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Abstract

Rigidity for proper holomorphic mappings among SU(p, q)-type flag domains (also known as
generalized balls) on projective spaces is obtained. We prove that the mappings are linear when
the signature difference is not too large. One important ingredient of our proof is a linearity
criterion of Feder about holomorphic immersions between projective spaces. Using extension
techniques in several complex variables and carefully analyzing the structure of the moduli of
linear subspaces in these flag domains, we are able to get holomorphic immersions between two
projective subspaces of suitable dimensions and hence apply Feder’s result.

1 Introduction

The objects of study in the present article are the domains in Pn defined by

Dℓ
n =

{
[z0, . . . , zn] ∈ Pn :

ℓ∑
j=0

|zj|2 >
n∑

j=ℓ+1

|zj|2
}

and the proper holomorphic mappings among them. They are examples of the so-called flag
domains in Pn when the latter is regarded as a flag variety. More explicitly, they are open
orbits of the real forms SU(ℓ+ 1, n− ℓ) of the complex simple Lie group SL(n+ 1,C) when
both of which act on Pn as biholomorphisms.

The domain D0
n is just the complex unit n-ball embedded in Pn and there has been an

extensive literature in the study of their proper holomorphic mappings in the last couple of
decades. For a survey, see [4]. In general, when the codimension is high, the set of proper
holomorphic mappings between complex unit balls is large and difficult to determine. On the
other hand, in the recent works of Baouendi-Huang [2] and Baouendi-Ebenfelt-Huang [1], the
domains Dℓ

n with ℓ ≥ 1 and the associated holomorphic mappings are studied by methods
in Cauchy-Riemann geometry. It appears that there is in general much more rigidity when
ℓ ≥ 1. Indeed, there is one essential difference between the complex unit n-ball and the
domains Dℓ

n with ℓ ≥ 1, for the latter contain linear subspaces of Pn. Motivated by this the
author of the present article studied in [6] the domains Dℓ

n, ℓ ≥ 1, and their generalizations in
Grassmannians by exploiting the structure of the moduli spaces of compact complex analytic
subvarieties. Rigidity results analogous to those of [2] are obtained in a more geometric way.
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We will follow the terminologies in [2] and [1] to call ℓ the signature of the domain Dℓ
n. As

far as rigidity of holomorphic mappings among those domains is concerned, the determining
factor should be the difference in signatures rather than the codimension. This is illustrated
by, for instance, in [2] that when the domain and target are of the same signature, then any
local proper holomorphic map is the restriction of a linear embedding between the ambient
projective spaces. On the other hand, in [1], Baouendi-Ebenfelt-Huang studied the situations
with a small signature difference. Together with other results, they proved that there is
partial rigidity for local proper holomorphic mappings h : U ⊂ Dℓ

n → Dℓ′
m when 1 ≤ ℓ < n/2,

1 ≤ ℓ′ < m/2 and ℓ′ ≤ 2ℓ− 1. Furthermore, simple examples can be constructed explicitly to
demonstrate that their partial rigidity is best possible and in particular we cannot have full
rigidity for local proper holomorphic mappings, i.e. there are local proper holomorphic maps
which are not the restrictions of linear embeddings between projective spaces.

The main purpose of the current article is to prove the following theorem regarding the
rigidity for global proper holomorphic mappings among Dℓ

n when the difference in signatures
is small.

Main Theorem. Let 1 ≤ ℓ < n/2, 1 ≤ ℓ′ < m/2 and f : Dℓ
n → Dℓ′

m be a proper holomorphic
map. If ℓ′ ≤ 2ℓ− 1, then f extends to a linear embedding of Pn into Pm.

Remarks. (1) In [1], it has been proved under the same assumptions that the image of f is
contained in a projective linear subspace of dimension n+ (ℓ′ − ℓ). Our proof is independent
of this result. (2) In the theorem, when ℓ = 1, which also forces ℓ′ = 1, the above result
is already obtained in [2] and a more geometric proof is given in [6]. (3) Without further
assumptions, the condition ℓ′ ≤ 2ℓ− 1 is necessary to guarantee linearity. This is illustrated
by the following non-linear mapping from P3 to P5 defined by

[z0, z1, z2, z3] 7→ [z20 ,
√
2z0z1, z

2
1 , z

2
2 ,
√
2z2z3, z

2
3 ].

