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Abstract

Unveiling a fundamental link between information theory and estimation theory,
the I-MMSE relation by Guo, Shamai and Verdu [14], together with its numerous
extensions, has great theoretical significance and various practical applications. On the
other hand, its influences to date have been restricted to channels without feedback
or memory, due to the absence of its extensions to such channels. In this paper,
we propose extensions of the I-MMSE relation to discrete-time and continuous-time
Gaussian channels with feedback and/or memory. Our approach is based on a very
simple observation, which can be applied to other scenarios, such as a simple and direct
proof of the classical de Bruijn’s identity.

Index Terms: mutual information, minimum mean-square error, the I-MMSE relation,
information theory, estimation theory, feedback channel, memory channel

1 Introduction

Consider the following discrete-time memoryless Gaussian channel

Y =
√
snrX + Z, (1)

where snr denotes the signal-to-noise ratio of the channel, X and Y denote the input and
output of the channel, respectively, and the standard normally distributed noise Z is inde-
pendent of X. An interesting recent result by Guo, Shamai and Verdu [14] states that for
any channel input X with E[X2] <∞,

d

dsnr
I(X;Y ) =

1

2
E[(X − E[X|Y ])2], (2)

where the left hand side is the derivative of I(X;Y ) with respect to snr, and the right-hand
side is half of the so-called minimum mean-square error (MMSE), which corresponds to the
best estimation of X given the observation Y . The I-MMSE relation (2) carries over verbatim
to linear vector Gaussian channels and has been widely extended to continuous-time Gaussian

∗A preliminary version of this paper has been presented in IEEE ISIT 2015 [20].
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channels [14], abstract Gaussian channels [48], additive channels [15], arbitrary channels [32],
derivatives with respect to arbitrary parameterizations [31], higher order derivatives [33], and
so on.

Unveiling an important link between information theory and estimation theory, the I-
MMSE relation as above and its numerous extensions are of fundamental significance to
relevant areas in these two fields and have been exerting far-reaching influences over a wide-
range of topics. Representative applications include, but not limited to, power allocation
of parallel Gaussian channels [27], analysis of extrinsic information of code ensembles [35],
Gaussian broadcast channels [17], Gaussian wiretap channels [17, 3], Gaussian interference
channels [4], interference alignment [47], a simple proof of the classical entropy power in-
equality [43]. For a comprehensive reference to the applications of the I-MMSE relation and
its extensions, we refer to [38] .

On the other hand, all the applications of the I-MMSE relation to date have been re-
stricted to channels without feedback or memory, due to the lack of extensions of the I-
MMSE relation to such channels. In this regard, a “plain” generalization of the original
I-MMSE relation to feedback channels should not be expected, which has been noted in [14],
where an example is given to show that the exact I-MMSE relation fails to hold for some
continuous-time feedback channel. In this paper, we remedy the situations with some ex-
plicit correctional terms (which vanish if the channel does not have feedback or memory) and
extend the I-MMSE relation to channels with feedback or memory. Despite the fact that the
I-MMSE relation have been examined from a number of perspectives (see its multiple proofs
in [14]), our approach is still novel and powerful. As a matter of fact, other than recovering
and extending the I-MMSE relation, our approach can be applied elsewhere, such as yielding
a simple and direct proof of the classical de Bruijn’s identity [39, 5]; see Section 2.2.

Our approach is based on a surprisingly simple idea, which can be roughly stated as
follows: before taking derivative of an information-theoretic quantity with respect to certain
parameters, we represent it as an expectation with respect to a probability space independent
of the parameters. For illustrative purpose, in what follows, we consider the discrete-time
Gaussian channel in (1) and review a “conventional” proof of (2) in [14] and compare it with
ours.

First, note that for the channel in (1), taking derivative of I(X;Y ) is equivalent to that
of H(Y ), which can be written as the expectation of − log fY (Y ):

H(Y ) = −E[log fY (Y )].

In their fourth proof of (2), the authors of [14] choose the probability space, with respect to
which the expectation as above is taken, to be the sample space of Y (with naturally induced
measure), which obviously depends on snr. With respect to this probability space, H(Y ) is
naturally expressed as:

H(Y ) = −
∫
R
fY (y) log fY (y)dy.

Then, under some mild assumptions, the derivative of H(Y ) with respect to snr can pene-
trate into the integral, and then (2) follows from integration by parts and other straightfor-
ward computations.

