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On a bounded domain U b Cm on the Euclidean space we denote by ds2U the

Bergman metric. Let D b Cn and Ω b CN be bounded domains on Euclidean spaces.

In Mok [Mo4] (2012) we studied germs of holomorphic isometries between these domains.

We proved

Theorem 1 (Mok [Mo4]). Let λ > 0 and f : (D,λ ds2D;x0)) → (Ω, ds2Ω; y0) be a

holomorphic isometry with respect to the Bergman metric up to a normalizing con-

stant. Assume that the Bergman metrics on D and Ω are complete, that the Bergman

kernel KD(z, w) on D extends to a rational function in (z, w), and that analogously

the Bergman kernel KD(ξ, ζ) extends to a rational function in (ξ, ζ), Then, f extends

to a proper holomorphic isometric embedding F : (D,λ ds2D) → (Ω, ds2Ω). Moreover,

Graph(f) ⊂ D × Ω extends to an affine-algebraic subvariety V ⊂ Cn × CN .

In particular, the extension theorem above applies to the case where D b Cn

and Ω b CN are bounded symmetric domains in their Harish-Chandra realizations.

When D is also irreducible and of rank ≥ 2, Clozel-Ullmo [CU] (2003) observed that

the proof of Hermitian metric rigidity in Mok [Mo1,2] already yields the total geodesy

of f . Thus, nonstandard, (i.e., not totally geodesic) holomorphic isometries from an

irreducible bounded symmetric domain D into a (not necessarily irreducible) bounded

symmetric domain Ω may exist only in the case where D is of rank 1, i.e., biholomorphic

to the complex unit ball Bn of dimension n ≥ 1.

In Mok [Mo4] we constructed examples of nonstandard holomorphic isometries of

the Poincaré disk into polydisks and into the Siegel upper half-plane of genus 3. It was

unknown whether there exist nonstandard holomorphic isometries of the complex unit

ball of dimension ≥ 2 into bounded symmetric domains, and the question was raised in

Mok [Mo3].

In this article we prove an existence theorem on nonstandard holomorphic isometric

embeddings from the complex unit ball of a certain specific dimension into any given

irreducible bounded symmetric domain of rank ≥ 2.

Main Theorem. Let Ω b CN be an irreducible bounded symmetric domain of rank

≥ 2 and denote by S the irreducible Hermitian symmetric manifold of the compact type

dual to Ω. Denoting by δ ∈ H2(S,Z) ∼= Z the positive generator of the second integral

cohomology group of S, we write c1(S) = (p + 2)δ. Then, there exists a nonstandard

proper holomorphic isometric embedding F :
(
Bp+1, ds2Bp+1

)
↪→ (Ω, ds2Ω).

§1 Preliminaries and proof of Main Theorem Denote by Ω ⊂ S the Borel embed-

ding of Ω as an open subset of its dual Hermitian symmetric space S of the compact type.
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For instance, in the case of type-I domains DI
p,q =

{
Z ∈ M(p, q;C) : Iq − Z

t
Z > 0

}
,

where M(p, q;C) denotes the complex vector space of p-by-q matrices with complex co-

efficients, we have the Borel embedding DI
p,q ⊂ G(p, q), G(p, q) being the Grassmannian

of complex q-planes of W ∼= Cp+q. The construction of holomorphic isometric embed-

dings of the complex unit ball in Main Theorem for irreducible bounded symmetric

domains Ω is related to geometric concepts on the compact dual S, which is a Fano

manifold of Picard number 1 uniruled by projective lines, viz., rational curves C repre-

senting the generator of H2(X,Z) ∼= Z, which are realized as projective lines when S is

embedded into the projective space P
(
H0(S,O(1))∗

)
, O(1) being the positive generator

of the Picard group Pic(S) ∼= Z. In a general theory of projective uniruled manifolds,

we have defined the notion of varieties of minimal rational tangents, cf. Hwang-Mok

[HM](1999). In the case of a projective submanifold manifold X uniruled by projective

lines, as is the case of S ⊂ P
(
H0(S,O(1))∗

)
, the minimal rational curves are necessarily

projective lines, and the variety of minimal rational tangents at a general point x ∈ X

is a smooth projective submanifold Cx(X) ⊂ P(Tx(X)) consisting of projectivizations

of nonzero vectors α ∈ Tx(X) tangent to projective lines ℓ passing through x. Here by

a general point we mean a point x ∈ X through which every minimal rational curve

passing through x is free, i.e., TX |ℓ is a direct sum of holomorphic line bundles of degree

≥ 0. In our case of irreducible Hermitian symmetric manifolds of the compact type S

all points x ∈ S are equivalent under Aut(S), and Cx(S) ⊂ PTx(S) is itself a Hermitian

symmetric manifold of the compact type, either of rank 2 embedded by the minimal

embedding, or of rank 1, thus biholomorphic to Pn and embedded either by the minimal

embedding (i.e., by O(1)) or by the Veronese embedding, (i.e., by O(2)). For instance,

in the case of G(p, q), we have Cx(S) ∼= Pp−1 × Pq−1 ⊂ P(Cp ⊗ Cq) ∼= Ppq−1 given by

the Segre embedding. In the cases where p = 1 or q = 1, S is the projective space and

Cx(S) = PTx(S). The cases where Cx(S) ⊂ PTx(X) are given by the Veronese embed-

ding of projective spaces correspond precisely to Hermitian symmetric manifolds of the

compact type of type-III, viz., where S is the Lagrangian Grassmannian consisting of

Lagrangian vector subspaces in a complex symplectic vector space.