It is easy to see that this map restricts to a proper holomorphic map from D1
3 to D2

5. This
example is take from [2].

We now discuss the scheme of proof for the Main Theorem. Our proof relies on the
following linearity criterion of Feder [3].

Feder’s Theorem. Let h : Pℓ → Pℓ′ be a holomorphic immersion. If ℓ′ ≤ 2ℓ − 1, then h is
linear.

In order to apply Feder’s theorem, we have to show two things: (i) there exists some ℓ-
dimensional projective linear subspace L ⊂ Dℓ

n on which the restriction of f is an immersion;
(ii) the image f(L) is contained in some ℓ′-dimensional projective linear subspace in Pm.

We prove (i) by first showing that f extends to a rational map from Pn to Pm and this is
achieved by standard Hartogs’ extension techniques in several complex variables. From that
we can furthermore deduce the finiteness of f on Dℓ

n. We then establish our key Proposi-
tion 3.4. Roughly speaking, it allows us to extract from a finite holomorphic mapping some
holomorphic immersions of linear subspaces of sufficiently high dimension. The statement is
obtained essentially by analyzing the kernel of the differential of f .

For (ii), we basically follow the same approach as in [6]. We first prove that ℓ-dimensional
projective linear subspaces in the boundary ∂Dℓ

n are mapped to ℓ′-dimensional projective
linear subspaces in the target space due to the properness of f . Then by analyzing the
moduli space of these projective linear subspaces we prove that the boundary behaviour can
be carried over to the interior and hence (ii).
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After establishing (i) and (ii), Feder’s Theorem now says that the restriction of f on some
ℓ-dimensional projective linear subspace is linear and thus deg(f) = 1.

Acknowledgement. The author would like to thank Professor Ngaiming Mok for a lot of
invaluable advice especially for pointing out the possible relevance of Feder’s theorem in the
problem. He would also like to thank Professor Xiaojun Huang for many fruitful discussions
and his detailed explanation on his work in [2] and [1].

2 Linear subspaces of Dℓ
n and foliations

In [6], the structure of the set of projective linear subspaces contained in Dℓ
n is studied and it

is crucial to the present article also. In order to make the article more self-contained, we will
briefly recall some relevant facts in this section.

For a point [z] = [z0, . . . , zn] ∈ Pn, we split its homogeneous coordinates as [z] = [z′, z′′]ℓ,

where z′ = (z0, . . . , zℓ) and z′′ = (zℓ+1, . . . , zn). We denote the closure of Dℓ
n in Pn by Dℓ

n. We
first recall the definition of type-I irreducible bounded symmetric domains and its compact
dual the complex Grassmannians.

Definition 2.1. Let M(p, q;C) be the set of p× q complex matrices. We identify M(p, q;C)
as Cpq. The type-I irreducible bounded symmetric domain Ωp,q is the domain in Cpq defined
by Ωp,q = {A ∈ M(p, q;C) : I − AAH > 0}, where AH denotes the Hermitian transpose of A.
As a Hermitian symmetric space, the compact dual of Ωp,q is the complex Grassmannian of
p-dimensional linear subspaces of Cp+q and we denote it by Gp,q.

Proposition 2.2. Dℓ
n (resp. Dℓ

n) contains a family of ℓ-dimensional projective linear sub-

spaces. They are maximal compact complex analytic subvarieties in Dℓ
n (resp. Dℓ

n). Moreover,
the set of all such linear subspaces is parametrized by Ωℓ+1,n−ℓ (resp. Ωℓ+1,n−ℓ). Furthermore, if
ℓ < n/2, the boundary ∂Dℓ

n also contains a family of ℓ-dimensional projective linear subspaces
and the Shilov boundary of Ωℓ+1,n−ℓ parametrizes precisely those contained in the boundary.