Under our approach, we would rather choose a probability space independent of snr. For
example, choosing the probability space to be the sample space of (X,Z), we will express
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H(Y ) as

H(Y ) = −
∫
R

∫
R
fX(x)fZ(z) log fY (

√
snrx+ z)dxdz.

It turns out such a seemingly innocent shift of viewpoint will render the follow-up compu-
tations rather simple and direct before reaching (2); and most importantly, when applied to
channels with feedback or memory, it naturally leads to extensions of the I-MMSE relation.
For instance, consider the discrete-time Gaussian channel with feedback:

Yi =
√
snrXi(M,Y i−1

1 ) + Zi, i = 1, 2, . . . , n,

where the channel input Xi depends on the message M and the previous channel outputs
Y i−1
1 . Using the above-mentioned approach, we will obtain the following extension (see

Remark 3.4) of the I-MMSE relation:

d

dsnr
I(Xn

1 → Y n
1 ) =

1

2

n∑
i=1

E
[
(Xi − E[Xi|Y n

1 ])2
]

+ snr
n∑
i=1

E
[
(Xi − E[Xi|Y n

1 ])
d

dsnr
Xi

]
, (3)

where Xi is the abbreviated form of Xi(M,Y i−1
1 ) and I(Xn

1 → Y n
1 ) is the directed information

between Xn
1 and Y n

1 . Directed information is a notion generalized from mutual information
for feedback channels, and the second term in the right hand side of (3) is a correctional
term, which vanishes when Xi does not depend on Y i−1

1 (i.e., there is no feedback), so (3)
is indeed an extension of the I-MMSE relation in (2) to discrete-time Gaussian channels
with feedback. As elaborated later, the I-MMSE relation can also be extended to Gaussian
channels, in either discrete-time or continuous-time, with feedback and/or memory.

The remainder of the paper is organized as follows. In Section 2, based on the proposed
approach, we give a new proof of the I-MMSE relation for discrete-time Gaussian channels,
and a new proof of the classical de Bruijn’s identity. We will present our extensions of the
I-MMSE relation, the main results in this paper, in Sections 3 and 4, which will be followed
by an outlook for some promising future directions in Section 5.

2 New Proofs of Existing Results

In this section, to further illustrate the idea of our approach, we give new proofs of some
existing results: the original I-MMSE relation in (2) and the classical de Bruijn’s identity.
To enhance the readability and emphasize the main idea, here and throughout the paper,
we omit some technical details of checking the conditions required for the interchanges of
differentiation and integration, which will be provided in the Appendices.

2.1 A new proof of the I-MMSE relation

In this section, we consider the Gaussian channel specified in (1) and give a new proof of (2).
Here and throughout the paper, we replace

√
snr with ρ to avoid notational cumbersomeness

during the computation; the derivative with respect to snr can be readily obtained with an
application of the chain rule. Then, under the new notation, the channel (1) becomes

Y = ρX + Z,
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where ρ ∈ R+, and we only have to prove that

d

dρ
I(X;Y ) = ρE[(X − E[X|Y ])2]. (4)

Obviously, the conditional density of Y given X = x by fY |X(y|x) = 1√
2π
e−(y−ρx)

2/2, and

the density function of Y can be computed as

fY (y) =

∫
R
fY |X(y|x)fX(x)dx.

It follows from the assumption that the channel is memoryless that

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(Z),

which, together with the fact that Z does not depend on ρ, implies that

d

dρ
I(X;Y ) = − d

dρ
E[log fY (Y )] = −E

[
1

fY (Y )

d

dρ
fY (Y )

]
.

Now, some straightforward computations yield

d

dρ
fY (Y ) =

d

dρ

∫
R
fY |X(Y |x)fX(x)dx

= −
∫
R
(ρX + Z − ρx)(X − x)fY |X(Y |x)fX(x)dx

= −fY (Y )

∫
R
(ρX + Z − ρx)(X − x)fX|Y (x|Y )dx.

It then follows that

d

dρ
I(X;Y ) = E

[∫
R
(Y − ρx)(X − x)fX|Y (x|Y )dx

]
= E[Y X − Y E[X|Y ]− ρXE[X|Y ] + ρE[X2|Y ]]

= E[Y X]− E[Y X]− E[ρE2[X|Y ]] + E[ρE[X2|Y ]]

= ρE[X2 − E2[X|Y ]]

= ρE[(X − E[X|Y ])2],

as desired.