Write G0 for the identity component of the holomorphic isometry group of (Ω, ds2Ω).

We have Ω = G0/K, where K ⊂ G0 is the isotropy subgroup at a base point 0 ∈ Ω.

We denote by GC the identity component of Aut(S) and by gC its Lie algebra. GC

contains G0 as a noncompact real form. GC acts transitively on S and we have S =

GC/P as a rational homogeneous manifold, where P ⊂ GC is a maximal parabolic

subgroup. The Borel embedding β : Ω ↪→ S is given by β(gK) = gP ∈ GC/P ∼= S.

In the embedding Ω is contained in the orbit of 0 = eK ∈ Ω under M+ = exp(m+),

where gC = m+ ⊕ kC ⊕m− is the Harish-Chandra decomposition in standard notations.

Here kC is the complexification of the Lie algebra k of the isotropy subgroup K ⊂ G0,

kC ⊕ m− is the Lie algebra p of P ⊂ GC, and hence m+ ⊂ gC can be identified with

T0(S) = T0(G
C/P ) = gC/p ∼= m+. The Harish-Chandra realization is given by Ω b

M+.0 ∼= m+ ∼= CN . Here M+.0 is the M+-orbit of 0 = eP . We note that M+.0 ∼= m+

is a Zariski open subset of S = GC.0, and we have the inclusions Ω b CN ⊂ S which

contains both the Harish-Chandra realization and the Borel embedding. For details we
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refer the reader to Wolf [Wo] (1972).

In our proof of Main Theorem we will make use of algebro-geometric objects to

derive a holomorphic isometry by taking the limit of certain “algebraic” subsets of Ω

under a one-parameter family of automorphisms in Aut(Ω). More precisely, we will rely

on the one hand on varieties of minimal rational tangents on the Hermitian symmetric

manifold S dual to Ω and on the other hand on asymptotic properties of restrictions

of canonical Kähler metrics to strictly pseudoconvex submanifolds exiting Ω along reg-

ular boundary points. For the latter half we have the following well-known statement

about the geometry of strictly pseudoconvex domains, which goes back to Klembeck

[Kl] (1978), cf. also Cheng-Yau [CY].

Proposition 1 (Klembeck [Kl]). Let U ⊂ Cn be a Euclidean domain, ρ be a smooth

real function on U and b be a point on U . Suppose ρ(b) = 0 and dρ(x) ̸= 0 for any

x ∈ U . Assume furthermore that ρ is strictly plurisubharmonic on U , i.e.,
√
−1∂∂ρ > 0

on U . Let U ′ ⊂ U be the open subset defined by ρ < 0, and s be the Kähler metric

on U ′ for which the Kähler form is given by ω =
√
−1∂∂(−log (−ρ)). Then (U ′, s)

is asymptotically of constant holomorphic sectional curvature −2 at b, i.e., at a point

x ∈ U ′ choosing ϵ(x) ≥ 0 to be the smallest nonpositive number such that holomorphic

sectional curvatures of (U ′, s) at x are bounded between −2− ϵ(x) and −2 + ϵ(x), then

ϵ(x) → 0 as x ∈ U ′ approaches b ∈ ∂U ′ ∩ U .

We note that our convention for a Kähler metric g is given in local holomorphic

coordinates by g = 2
∑

gαβ(z)dz
α ⊗ dzβ (with a factor of 2) with Kähler form ωg =

√
−1

∑
gαβ(z)dz

α∧dzβ , which explains for the difference in the asymptotic holomorphic

sectional curvature −2 in place of −4 as in [Kl].

We are now ready to give a proof of Main Theorem.

Proof of Main Theorem. We will construct an explicit example of a bona fide holo-

morphic isometric embedding Φ :
(
Bp+1, ds2Bp+1

)
↪→ (Ω, ds2Ω). The ensuing discussion

involves the fine structure of bounded symmetric domain, for which we refer the reader

to Wolf [Wo] for details. Let Ω b CN ⊂ S be inclusions such that Ω ⊂ S is the Borel

embedding and Ω b CN is the Harish-Chandra realization of Ω where CN is the orbit

of 0 = eP under M+ = exp(m+) as described above. Let C0 ⊂ PT0(Ω) be the variety

of minimal rational tangent at 0 ∈ Ω ⊂ S. (C0 is equivalently the variety of tangents to

minimal disks on (Ω, ds2Ω). For x ∈ S define

Vx =
∪{

ℓ : ℓ is a minimal rational curve on S through x
}
.