Proof. The complete proof is given in [6] (Proposition 2.2, Proposition 2.3 and Lemma 2.4
therein). Here we just give the explicit parametrization of the linear subspaces. Let A ∈
M(ℓ+ 1, n− ℓ;C). Consider the ℓ-dimensional linear subspace

{[z′, z′′]ℓ ∈ Pn : z′′ = z′A} ∼= Pℓ ⊂ Pn.

Then as z′z′H > z′AAHz′H for all z′ if and only if I − AAH > 0, we see that such the above
linear subspace is contained in Dℓ

n if and only if A ∈ Ωℓ+1,n−ℓ. The parametrization extends
to the respective closures in the natural way. Note that when ℓ < n/2, the Shilov boundary
of Ωℓ+1,n−ℓ is just the set of all matrices A such that AAH = I. For such an A, the above
linear subspace will then be contained completely in ∂Dℓ

n.

In the followings, by an ℓ-Grassmann bundle of a manifold M , denoted by GℓTM , we
mean the bundle of Grassmannians of the ℓ-planes in each tangent space on M . We denote
the Grassmannian of ℓ-planes in the tangent space at p ∈ M by GℓTpM .

Proposition 2.3. Let π : GℓTDℓ
n → Dℓ

n be the ℓ-Grassmann bundle of Dℓ
n. There is an open

set V ℓ
n ⊂ GℓTDℓ

n, π(V
ℓ
n ) = Dℓ

n such that V ℓ
n is a trivial holomorphic Pℓ-bundle over Ωℓ+1,n−ℓ.
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Proof. Fix a point p ∈ Dℓ
n. Since Pℓ is compact and Dℓ

n is open, we deduce that there is an
open set Up ⊂ GℓTpDℓ

n consisting of precisely all the tangent ℓ-planes which are tangent to
some ℓ-dimensional projective linear subspace contained in Dℓ

n. Since the tangent plane at a
point uniquely determine the linear subspace, combining with Proposition 2.2, the statements
in the proposition are immediate.

The above Pℓ-foliation of V ℓ
n is just the universal family of ℓ-dimensional projective linear

subspaces in Dℓ
n and we denote it by Π : V ℓ

n → Ωℓ+1,n−ℓ. Furthermore, it is simply the
restriction of the standard universal family of ℓ-dimensional projective linear subspaces in Pn

and we also denote it by Π : GℓTPn → Gℓ+1,n−ℓ.

Lemma 2.4. If ℓ < n/2, then any germ of complex submanifold in ∂Dℓ
n must lie in an

ℓ-dimensional projective linear subspace contained in ∂Dℓ
n.

Proof. In fact, by [8], the ℓ-dimensional projective linear subspace contained in ∂Dℓ
n are the

holomorphic arc components or boundary components of ∂Dℓ
n, whose defining properties are

precisely the statement in the lemma. For a more elementary proof of the lemma, see [6].

3 Finite rationality and immersion

We will first prove that every proper holomorphic map f : Dℓ
n → Dℓ′

m, ℓ ≥ 1, extends to a
finite rational map. We begin with an elementary lemma in algebraic geometry.

Lemma 3.1. Let h : Pn → Pm be a rational map. If S ⊂ Pn is a compact complex analytic
subvariety in the domain of h and h is constant on S, then S is a finite set of points.

Proof. By composing h with a linear transformation, we may assume that h(S) = [1, 0, . . . , 0].
Let h = [h0, . . . , hm], where all hj are polynomials of the same degree. By assumption, for
1 ≤ j ≤ m, we have hj|S ≡ 0. If S is of positive dimension, then the zero set of h0 must
intersect S and hence S intersects the set of indeterminacy of h and this violates our initial
assumption. Thus, S is finite set of points.

Proposition 3.2. f extends to a rational map from Pn to Pm. Furthermore, f is a finite
map.

Proof. For each j ∈ {0, . . . , n}, let Uj ⊂ Pn be the open set defined by zj ̸= 0. Note that the

complement Pn \ Dℓ
n is the domain defined by

ℓ∑
j=0

|zj|2 ≤
n∑

j=ℓ+1

|zj|2. In particular, we have

Pn \ Dℓ
n ⊂

n∪
j=ℓ+1

Uj.