2.2 A new proof of de Bruijn’s identity.

The following de Bruijn’s identity is a fundamental relationship between the differential
entropy and the Fisher information. Based on the proposed approach, we will give a new
proof of this classical result.
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Theorem 2.1. Let X be any random variable with a finite variance and let Z be an inde-
pendent standard normally distributed random variable. Then, for any t > 0,

d

dt
H(X +

√
tZ) =

1

2
J(X +

√
tZ), (5)

where J(·) is the Fisher information.

Proof. First of all, define
Y = X +

√
tZ,

whose density function can be computed as

fY (y) =

∫
R
fX(x)fY |X(y|x)dx =

∫
R

fX(x)√
2πt

e−(y−x)
2/(2t)dx.

Immediately, we have

fY (Y ) = fY (X +
√
tZ) =

∫
R

fX(x)√
2πt

e−(X+
√
tZ−x)2/(2t)dx.

Now, taking the derivative with respect to t, we obtain

d

dt
fY (Y ) =

∫
R

fX(x)√
2πt

e−(X+
√
tZ−x)2/(2t)

(
(X − x)(X +

√
tZ − x)

2t2
− 1

2t

)
dx

=

∫
R

(
(X − x)(X +

√
tZ − x)

2t2
− 1

2t

)
fY |X(Y |x)fX(x)dx

= fY (Y )

∫
R

(
(X − x)(Y − x)

2t2
+

1

2t

)
fX|Y (x|Y )dx.

It then follows that

d

dt
H(Y ) = − d

dt
E [log fY (Y )] = −E

[
1

fY (Y )

d

dt
fY (Y )

]
= E

[∫
R

(
−(X − x)(Y − x)

2t2
+

1

2t

)
fX|Y (x|Y )dx

]
=

E[−XY + (X + Y )E[X|Y ]− E[X2|Y ]]

2t2
+

1

2t

=
−E[X2] + E[E2[X|Y ]]

2t2
+

1

2t
. (6)

On the other hand, similarly as above,

f ′Y (Y ) =

∫
R

fX(x)√
2πt

e−(Y−x)
2/(2t)x− Y

t
dx = fY (Y )

∫
R

x− Y
t

fX|Y (x|Y )dx,

It then follows that the right hand side of (5) can be computed as

J(Y ) = E

[(
f ′Y (Y )

fY (Y )

)2
]

=
E[E2[X|Y ] + Y 2 − 2E[X|Y ]Y ]

t2

=
E[E2[X|Y ]] + E[Y 2]− 2E[XY ]

t2
,
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which, by the fact that t = E[(X − Y )2], is equal to (6), the left hand side of (5). The
theorem then immediately follows.

Remark 2.2. The new proof of de Bruijn’s identity actually further reveals that

d

dt
H(X +

√
tZ) =

1

2
J(X +

√
tZ) =

1

t2
E[(Y − E[X|Y ])2].

3 The Extended I-MMSE Relation in Discrete Time

In this section, using the ideas and techniques illustrated in Section 2, we give extensions of
the I-MMSE relation (2) to channels with feedback or memory.

We start with the following general theorem on a discrete-time system:

Theorem 3.1. Consider the following discrete-time system

Yi = ρgi(W
i
1, Y

i−1
1 ) + Zi, i = 1, . . . , n, (7)

where ρ ∈ R+, all Wi are independent of all Zi, which are i.i.d. standard normal random
variables and each gi(·, ·) is a continuous function differentiable in its second parameter.
Assume that for any i and any compact subset K ⊂ R+,

E
[
sup
ρ∈K

g2i (W
i
1, Y

i−1
1 )

]
<∞, E

[
sup
ρ∈K

(
d

dρ
gi(W

i
1, Y

i−1
1 )

)2
]
<∞. (8)

Then we have

d

dρ
I(W n

1 ;Y n
1 ) = ρ

n∑
i=1

E
[
(gi − E[gi|Y n

1 ])2
]

+ ρ2
n∑
i=1

E
[
(gi − E[gi|Y n

1 ])
d

dρ
gi

]
, (9)

where we have written gi(W
i
1, Y

i−1
1 ) simply as gi.

Proof. Note that

I(W n
1 ;Y n

1 ) = H(Y n
1 )−

n∑
i=1

H(Yi|W n
1 , Y

i−1
1 ) = H(Y n

1 )− nH(Z1),

which immediately implies

d

dρ
I(W n

1 ;Y n
1 ) = −E

[
d

dρ
log fY n

1
(Y n

1 )

]
= −E

[
1

fY n
1

(Y n
1 )

d

dρ
fY n

1
(Y n

1 )

]
.