For x ∈ S we define Vx := Vx ∩ Ω ⊂ Ω. When x ∈ Ω, Vx ⊂ Ω is a (p+ 1)−dimensional

subvariety which is smooth except for an isolated singularity at 0 ∈ V in the case where

rank(Ω) := r ≥ 2. Write K ⊂ Aut0(Ω) for the isotropy subgroup at 0 ∈ Ω. By the

Polydisk Theorem, there exists a maximal polydisk P ∼= ∆r embedded in Ω as a totally

geodesic complex submanifold. Moreover, all maximal polydisks on Ω are equivalent to

each other under Aut0(Ω), and we have furthermore

Ω =
∪

{γP : γ ∈ K} .
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For η ∈ T0(Ω), η is equivalent to some ξ = diag(η1, · · · , ηr) ∈ T0(P ) under K-action.

Moreover, there is an injective group homomorphism Aut(P ) ↪→ Aut0(Ω) for the full

group Aut(P ) of automorphisms of P (which allows for the permutation of Cartesian

factors). Thus, for η ̸= 0, [η] ∈ C0(S) if and only if the Euclidean disk Cη ∩ Ω is of

radius 1, and C0(S) is a single orbit under the action of K on PT0(S). We have

V0 = V0 ∩BN ; hence ∂V0 ⊂ ∂BN is strictly pseudoconvex.

Choose the minimal disk D = ∆ × {0} ⊂ V . From Aut(D) ↪→ Aut(Ω) we get a 1-

parameter family of transvections Φ = {φt : −1 < t < 1} ⊂ Aut0(Ω), φt|D ∈ Aut(D),

φt(z, 0) =
(

z+t
1+tz , 0

)
. For t ∈ (−1, 1) and the point φt(0) = (t, 0) ∈ D = ∆ × {0} ⊂ Ω,

we sometimes write Vt for V(t,0), etc. Here Harish-Chandra coordinates on Ω, which are

unique up to unitary transformations, are chosen such that a maximal polydisk is given

by P = {(z1, · · · , zr; 0, · · · , 0) : |zi| < 1 for 1 ≤ i ≤ r}. In what follows for a subset

E ⊂ CN and y ∈ Cn we write E + y := {x+ y : x ∈ E}. Since Aut(S) preserves the set

of minimal rational curves on S, for any γ ∈ Aut(S) we have Cγ(x)(S) = [dγ(x)](Cx(S)),
where for a linear isomorphism λ : E → E′ between two finite-dimensional vector

spaces we denote by [λ] : P(E) → P(E′) the induced projective linear isomorphism.

In particular, for γ = exp(η), η ∈ m+, belonging to the vector group of translations

M+ = exp(m+), we have Vη ∩ CN = (V0 ∩ CN ) + η. (Recall that m+ is identified

with T0(Ω) by identifying the constant holomorphic vector field m+ ∈ m+ with its

value at 0.) Now for t ∈ (−1, 1), Vt = V(t,0) is uniquely determined by the variety of

minimal rational tangents Ct(S) ⊂ PTt(S). Thus Vt = γ(V0) for any γ ∈ Aut(S) such

that γ(0) = (t, 0). Especially, we may take γ = exp(η), where η = φt(0) = (t, 0) ∈
Ω ∼= CN ∼= m+, i.e., γ

∣∣
CN is the Euclidean translation by (t, 0). As a consequence,

Vt = Vt ∩ Ω = (V0 + (t, 0)) ∩ Ω. Letting t → −1 and writing q for (−1, 0) ∈ ∂D ⊂ ∂Ω,

Vt converges to Vq as subvarieties in Ω as t → −1. Any point x on Vq is the limit of

points xt ∈ Vt as t → −1. More explicitly, Vq = V0 + q, so that x = x0 + q for some

x0 ∈ V0, and it suffices to take xt = x0 + (t, 0) which lies on Ω for t sufficiently close to

−1, so that xt ∈ (V0 + (t, 0)) ∩ Ω = Vt ∩ Ω = Vt.

Denote by h the canonical Kähler-Einstein metric on Ω such that minimal disks

are of Gaussian curvature −2. Then, for any x ∈ Vq, the germ of Kähler manifold

(Vq, h|Vq ;x) is the limit of (Vt, h|Vt ;xt) for some xt ∈ Vt converging to x as t → −1. The

latter is equivalent under the action of Φ to (V0, h|V0 ;φ
−1
t (xt)). Note that φ−1

t (0) =

(−t, 0) → (1, 0) := p as t → −1.