Hence, it suffices to establish the meromorphic extension of the component functions of f
(as meromorphic functions) on Uj, for each j ∈ {ℓ + 1, . . . , n}. Now fix j ∈ {ℓ + 1, , . . . , n},
then in terms of the standard inhomogeneous coordinates (w1, . . . , wn) on Uj, the domain
Dℓ

n ∩ Uj is defined by the equation

ℓ+1∑
k=1

|wk|2 >
n∑

k=ℓ+2

|wk|2.
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If we decompose Uj
∼= Cn = Cℓ+1 × Cn−ℓ−1, then for every relatively compact open set

V b Cn−ℓ−1 containing the origin, the component functions of f extend meromorphically
over Cℓ+1 × V ⊂ Cn by Hartogs’ extension [7] since ℓ+1 ≥ 2. In other words, f extends to a
meromorphic map from Uj to Pm. We have thereby established the meromorphic extension
of f on each Uj, j ∈ {ℓ+1, . . . , n} and hence f extends to a meromorphic and hence rational
map from Pn to Pm.

Now since f : Dℓ
n → Dℓ′

m is proper and holomorphic, for every p ∈ Dℓ′
m, the preimage

f−1(p) ⊂ Dℓ
n is a compact complex analytic subvariety in Pn and hence is a finite set by

Lemma 3.1. Thus, f is a finite map.

In the remaining of this section, we will prove the key proposition of the present article.
It is by this proposition that we can extract from f holomorphic immersions of projective
spaces of sufficiently high dimension. We need the following dimension formula in its proof.

Lemma 3.3. Let V be an n-dimensional complex vector space and GV (ℓ) be the Grassmannian
of ℓ-dimensional vector subspaces of V . Fix a k-dimensional vector subspace W ⊂ V and
denote by W ⊂ GV (ℓ) the irreducible analytic subvariety consisting of elements having non-
trivial intersection with W . Then

dim(W) =

{
(k − 1) + (ℓ− 1)(n− ℓ) if k ≤ n− ℓ
ℓ(n− ℓ) if k > n− ℓ.

Proof. When k > n− ℓ, the lemma is trivial since in this case W = GV (ℓ) and dim(GV (ℓ)) =
ℓ(n− ℓ).

Suppose now k ≤ n− ℓ, then W is simply the closure of a Schubert cell in GV (ℓ) and one
can follow the procedures in [5] (Chapter 1, Section 5) to calculate its dimension. For the
convenience of the reader, we provide an elementary proof here.

We may simply take V = Cn. Let Eℓ = {(z1, . . . , zn) ∈ Cn : zℓ+1 = zℓ+2 = · · · = zn = 0}.
Let π : Cn → Eℓ be the canonical projection and U = {Q ∈ GCn(ℓ) : π(Q) = Eℓ}. Then U
is a standard Euclidean coordinate chart in GCn(ℓ) and U ∼= Cℓ(n−ℓ). Note that every Q ∈ U
can be represented by an ℓ× n matrix of the form

1 0 · · · 0 z1,1 · · · z1,(n−ℓ)

0 1 · · · 0 z2,1 · · · z2,(n−ℓ)

. . .
...

0 0 · · · 1 zℓ,1 · · · zℓ,(n−ℓ)

 ,

in which the rows constitute a basis of Q. The zj,k are precisely the standard Euclidean
coordinates on U .

Add a basis of W as rows to the above matrix and we get a (k + ℓ)× n matrix. Now it is
easy to see that the condition that dim(Q∩W ) ≥ 1 is given by the vanishing of n− (k+ℓ)+1
minors of size (k+ ℓ)× (k+ ℓ). Equivalently, W∩U is defined by n− (k+ ℓ)+1 independent
algebraic equations and hence

dim(W) = dim(GCn(ℓ))− [n− (k + ℓ) + 1]

= ℓ(n− ℓ)− [n− (k + ℓ) + 1]

= (k − 1) + (ℓ− 1)(n− ℓ).
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Proposition 3.4. Let g : Pn → Pm be a finite rational map. Then for ℓ < n/2, the restriction
of g on a general ℓ-dimensional projective linear subspace is a holomorphic immersion.

