b ∈ K, a 6= 0.

Hence, to any automorphism α of K〈x, y〉, πα(f(r)) = f(ar + b)

for some a, b ∈ K, a 6= 0, and since degr(f(πα(r))) = degt(f(t)) ·

degr(πα(r)), degr(f(ar+b)) = degt(f)·degr(ar+b), we have degr(πα(r))

= degr(ar + b) = 1. Now we prove this is impossible.
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If r is of outer rank 1, then each element of K[r] is of outer rank 1.

This contradicts to s(x, y) = f(r) being of outer rank 2, and hence r

is of outer rank 2. Then both of x and y appear in r(x, y). Since K[r]

is proper, not both of h1(r) and h2(r) are constants, so we can assume

deg(h2(r(x, y))) ≥ 1. Let r(x, y) =
∑k

i=0 ai(y)x
i where ak(y) 6= 0,

k ≥ 1 and αM : x 7→ x + yM ; y 7→ y be an automorphism of K〈x, y〉

where M can be any non-negative integer. Then

αM(r) =

k∑

i=0

ai(y)(x+ yM)i.

We rewrite the relation as

αM(r) =

k∑

i=0

bi(x, y)y
Mi

where bi(x, y) is not concerned withM for each i. Notice here, bk(x, y) =

ak(y), and we can also rewrite the relation as

αM(r) = ak(y)y
kM +

k−1∑

i=0

bi(x, y)y
Mi,

Then

παM(r) = π(ak(y)y
kM +

∑k−1
i=0 bi(x, y)y

Mi)

= ak(h2(r))h
kM
2 (r) +

∑k−1
i=0 bi(h1(r), h2(r))h

Mi
2 (r).

Since ak(y) 6= 0 as well as h2(r) 6∈ K, ak(h2(r)) 6= 0. Then since

bi(h1(r), h2(r)) is not concerned withM , we can chooseM great enough

such that

degr(παM(r)) = degr(ak(h2(r))h
kM
2 (r))

= deg(ak(y)) · degr(h2(r)) + kM · degr(h2(r))
≥ M
> 1,

namely there exists an automorphism αM such that παM(f(r)) 6=

f(ar + b). �

Theorem 1.11. Let φ be an injective endomorphism of K〈x, y〉 and

p(x, y) ∈ K〈x, y〉. If φ(p) = x, then p is a coordinate, namely (p, q) is

an automorphism for some polynomial q(x, y) ∈ K〈x.y〉.

Proof. Let φ = (f, g). If φ is an automorphism, then of course p is

a coordinate, so we assume φ is not an automorphism. Since it is
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injective, deg([f, g]) ≥ 2. Hence if p is of outer rank 2, by Lemma

1.5, deg(p(f, g)) ≥ deg([f, g]) ≥ 2. This contradicts to deg(p(f, g)) =

deg(x) = 1. Then p(x, y) is of outer rank 1. Let p(x, y) = h(s(x, y))

where s is a coordinate ofK〈x, y〉 and h(u) ∈ K[u]. Since φ is injective,

f, g are algebraically independent, and since s(x, y) ∈ K〈x, y〉 − K,

s(f, g) ∈ K〈x, y〉 −K as well, and hence deg(s(f, g)) ≥ 1. Then

deg(p(f, g)) = deg(h(s(f, g))) = degu(h(u)) · deg(s(f, g)).

Since deg(p(f, g)) = deg(x) = 1, degu(h(u)) = 1, deg(s(f, g)) = 1,

namely p(x, y) = as+b where a, b ∈ K, a 6= 0. Hence p is a coordinate.

�

We can reprove the following theorem ([3, 4, 5, 16]) now.

Theorem 1.12. All the automorphisms of K〈x, y〉 are tame.

Proof. Similar to [10] for zero characteristic case. Here we just use the

degree estimate in [15] instead of [17]. �

2. Commutators

2.1. Restatements of the conjectures. For Conjecture 0.2, we can

extend it to positive characteristic case naturally.

Conjecture 2.1. Let K be a field of arbitrary characteristic, f and

g be algebraically independent polynomials in K〈X〉 such that the ho-

mogeneous components of maximal degree of f and g are algebraically

dependent. Let f and g generate their own centralizers in K〈X〉 re-

spectively. Suppose that deg(f) ∤ deg(g), deg(g) ∤ deg(f). Then

deg([f, g]) > min{deg(f), deg(g)}.

However, for Conjecture 0.3 it is not true for the positive characteristic

case.

We modify the statement of Conjecture 0.3 as follows to extend it to

positive characteristic case, and it is easy to verify that it is equivalent

to the Conjecture 0.3 for characteristic zero case.

Conjecture 2.2. Let K be an arbitrary field and g ∈ K〈X〉 generates

its own centralizer. Then to each pair (m,n) where m,n ∈ N , m,n ≥ 2,

n ∤ m and g1/n makes sense in K((X)), namely there exists some
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h ∈ K((X)) such that g = hn, gm/n ∈ K((X)) has a monomial of

positive degree containing a negative power of an indeterminate in X.