On Ω we denote by d(·, ·) the distance function with respect to the complete Kähler-

Einstein metric h, which is invariant under Aut(Ω). Observe that d(φ−1
t (xt), φ

−1
t (0)) =

d(xt, 0) is bounded. For x ∈ V0 write δ(x) = 1−∥x∥, where ∥·∥ stands for the Euclidean

norm, and denote by ge the Euclidean metric. From the strict pseudoconvexity of V0

at the boundary point p ∈ ∂V0, we know that g|V0 ≥ C
δ ge|V0 for some constant C > 0,

i.e., ge|V0 ≤ δ
C g|V0 . It follows that ∥φ−1

t (xt) − φ−1
t (0)∥ → 0 as t → −1. Since φ−1

t (0)

converges to p = (1, 0) as t → −1, it follows that, as t → −1, the points φ−1
t (xt) on Ω

converge in CN to p too.
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By Proposition 1, (V0, h|V0) is asymptotically of constant holomorphic sectional

curvature −2 as points approach p ∈ ∂V . Thus, Vq is of constant holomorphic sectional

curvature −2 at x ∈ V . Since x ∈ V is arbitrary, V ⊂ Ω is of constant holomorphic

sectional curvature −2. It follows that (Vq, h|Vq ) is locally holomorphically isometric

to (Bp+1, g). From the extension theorem of Mok [Mo4] on holomorphic isometries

(Theorem 1 here), Vq ⊂ Ω is actually the image of a bona fide holomorphic isometric

embedding F :
(
Bp+1, g

)
↪→ (Ω, h) is a holomorphic isometry. Writing Z := F (Bp+1) ⊂

Ω, for any x ∈ Z and any vector ξ ∈ Tx(Z) of unit length with respect to (Ω, h),

denoting by R the curvature tensor with respect to specified Kähler metrics, we have

Rξξξξ(Z, h|Z) = Rξξξξ(Ω, h)− ∥σ(ξ, ξ)∥2 ,

where σ denotes the second fundamental form of (Z, h|Z) ↪→ (Ω, h), ∥·∥ denotes the norm
measured with respect to metrics induced from h. As is well-known, [ξ] ∈ Cx(S) if and
only if Rξξξξ(Ω, h) = −2 (cf. Mok [Mo2, Appendix III, Proposition 1, p.242ff.]) Since

(Z, h|Z) is of constant holomorphic sectional curvature −2 it follows that σ(ξ, ξ) = 0

if and only if ξ is a minimal rational tangent on S. Since rank(S) ≥ 2, we have

Cx(S)  PTx(S), so that σ(ξ, ξ) ̸= 0 for a generic nonzero vector ξ ∈ Tx(Ω), hence

(Z, h|Z) ↪→ (Ω, h) is a fortiori nonstandard.

For the proof of Main Theorem it remains to show that F :
(
Bp+1, ds2Bp+1

)
↪→(

Ω, ds2Ω
)
, i.e., F : Bp+1 ↪→ Ω is also a holomorphic isometry with respect to the Bergman

metric, viz., F ∗ (ds2Ω) = ds2Bp+1 . For any bounded homogeneous domain U b Cm, the

Bergman metric ds2U is of constant Ricci curvature −1 (cf. Mok [Mo2, p.59, proof of

Proposition 3]). To deduce F ∗ (ds2Ω) = ds2Bp+1 from the statement F ∗h = g it suffices

to check that g = ν ds2Bp+1 , h = ν ds2Ω for the same constant ν. Equivalently, it suffices

to check that the Kähler-Einstein manifolds
(
Bp+1, g

)
and (Ω, h) have the same Ricci

constants.

For the complex unit ball we have Ric
(
Bp+1, g

)
= −(2 + p) since (Bp+1, g) is of

constant holomorphic sectional curvature −2, while holomorphic bisectional curvatures

Rααββ(g) = −1 whenever α and β are orthogonal unit vectors at some x ∈ Bp+1.

As to (Ω, h) we consider the dual Hermitian symmetric manifold S of the compact

type. Let g0 = k ⊕
√
−1m be the Cartan decomposition of the Lie algebra g0 of G0.

Let Gc ⊂ GC be the compact real form with Lie algebra gc = k ⊕ m. Let hc be

the Gc-invariant Kähler-Einstein metric on S = Gc/K such that hc agrees with h0 at

0 = eP ∈ GC/P ∼= S. Then (Ω, h) and (S, hc) constitute a dual pair of Hermitian

symmetric manifolds such that the curvature tensors are opposite at 0. Thus, at 0 we

have Rijkℓ(h) = −Rijkℓ(hc). (For more details on dual symmetric spaces we refer the

reader to Hegalson [Hel].) Let α ∈ T0(S) be a unit minimal rational tangent and ℓ ⊂ S

be a minimal rational curve on S passing through 0 such that T0(ℓ) = Cα. We have

the Grothendieck decomposition TS

∣∣
ℓ
∼= O(2)⊕O(1)p ⊕Oq, where the direct summand

O(2) = Tℓ, and the direct sum O(2) ⊕ O(1)p ⊂ TS

∣∣
ℓ
is uniquely determined. At 0,

writing Pα := (O(2)⊕O(1)p)0, we have T[α](C0(S)) ≡ Pα/Cα. We have the eigenspace

decomposition at 0 of (S, hc) for the Hermitian bilinear form Hα(ξ, η) = Rααξη(hc)
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given by T0(Ω) = Cα⊕Hα ⊕Nα, where Cα resp. Hα resp. Nα is the eigenspace of Hα

corresponding to the eigenvalues 2 resp. 1 resp. 0. Moreover, we have Pα = Cα⊕Hα.