In the remainder of the proof, we will omit the subscripts of the density functions. For
instance, f(yn1 ) means the density function of Y n

1 , f(Y n
1 ) means the density function of Y n

1

evaluated at Y n
1 , f(yn1 |wn1 ) means the conditional density function of Y n

1 given W n
1 = wn1 .

Under the system assumptions, we have

f(yn1 |wn1 ) =
n∏
i=1

f(yi|yi−11 , wn1 ) =
1

(
√

2π)n

n∏
i=1

exp{−(yi − ρgi(wi1, yi−11 ))2/2},
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and furthermore,

d

dρ
f(Y n

1 |wn1 ) =
1

(
√

2π)n
d

dρ

n∏
i=1

exp{−(Yi − ρgi(wi, Y i−1
1 ))2/2}

=
1

(
√

2π)n
d

dρ

n∏
i=1

exp{−(ρgi(W
i
1, Y

i−1
1 )− ρgi(wi1, Y i−1

1 ) + Zi)
2/2}

= −f(Y n
1 |wn1 )

n∑
i=1

(Yi − ρgi(wi1, Y i−1
1 ))

(
gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 )

+ ρ
d

dρ
(gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 ))

)
.

It then follows that
d

dρ
f(Y n

1 ) =
d

dρ

∫
Rn

f(Y n
1 |wn1 )f(wn1 )dwn1

=

∫
Rn

d

dρ
f(Y n

1 |wn1 )f(wn1 )dwn1

= −
∫
Rn

n∑
i=1

(Yi − ρgi(wi1, Y i−1
1 ))

(
gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 )

+ ρ
d

dρ
(gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 ))

)
f(Y n

1 |wn1 )f(wn1 )dwn1

= −f(Y n
1 )

∫
Rn

n∑
i=1

(Yi − ρgi(wi1, Y i−1
1 )

(
gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 )

+ ρ
d

dρ
(gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 ))

)
f(wn1 |Y n

1 )dwn1 .

Writing gi(W
i
1, Y

i−1
1 ), gi(w

i
1, Y

i−1
1 ) as gi, g̃i, respectively, and using the fact that for any mea-

surable function ϕ, ∫
Rn

ϕ(wn1 , Y
n
1 )f(wn1 |Y n

1 )dwn1 = E[ϕ(W n
1 , Y

n
1 )|Y n

1 ],

we further compute

d

dρ
f(Y n

1 ) = −f(Y n
1 )

n∑
i=1

∫
Rn

(Yi − ρg̃i)
(

(gi + ρ
d

dρ
gi)− (g̃i + ρ

d

dρ
g̃i)

)
f(wn1 |Y n

1 )dwn1

= −f(Y n
1 )

n∑
i=1

(
(gi + ρ

d

dρ
gi)E [ (Yi − ρgi)|Y n

1 ]− E
[

(gi + ρ
d

dρ
gi)(Yi − ρgi)

∣∣∣∣Y n
1

])
.

Similarly continue as in the proof of (4), we eventually obtain

d

dρ
I(W n

1 ;Y n
1 ) =

n∑
i=1

(
E
[
(gi + ρ

d

dρ
gi)(Yi − ρE [gi|Y n

1 ])

]
− E

[
(gi + ρ

d

dρ
gi)(Yi − ρgi)

])
= ρ

n∑
i=1

E
[
(gi − E(gi|Y n

1 ))2
]

+ ρ2
n∑
i=1

E
[
(gi − E(gi|Y n

1 ))
d

dρ
gi

]
,
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as desired.

Remark 3.2. Theorem 3.1 still holds if each gi is a Lebesgue measurable function (again,
differentiable in its second parameter) instead, which, however, is less relevant to practical
engineering applications.

Remark 3.3. It can readily checked that

E
[
(gi − E(gi|Y n

1 ))
d

dρ
gi

]
= E

[
(gi − E(gi|Y n

1 ))

(
d

dρ
gi − E

[
d

dρ
gi

∣∣∣∣Y n
1

])]
,

which means that (9) can be rewritten in the following more symmetric form:

d

dρ
I(W n

1 ;Y n
1 ) = ρ

n∑
i=1

E
[
(gi − E(gi|Y n

1 ))2
]
+ρ2

n∑
i=1

E
[
(gi − E(gi|Y n

1 ))

(
d

dρ
gi − E

[
d

dρ
gi

∣∣∣∣Y n
1

])]
.