Proof. Let X ⊂ Pn be the indeterminacy of g and U := Pn \X. We still denote the restriction
of g on U as g and thus g : U → Pm is a finite holomorphic map.

Let dg : TU → TPm be the differential of g. Since g is finite, in particular not totally
degenerate, dg induces naturally a meromorphic map [dg] from GℓTU (the ℓ-Grassmann
bundle of U) to GℓTPm. Let Z ⊂ GℓTU be set of the indeterminacy of [dg]. We are going
to show that the complex analytic subvariety Z is of dimension less than (ℓ + 1)(n − ℓ).
Assume this dimension estimate for the moment. Now let Π : GℓTPn → Gℓ+1,n−ℓ be the
universal family of ℓ-dimensional projective linear subspaces in Pn (see Proposition 2.3 and
the paragraph thereafter). Note that Π is proper and hence Π(Z) ⊂ Gℓ+1,n−ℓ is a locally-
closed complex analytic subvariety. But dim(Gℓ+1,n−ℓ) = (ℓ+ 1)(n− ℓ) and therefore by our
dimension estimate Π(Z) is not dense in Gℓ+1,n−ℓ. Thus, for a general point q ∈ Gℓ+1,n−ℓ, the
differential [dg] is well defined on Π−1(q) ∼= Pℓ. It is equivalent to saying that the restriction
of g on the ℓ-dimensional projective linear subspace corresponding to Π−1(q) is an immersion
and the proof is complete.

We now prove the dimension estimate.

For k ∈ {1, . . . , n}, let Ik ⊂ U be the set of points where the kernel of dg (as a linear map
at each individual point) is of dimension at least k. As g is finite, Ik ⊂ U is a complex analytic
subvariety of dimension at most n− k and In ⊂ · · · ⊂ I1 = π(Z), where π : GℓTU → U is the
canonical projection. Now for every p ∈ U , the fibre of Z over p (i.e. Z ∩GℓTpU) is the set of
ℓ-planes in TpU having a non-trivial intersection with the kernel of dg at p. By Lemma 3.3,

dim(Z ∩GℓTpU) =

{
(k − 1) + (ℓ− 1)(n− ℓ) if p ∈ Ik \ Ik+1, k ∈ {1, . . . , n− ℓ}
ℓ(n− ℓ) if p ∈ In−ℓ+1.

(∗)

Let Zk = π−1(Ik) ⊂ Z, where 1 ≤ k ≤ n. It is clear that each Zk is also a complex analytic
subvariety of GℓTU and Zn ⊂ Zn−1 ⊂ · · · ⊂ Z1 = Z. We start from Zn. Considering the
projection π, we deduce that

dim(Zn) ≤ dim(fibre) + dim(base) = dim(Z ∩GℓTpU) + dim(In),

where p ∈ In is arbitrary. Consequently, we have

dim(Zn) ≤ ℓ(n− ℓ) + 0 < (ℓ+ 1)(n− ℓ)

by (∗). Next, Zn−1 \ Zn is a locally closed complex analytic subvariety and its dimension, by
similar reasoning, is at most equal to

ℓ(n− ℓ) + 1 < ℓ(n− ℓ) + (n− ℓ) = (ℓ+ 1)(n− ℓ)

as ℓ < n/2. Hence
dim(Zn−1) < (ℓ+ 1)(n− ℓ).

With ℓ < n/2, we have analogously for every k ∈ {1, . . . , ℓ− 1},

ℓ(n− ℓ) + k < ℓ(n− ℓ) + (n− ℓ) = (ℓ+ 1)(n− ℓ).

Thus we can repeat the above argument to conclude that

dim(Zn) ≤ dim(Zn−1) ≤ · · · ≤ dim(Zn−ℓ+1) < (ℓ+ 1)(n− ℓ).
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Now for Zn−ℓ \ Zn−ℓ+1, it is a locally closed complex analytic subvariety and

dim(Zn−ℓ \ Zn−ℓ+1) ≤ dim(Z ∩GℓTpU) + dim(In−ℓ) (p ∈ In−ℓ)

≤ [(n− ℓ− 1) + (ℓ− 1)(n− ℓ)] + ℓ

= (n− 1) + (ℓ− 1)(n− ℓ)

< (ℓ+ 1)(n− ℓ),

where the term in the square bracket is by (∗) and the last inequality is again due to the
assumption that ℓ < n/2. Consequently,

dim(Zn−ℓ) < (ℓ+ 1)(n− ℓ).