By duality and computing at 0 ∈ Ω we see that the Ricci constant of (Ω, h) is equal to

−(2 + p). (For more details regarding minimal rational curves we refer the reader to

Hwang-Mok [HM]. For eigenspace decomposition of Hα for Hermitian symmetric spaces

cf. Mok [Mo2].) Thus (Bp+1, g) and (Ω, h) have the same Kähler-Einstein constant

−(2+ p), and it follows that F ∗ds2Ω = ds2Bp+1 for the Bergman metrics ds2Ω and ds2Bp+1 ,

as desired. The proof of Main Theorem is complete. �

§2 Upper bounds on dimensions of complex unit balls isometrically embed-

dable into an irreducible bounded symmetric domain From our Main Theo-

rem, which is an existence result on holomorphic isometries of complex unit balls Bn

into irreducible bounded symmetric domains, it is natural to ask whether the dimension

n = p(Ω)+1 is the maximal possible dimension for holomorphic isometries. Maintaining

the notation g resp. h for the canonical Kähler-Einstein metric on the complex unit

ball Bn resp. Ω such that minimal disks are of constant Gaussian curvature −2, we

have the following estimate on the dimension of the complex unit ball Bn.

Theorem 2. Let Ω ⊂ S be the Borel embedding of an irreducible bounded symmetric

domain Ω into its dual Hermitian symmetric manifold S of the compact type, where

Pic(S) ∼= Z, generated by the positive line bundle O(1). Let g resp. h be the canonical

Kähler-Einstein metric on Bn resp. Ω normalized so that minimal disks on Bn resp. Ω

are of constant Gaussian curvature −2. Let p = p(Ω) be the nonnegative integer such

that K−1
S

∼= O(p + 2). Let n ≥ 1 and F : (Bn, g) → (Ω, h) be a holomorphic isometry

(which is necessarily a proper holomorphic isometric embedding). Then n ≤ p+ 1.

We need some preparation for the proof of Theorem 2 to understand the implication

of the hypothesis F ∗g = h on the boundary behavior of the map F . For an irreducible

bounded symmetric domain Ω b CN in its Harish-Chandra realization, from the fine

structure on Ω (cf. Wolf [Wo]), the boundary ∂Ω decomposes into exactly r orbits under

the action of the identity component G0 of Aut(Ω). In what follows we will be dealing

with semi-analytic sets A ⊂ Cm, and a point on a ∈ A is said to be smooth if and only if

there is some neighborhood U of a such that A∩U ⊂ U is a real-analytic submanifold.

We will denote by Reg(A) ⊂ A the set of smooth points of A. Thus Reg(A) ⊂ Cm is a

locally closed real-analytic submanifold. Since Ω is irreducible and of rank r, we have a

decomposition ∂Ω = E1 ∪ · · · ∪Er into r orbits under the action of G0, where E1 ⊂ ∂Ω

is the unique open orbit, Er is the Shilov boundary, and Ek lies in the closure of Eℓ

whenever k ≤ ℓ. By Mok-Ng [MN, Lemma 2.2.3] the set ∂Ω ⊂ Cn is smooth at b ∈ ∂Ω

if and only if b lies on the unique open G0-orbit E1 ⊂ ∂Ω, so that Reg(Ω) = E1.

Regarding the Bergman kernel on bounded symmetric domains we have the follow-

ing lemma from Faraut-Korányi [FK, pp.76-77, especially Eqns.(3.4) and (3.9)].

Lemma 1. Let Ω b Cn be a bounded symmetric domain in its Harish-Chandra re-

alization. Write KΩ(z, w) for the Bergman kernel of Ω. Then, there exists a poly-

nomial QΩ(z, w) holomorphic in z and anti-holomorphic in w such that KΩ(z, w) =
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1
QΩ(z,w) . More precisely, Q(z, w) = AΩH(z, w)m, where H(z, w) is some polynomial in

(z1, · · · , zn;w1, · · · , wn) invariant under K, AΩ > 0 is a constant and m is a pos-

itive integer, with the following property. Let P ∼= ∆r be a maximal polydisk on

Ω passing through 0, identified as ∆r × {0} in Harish-Chandra coordinates. Then

z = (z1, · · · , zr; 0) ∈ P and we have

H(z, z) = (1− |z1|2)× · · · × (1− |zr|2) .

From Lemma 1, writing ρ(z) = −H(z, z), the Kähler metric with Kähler form

ωh =
√
−1∂∂ (−log(−ρ)) is a multiple of the Bergman metric. Denoting by P ⊂ Ω the

maximal polydisk as in Lemma 1, restricting to the minimal disk D = ∆×{0} ⊂ P ⊂ Ω

this gives the Poincaré disk with Gaussian curvature −2, and hence ωh is precisely the

Kähler form of h as in the statement of Theorem 2.

For x ∈ CN , we consider dρ(x) ∈ T ∗
x (CN ). For the proof of Theorem 2 we will need

the following lemma concerning dρ on ∂Ω.

Lemma 2. E1 ⊂ ∂Ω is precisely the subset of ∂Ω where dρ is nonzero.