In [6], V. Drensky and J.-T. Yu proved the following theorem

Theorem 2.3. Let K be a field of characteristic zero. As a K[u1, u2]-

bimodule, K〈X〉 is a direct sum of three types of submodules: (1) K[u];

(2) K[u1, u2]t; (3) K[u1, u2]t1 +K[u1, u2]t2, where

(1) K[u] is generated by 1 where up
1 · 1 = up

2 · 1 = up;

(2) u is neither a head or a tail of t. If t is a tail (a head respectively)

of u, and t′ is the head (the tail respectively) of u, then ut 6= t′u (tu 6=

ut′ respectively).

(3) t1 and t2 are of the same degree and are a proper head and tail of

u respectively such that t1u = ut2. The defining relation of this module

is u2t1 = u1t2. What’s more, there exist v1, v2 ∈ F with v1v2 6= v2v1
and a positive integer k such that

u = (v1v2)
kv1, t1 = v1v2, t2 = v2v1.

With the similar proof, we can also extend it to the general case.

Theorem 2.4. Let K be an arbitrary field. As a K[u1, u2]-bimodule,

K〈X〉 is a direct sum of three types of submodules:

(1) K[u]; (2) K[u1, u2]t; (3) K[u1, u2]t1 +K[u1, u2]t2, where

(1) K[u] is generated by 1where up
1 · 1 = up

2 · 1 = up;

(2) u is neither a head or a tail of t. If t is a tail (a head respectively)

of u, and t′ is the head (the tail respectively) of u, then ut 6= t′u (tu 6=

ut′ respectively).

(3) t1 and t2 are of the same degree and are a proper head and tail of

u respectively such that t1u = ut2. The defining relation of this module

is u2t1 = u1t2. What’s more, there exist v1, v2 ∈ F with v1v2 6 v2v1 and

a positive integer k such that

u = (v1v2)
kv1, t1 = v1v2, t2 = v2v1.

And we also have the same solution for the equation

[um, s] + [un, r] = 0

in positive characteristic case.
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2.2. Counterexamples. For some special case, we have the lemma

on radicals for positive characteristic case ([2]) as follows

Lemma 2.5 (Bergman). Let Char(K) = p > 0 and g ∈ K((X)) where

v(g) = hn. Then if p ∤ n, g is an n-th power in K((X)).

Lemma 2.6. Let K be a field and Char(K) = 2. Then g = ((xy)kx)2+

xy + yx ∈ K((X)) with k ≥ 2 has a 2-nd root.

Proof. Let S = 〈xy, yx, ((xy)kx)2〉 be the subgroup generated by xy, yx

and ((xy)kx)2 in F = 〈x, y〉 which is the free group generated by x

and y. Then S ∩ 〈(xy)kx〉 = 〈((xy)kx)2〉 since on one hand of course

〈((xy)kx)2〉 ∈ S ∩ 〈(xy)kx〉 and on the other hand, to each s ∈ S ∩

〈(xy)kx〉, deg(s) is even since s ∈ S, and hence if s = ((xy)kx)m, m

must be even. Namely S ∩ 〈(xy)kx〉 = 〈((xy)kx)2〉.

Since S is a subgroup of F , it is also well-ordered, and hence Z/2Z((S))

makes sense. Now consider g as an element of Z/2Z((S)), and ac-

cording to Bergman, there exists some e ∈ Z/2Z((S)) with v(e) =

1 such that supp(ege−1) ⊆ CS(((xy)
kx)2). We have proved above

that CS(((xy)
kx)2) = 〈((xy)kx)2〉, and hence ege−1 = ((xy)kx)2 +∑+∞

i=0 ai((xy)
kx)−2i where ai = 0 or 1.

Let t = (xy)kx +
∑+∞

i=0 ai((xy)
kx)−i, and it is easy to see that t2 =

ege−1. Let h = e−1te, and we get h2 = g, namely g is a 2-nd power in

Z/2Z((S)) and of course in K((X)). �

Theorem 2.7. Let X = {x, y}, k ≥ 2, and let

u = (xy)kx, v = xy, w = yx,

f = u3 + r, r = uv + uw + wu,

g = u2 + s, s = v + w.

Then (f, g) is a counterexample for Conjecture 2.1, and the fraction

deg([f, g])

deg(g)
=

(2k + 5)

(4k + 2)

is strickly larger than 1/2 and can be made as close to 1/2 as possible

by increasing k.

Proof. The same as [6]. �
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Theorem 2.8. Let X = {x, y}, k ≥ 2, and let

u = (xy)kx, v = xy, w = yx,

g = u2 + s, s = v + u.

Then g3/2 is a counterexample of Conjecture 2.2.

Proof. According to Lemma 2.5 and Lemma 2.6, g1/2 always exists.

The rest are the same as [6]. �
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