By repeating the argument, we get for every k ∈ {1, . . . , n−ℓ} that dim(Zk) < (ℓ+1)(n−ℓ)
and hence we have established dim(Z) < (ℓ+ 1)(n− ℓ).

It is for the sake of notational simplicity that we work with global mappings in Proposi-
tion 3.4. Indeed, we can simply restrict the whole argument on open subsets and obtain the
following local version.

Proposition 3.5. Let D ⊂ Pn be an open set, M be a complex manifold and g : D → M be
a finite holomorphic map. Let ℓ < n/2 and L ⊂ Pn be an arbitrary ℓ-dimensional projective
linear subspace intersecting D. Then for a general choice of L, the restriction of g on L ∩D
is a holomorphic immersion.

4 Proof of the Main Theorem

Throughout this section, we let f : Dℓ
n → Dℓ′

m be a proper holomorphic map, ℓ ≥ 1.

Proposition 4.1. If ℓ < n/2 and ℓ′ < m/2, then for each ℓ-dimensional projective linear
subspace L ⊂ Dℓ

n (as described in Proposition 2.2), we have f(L) ⊂ L′, where L′ is some
ℓ′-dimensional linear subspace in the target Pm.

Proof. By Proposition 3.2, f extends as a rational map and hence the induced meromorphic
map [df ] : GℓTDℓ

n → GℓTPm extends to an open neighborhood of GℓTDℓ
n and in particular

to an open neighborhood of the universal family Π : V ℓ
n → Ωℓ+1,n−ℓ (see the paragraph after

Proposition 2.3). More precisely, we mean [df ] extends to an open neighborhood W ⊃ V
ℓ

n

and Π(W ) = U is some open neighborhood of Ωℓ+1,n−ℓ.

Now we consider the composition f ♯ := π ◦ [df ], where π : GℓTPm → Pm is the canonical
projection. Take a general point b in the Shilov boundary of Ωℓ+1,n−ℓ so that [df ] and hence f ♯

is defined on the ℓ-dimensional projective linear subspace over the point b ( i.e. Π−1(b)). By
the properness of f and Lemma 2.4, we have f ♯(Π−1(b)) ⊂ ∂Dℓ

m and hence f ♯(Π−1(b)) ⊂ L′
b for

some ℓ′-dimensional projective linear subspace L′
b ⊂ Pm. In other words, on the holomorphic

Pℓ-bundle Π : W → U ⊃ Ωℓ+1,n−ℓ, the map f ♯ maps the general fibres over the Shilov
boundary of Ωℓ+1,n−ℓ to ℓ′-dimensional projective linear subspaces in Pm. Note that this is an
analytic condition, i.e. it can be expressed in terms of the vanishing of a set of holomorphic
functions in local coordinates (e.g. some degeneracy conditions on a set of vertical derivatives
on the base). Now we have a set of holomorphic functions vanish on the intersection of an open
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set and the Shilov boundary of Ωℓ+1,n−ℓ and therefore they must vanish on the entire open set.
(For a proof of this, see [6], Lemma 2.9 therein.) Hence, we conclude this degeneracy property
also holds for the general fibres in the interior, i.e. f ♯ maps general fibres to ℓ′-dimensional
projective linear subspaces in Pm. This precisely means that f maps general and hence all
ℓ-dimensional projective linear subspaces into ℓ′-dimensional projective linear subspaces.

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. By Proposition 3.2 together with Proposition 3.4, there exists
an ℓ-dimensional projective linear subspace L0 ⊂ Dℓ

n on which the restriction of f is an
immersion. However, by Proposition 4.1, f(L0) is contained in some ℓ′-dimensional projective
linear subspace in Pm. As ℓ′ ≤ 2ℓ − 1, we have by Feder’s Theorem that the restriction of
f on L0 is linear. Therefore, we can now conclude that as a rational map the degree of f is
one. Thus, f is linear.
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