Proof. To see this, note first of all that at a point p = (1, 0, . . . 0; 0) ∈ ∂P ⊂ Cr ×{0} :=

W , which lies on E1, we have by direct computation using the formula in Lemma 1 that

dρ(p)
∣∣
Tp(W )

̸= 0, so that, a fortiori we have dρ(p) ̸= 0. It follows that dρ(γ(p)) ̸= 0 for

any γ ∈ G0, hence dρ is nonzero on E1. To prove the claim in the above we argue by

contradiction. Suppose there exists a point q ∈ Es for some s ≥ 2 such that dρ(q) ̸= 0.

Since any open neighborhood U of q on ∂Ω meets Ek for 1 ≤ k ≤ s, for the sake of

convenience and without loss of generality we may take s = 2.

Since dρ(q) ̸= 0 by assumption, the level set Q0 := {ρ = 0}, which is a real-analytic

subset of CN , is smooth at q. Denote by Q the irreducible component of Q0 containing

q ∈ E2. We have checked that E1 ⊂ ∂Ω, and q ∈ Q by assumption, hence E2 = G0.q

also lies on Q, by G0-invariance of Q, so that E1∪E2 ⊂ Q. On the other hand, assuming

without loss of generality that q belongs to the closure P of the maximal polydisk P and,

restricting to the complex vector subspace W ⊂ CN which contains P as an open set, we

may take q ∈ ∂∆×∂∆×∆r−2×{0} ⊂ Ω. Since Q ⊃ E1 we have Q ⊃ ∂∆×∆r−1×{0},
hence Q ⊃ ∂∆×Cr−1×{0} by the real-analyticity of Q, showing that Q−Ω ̸= ∅. More

precisely, for any open neighborhood U of q in Q, U − Ω ̸= ∅. From this we are going

to get a contradiction, for topological reasons.

To this end note first of all that ∂Ω is homeomorphic to the unit sphere S2N−1.

In fact, by the Hermann Convexity Theorem (Hermann [Her]), ∂Ω is the unit sphere

with respect to some Banach norm on the complex vector space CN , and, denoting by

∥ · ∥ the Euclidean norm on CN , the map Φ : ∂Ω → S2N−1 defined by Φ(x) = x
∥x∥ is a

homeomorphism of ∂Ω onto the unit sphere S2N−1. Consequently, ∂Ω is a topological

manifold. Let U0 be a neighborhood of q in ∂Ω, U0 ⊂ E1 ∪ E2, such that U0 is

homeomorphic to R2n−1. The inclusion i : U0 ↪→ Q gives a continuous and injective

map from U0 into the smooth part Reg(Q) of Q. Shrinking U0 if necessary we may

assume that U lies on a Euclidean coordinate chart. By Brouwer’s Invariance of Domain
7



Theorem in Algebraic Topology (cf. Spanier [Sp, p.199, Theorem 6]), i is open, giving

a homeomorphism of U0 onto an open neighborhood U = i(U0) of q in Q. But by the

last paragraph we have on the other hand U − Ω ̸= ∅, a plain contradiction, showing

that s ≥ 2 cannot happen. In other words s = 1 and E1 ⊂ ∂Ω is precisely the locus

over which dρ ̸= 0, as desired. �

For the proof of Theorem 2 we will furthermore need to know the structure of the

unique open orbit E1 ⊂ ∂Ω as can be deduced from Wolf [Wo]. We refer to Mok-

Tsai [MT] for the notion of characteristic subspaces and to Mok [Mo2] for geometric

formulations in terms of curvature of the canonical Kähler-Einstein metric.

Let Ω b CN ⊂ S be an irreducible bounded symmetric domain in its Harish-

Chandra realization as a Euclidean domain and in its embedding as an open subset of the

dual Hermitian symmetric manifold S of the compact type. Let α ∈ T0(Ω) be a minimal

rational tangent and write T0(Ω) = Cα ⊕ Hα ⊕ Nα for the eigenspace decomposition

with respect to the Hermitian bilinear form Hα(ξ, η) := Rααξη(Ω, h) corresponding

to the eigenvalues −2, −1 and 0 (as given in the proof of Theorem 2). Then, there

exists a unique totally geodesic complex submanifold Ω′
α ⊂ Ω such that T0(Ωα) = Nα.

Ω′
α ⊂ Ω are the characteristic subspaces of maximal dimension in Mok-Tsai [MT]. The

complex submanifolds Ω′
α are all equivalent to each other under the action of the isotropy

subgroup K ⊂ G0. Moreover, denoting by (∆, g) the Poincaré disk with constant

Gaussian curvature −2 and by (Ω′, h′) the bounded symmetric domain isometric with

to
(
Ω′

α, h
∣∣
Ω′

α

)
for any minimal rational tangent α ∈ T0(Ω), byDα the minimal disk on Ω

passing through 0 such that T0(Dα) = Cα, we have a holomorphic isometric embedding

Λα : (∆, g) × (Ω′, h′) ↪→ Ω onto a totally geodesic complex submanifold Σ ⊂ Ω such

that Λα(0, 0) = 0 and such that T0(Σα) = Cα ⊕ Nα = T0(Dα) ⊕ T0(Ω
′
α). We have

Reg(∂Σα) ⊃ Λα(∂∆× Ω′). For any θ ∈ R, we have Λα({eiθ} × Ω′) := Ω′
α,θ ⊂ E1. The

full statement of the lemma below on the structure of Reg(∂Ω) is not strictly necessary

for the proof of Theorem 2, but it is useful to put things in perspective as the proof will

relate the construction in Main Theorem to the formulation and proof of Theorem 2.