Remark 3.4. Consider the discrete-time system as in (7). Rewriting all Wi as M and each
gi as Xi, we then have the following discrete-time Gaussian channel with feedback:

Yi =
√
snrXi(M,Y i−1

1 ) + Zi, i = 1, 2, . . . , n

where M is interpreted as the message be transmitted and Xi, Yi are the channel inputs,
outputs, respectively. It is well known that for such a feedback channel,

I(Xn
1 → Y n

1 ) = I(M ;Y n
1 ),

where I(Xn
1 → Y n

1 ) is the directed information between Xn
1 and Y n

1 . Then, applying Theo-
rem 3.1 and the chain rule for taking derivative, we have

d

dsnr
I(Xn

1 → Y n
1 ) =

1

2

n∑
i=1

E
[
(Xi − E[Xi|Y n

1 ])2
]

+ snr
n∑
i=1

E
[
(Xi − E[Xi|Y n

1 ])
d

dsnr
Xi

]
,

(10)
where Xi = Xi(M,Y i−1

1 ). This yields an extension of the I-MMSE relation to discrete-time
Gaussian channels with feedback.

Remark 3.5. Alternatively, rewriting each Wi as Xi, we will have the following discrete-
time Gaussian channel with input and output memory (it is observed that such a channel is
suitable for modeling some storage systems, such as flash memories [1]):

Yi =
√
snrgi(X

i
1, Y

i−1
1 ) + Zi, i = 1, 2, . . . , n

where gi is interpreted as “part” of the channel and Xi, Yi are the channel inputs, outputs,
respectively. Then, by Theorem 3.1 and the chain rule, we obtain

d

dsnr
I(Xn

1 ;Y n
1 ) =

1

2

n∑
i=1

E
[
gi − E[gi|Y n

1 ])2
]

+ snr
n∑
i=1

E
[
(gi − E[gi|Y n

1 ])
d

dsnr
gi

]
, (11)

where gi = gi(X
i
1, Y

i−1
1 ). This yields an extension of the I-MMSE relation to discrete-time

Gaussian channels with input and output memory.
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4 The Extended I-MMSE Relation in Continuous Time

As elaborated in the following theorem, the continuous-time I-MMSE relation, the continuous-
time analog of (2), has been established in [14].

Theorem 4.1 (Theorem 6 of [14]). Consider the following continuous-time Gaussian channel

Y (t) =
√
snr

∫ t

0

X(s)ds+B(t), t ∈ [0, T ],

where {X(s)} is the channel input satisfying the power constraint∫ T

0

E[X2(s)]ds <∞ (12)

and {B(t)} is the standard Brownian motion. Then, we have

d

dsnr
I(W T

0 ;Y T
0 ) =

1

2

∫ T

0

E[
(
X(s)− E[X(s)|Y T

0 ]
)2

]ds. (13)

In this section, using the ideas and techniques illustrated in Section 2, we give extensions of
the continuous-time I-MMSE relation to channels with feedback or memory.

We start with a general theorem on a continuous-time system:

Theorem 4.2. Consider a continuous-time system characterized by the following stochastic
differential equation:

Y (t) = ρ

∫ t

0

g(s,W s
0 , Y

s
0 )ds+B(t), t ∈ [0, T ], (14)

where ρ ∈ R+, the continuous random process {W (t)} is independent of the standard Brow-
nian motion {B(t)}, and g(·, ·, ·) is a deterministic function. Assume that

(a) g(s, γs0, φ
s
0) is defined for all γ(·), φ(·) ∈ C[0, T ], the set of all continuous functions over

[0, T ], and is itself a continuous function in s, s ∈ [0, T ];

(b) the solution {Y (t)} to the stochastic differential equation (14) uniquely exists;

(c) for any s ∈ [0, T ], g(s,W s
0 , Y

s
0 ) is continuously differentiable with respect to ρ with

probability 1;

(d) for any compact subset K ⊂ R+, we have∫ T

0

E
[
sup
ρ∈K

g2(s,W s
0 , Y

s
0 )

]
ds <∞,

∫ T

0

E

[
sup
ρ∈K

(
d

dρ
g(s,W s

0 , Y
s
0 )

)2
]
ds <∞;

(e) g(s, γs0, φ
s
0) is uniformly bounded over all s ∈ [0, T ] and all γ(·), φ(·) ∈ C[0, T ].
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Then, we have

d

dρ
I(W T

0 ;Y T
0 ) = ρ

∫ T

0

E[
(
g(s)− E[g(s)|Y T

0 ]
)2

]ds+ρ2
∫ T

0

E
[(
g(s)− E

[
g(s)|Y T

0

]) d
dρ
g(s)

]
ds,

where we have written g(s,W s
0 , Y

s
0 ) simply as g(s).