Lemma 3. The real analytic manifold E1 = Reg(∂Ω) decomposes into disjoint union

of complex manifolds of the form Ω′
α,θ. Moreover, for t ∈ Ω′

α,θ ⊂ E1, Tb(Ω
′
α,θ) is

precisely the 0-eigenspace of the Levi form
√
−1∂∂ρ restricted to the complex tangent

space T 1,0
t (∂Ω).

Here the complex tangent space T 1,0
t (∂Ω) ⊂ T 1,0(CN ) ∼= CN is the complex hyper-

plane Ep such that, denoting by TR(·) the real tangent bundle, Re(Et) ⊂ TR
t (CN ) ∼= R2N

is the J-invariant real 2-dimensional vector subspace defined by Re(Et) = TR
t (∂Ω) ∩

JTR
t (∂Ω), where J is the J-operator of the standard complex structure on CN . (For a

point x ∈ CN we make no distinction between Tx(CN ) and T 1,0
x (CN ).) The restriction

of the Levi form (which depends on the choice of a defining function) to the complex

tangent space T 1,0
t (∂Ω) is uniquely determined up to a positive multiplicative constant.

Since Ω ⊂ CN is convex (Hermann [Her]), E1 = Reg(∂Ω) is in particular weakly pseu-

doconvex, so that the Levi form
√
−1∂∂ρ is positive semi-definite on T 1,0

t (∂Ω).
8



Proof of Lemma 3. The first statement is well-known (cf. Wolf [Wo]). As to the second

statement, since ρ
∣∣
Ω′

α,θ

≡ 0, clearly T 1,0
t (Ω′

α,θ) lies on the 0-eigensace Lt of the restriction

of
√
−1∂∂ρ to T 1,0

t (∂Ω). Since G0 acts transitively on E1 the complex dimension of

Lt is independent of t ∈ E1. By the construction in Main Theorem, writing V0 ⊂ S

for the union of minimal rational curves passing through 0 ∈ Ω b CN , V0 ∩ ∂Ω =

V0 ∩ E1 = V0 ∩ ∂BN is a smooth strictly pseudoconvex real hypersurface of V0. Thus

for b ∈ V0 ∩ E1,
√
−1∂∂ρ is positive definite on T 1,0

t (∂(V0 ∩ Ω)) = T 1,0
t (V0 ∩ E1). Now

T 1,0
t (V0 ∩ E1) is a complex hyperplane in T 1,0

t (V0) ∼= Cp+1. Thus, T 1,0
t (V0 ∩ E1) ⊂

T 1,0
t (∂Ω) is a complex p-dimensional vector subspace on which the Levi form of ρ is

positive definite, so that T 1,0
t (V0∩E1)∩T 1,0

t (Ω′
α,θ) = 0. But dimC(Ω

′
α,θ) = dimC(Nα) =

q, and p+ q = N − 1 = dimC(T
1,0
t (Ω′

α,θ)). It follows that the 0-eigenspace Lt is exactly

the same as T 1,0
t (Ω′

α,θ), as asserted. �
We are now ready to give a proof of Theorem 2, as follows.

Proof of Theorem 2. Let F : (Bn, g) → (Ω, h) be a holomorphic isometry. By Mok [Mo4]

(cf. Theorem 1 here), F is a proper holomorphic embedding, and Graph(F ) ⊂ Cn×CN

extends to an affine-algebraic subvariety. In particular, at a general point b ∈ ∂Bn, there

exists an open neighborhood U of b in Cn such that F
∣∣
U∩Bn extends to a holomorphic

embedding F ♯ : U → CN with the property that F ♯(U ∩ ∂Bn) ⊂ ∂Ω. Recall that we

have a decomposition ∂Ω = E1 ∪ · · · ∪ Er into r orbits under the action of G0. Taking

U ∩ ∂Bn to be connected there is a smallest positive integer s, 1 ≤ s ≤ r such that

F ♯(U ∩ ∂Bn) ⊂ Es. For this choice of s there is some (possibly empty) real-analytic

subvariety A & U ∩ ∂Bn such that F ♯ (∂Bn −A) ⊂ Es, and we will simply say that F ♯

(or just F ) exits ∂Ω along the stratum Es.

We claim that the stratum Es where F ♯ exits ∂Ω must necessarily be E1. Suppose

F ♯ exits ∂Ω along Es for some s ≥ 2. Let b ∈ U ∩ ∂Bn be a general point and

Γ be a connected component of the intersection of U with an affine line L passing

through b. Then (Γ, g|Γ) ↪→ (Bn, g) is a totally geodesic Hermitian Riemann surface

of constant Gaussian curvature −2. On the other hand, by Lemma 2 d
(
(F ♯)∗ρ

)
must

vanish on Tb(Γ), so that (F ♯)∗ρ
∣∣
Γ
must vanish exactly to the order m for some m ≥ 2

at b ∈ Γ ∩ ∂Bn. By a direct computation (Γ, F ∗h|Γ) is asymptotically of Gaussian

curvature −2
m , a plain contradiction. As a consequence, we have proven that F ♯ exits

along E1 = Reg(∂Ω).

To prove Theorem 2 it suffices now to consider the situation where b ∈ ∂Bn is a

general point, U is a neighborhood of b in Cn, F ♯ is a holomorphic embedding on U ,

H := F ♯(U ∩ ∂Bn) = F ♯(U) ∩ E1 ⊂ F ♯(U) := Z. Here H, being the image of the

strictly pseudoconvex hypersurface U ∩ ∂Bn ⊂ U under the embedding F ♯, must be a

smooth strictly pseudoconvex hypersurface in Z. Thus, restricting to T 1,0
t (Z ∩ E1) for

t = F ♯(b), b ∈ U ∩ ∂Bn, the Levi form
√
−1∂∂ρ must be positive definite. By Lemma

3, the kernel Lt of
√
−1∂∂ρ on T 1,0

t (E1) is of dimension exactly equal to q, and we

conclude that (n− 1)+ q ≤ N − 1. Since 1+ p+ q = N we deduce immediate n ≤ p+1,

as desired. �
In the proof of Theorem 2 it was established that F ∗h = g implies that F (Bn) ∩
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Reg(∂Ω) ̸= ∅. We observe that the converse of the above statement also holds true. For

the proof of the converse statement we need the following form of the Hopf Lemma.

Lemma 4 (Mok [Mo5]). Let W ⊂ CN be a connected open subset such that W ∩∂Ω ⊂
Reg(∂Ω). Suppose Λ ⊂ W is a holomorphic curve such that Λ ∩ Reg(∂Ω) ̸= ∅. Then,

for a general point p ∈ Λ ∩ ∂Ω, we have T 1,0
p (Λ) ∩ T 1,0

p (∂Ω) = 0, where T 1,0
p (∂Ω) is the

complex tangent space of Reg(∂Ω) at p.

We proceed to prove

Theorem 3. Let n ≥ 1, λ > 0, and F : (Bn, λ g) → (Ω, h) be a holomorphic isometry

such that F (Bn) ∩ Reg(∂Ω) ̸= ∅. Then, λ = 1 and n ≤ p(Ω) + 1.

Proof. By assumption F (Bn) ∩ Reg(∂Ω) ̸= ∅. Let b ∈ ∂Bn be a general point, U be

a connected open neighborhood of b in Cn such that F |U∩Bn admits an extension to

a holomorphic embedding F ♯ : U → CN . Recall that ωg stands the Kähler form of

(Bn, g) and ωh stands for the Kähler form of (Ω, h). We have ωh =
√
−1∂∂(− log(−ρ))

(where ρ(z) = −H(z, z) as in Lemma 1), so that F ∗ωh =
√
−1∂∂(− log(−F ∗ρ)), while

ωg =
√
−1∂∂(− log(1− ∥z∥2)).

By Lemma 4, when n = 1 replacing b by some point on U ∩∂B1 and shrinking U if

necessary we may assume without loss of generality that (F ♯)∗ρ vanishes along U ∩∂B1

exactly to the order 1, so that −F ∗ρ = (1 − ∥z∥2)µ on U for some smooth function µ

on U such that µ
∣∣
U∩B1 is strictly positive. For Bn of arbitrary dimension, one can slice

U by complex lines passing through a general point b ∈ ∂Bn to conclude from Lemma

2 that dρ(b)|Γ ̸= 0 and hence a fortiori we have dρ(b) ̸= 0, so that we may also assume

without loss of generality that (F ♯)∗ρ vanishes exactly to the order 1 on U ∩∂Bn. Thus

on U ∩ Bn, we have also − log(−F ∗ρ) = − log(1− ∥z∥2) + log µ for a smooth function

µ on U which is strictly positive on U ∩ ∂Bn. As a consequence, we have

F ∗(ωh) =
√
−1∂∂(− log(−F ∗ρ))

=
√
−1∂∂(− log(1− ∥z∥2)) +

√
−1∂∂µ = ωg +

√
−1∂∂µ .

By assumption F ∗ωh = λωg. On the other hand
√
−1∂∂µ is bounded as a (1, 1)-form

on U ∩ Bn by a multiple of the Euclidean Kähler form β , while ωg is bounded from

below by A
1−∥z∥2β for some constant A > 0, from which it follows that

√
−1∂∂µ = o(ωg)

on U ∩ Bn as points approach ∂Bn. From this it follows that λ = 1 and F ∗ωg = ωh,

and from Theorem 2 we conclude that n ≤ p+ 1, as desired. �
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