Strictly speaking, Theorem 4.2 is not a generalization of Theorem 4.1: Condition (e) is
stronger than the square integrability condition (12), as one can easily find g satisfying the
latter but not the former. As elaborated in the following theorem, at the expense of an extra
yet mild condition (see (f) in the following theorem), Condition (e) can be relaxed to an
integrability condition (see (g)).

Theorem 4.3. Consider the continuous-time system (14) satisfying Conditions (a), (b),
(c), (d) and the following conditions:

(f) for any a > 0 and any t ∈ [0, T ],

P

(∫ t

0

g2(s,W s
0 , Y

s
0 )ds = a

)
= 0;

(g) with probability 1, we have (note that the third parameter in the following g function
is Bs

0, rather than Y s
0 ) ∫ T

0

g2(s,W (s), Bs
0)ds <∞.

Then, we have

d

dρ
I(W T

0 ;Y T
0 ) = ρ

∫ T

0

E[
(
g(s)− E[g(s)|Y T

0 ]
)2

]ds+ρ2
∫ T

0

E
[(
g(s)− E

[
g(s)|Y T

0

]) d
dρ
g(s)

]
ds,

(15)
where we have written g(s,W s

0 , Y
s
0 ) simply as g(s).

Remark 4.4. Similarly as in Remark 3.3, we can obtain the following more symmetric
formula:

d

dρ
I(W T

0 ;Y T
0 ) = ρ

∫ T

0

E[(g(s)−E[g(s)|Y T
0 ])2]ds+ρ2

∫ T

0

E
[
(g(s)− E[g(s)|Y T

0 ])

(
d

dρ
g(s)− E

[
d

dρ
g(s)

∣∣∣∣Y T
0

])]
ds.

Remark 4.5. Parallel to Remarks 3.4, the continuous-time system in (14) can be interpreted
as the following continuous-time Gaussian channel with feedback:

Y (t) =
√
snr

∫ t

0

X(s,M, Y s
0 )ds+B(t), t ∈ [0, T ].

An application of Theorem 4.2 then yields

d

dsnr
I(M ;Y T

0 ) =
1

2

∫ T

0

E[
(
X(s)− E[X(s)|Y T

0 ]
)2

]ds+snr

∫ T

0

E
[(
X(s)− E

[
X(s)|Y T

0

]) d

dsnr
X(s)

]
ds,

(16)
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where X(s) is the abbreviated form of X(s,M, Y s
0 ). This gives an extension of the I-MMSE

relation to continuous-time Gaussian channels with feedback.
Parallel to Remark 3.5, it can be also interpreted as the following continuous-time Gaus-

sian channel with input and output memory:

Y (t) =
√
snr

∫ t

0

g(s,Xs
0 , Y

s
0 )ds+B(t), t ∈ [0, T ].

An application of Theorem 4.2 then yields

d

dsnr
I(XT

0 ;Y T
0 ) =

1

2

∫ T

0

E[
(
g(s)− E[g(s)|Y T

0 ]
)2

]ds+snr

∫ T

0

E
[(
g(s)− E

[
g(s)|Y T

0

]) d

dsnr
g(s)

]
ds,

(17)
where g(s) is the abbreviated form of g(s,Xs

0 , Y
s
0 ). This gives an extension of the I-MMSE

relation to continuous-time Gaussian channels with input and output memory.

Remark 4.6. It can be readily verified that Theorem 4.3, when interpreted as in the previous
remark, includes Theorem 4.1 as a special case; see more detailed explanations in Remark 4.8.

4.1 Properties of the solution to (14)

In this section, we will give certain sufficient conditions that will guarantee the solution
Y to (14) uniquely exists (Condition (b) in Theorem 4.2), and moreover, g(s,W s

0 , Y
s
0 ) is

differentiable with respect to ρ (Condition (c) in Theorem 4.2). More precisely, we have the
following proposition.

Proposition 4.7. Under the following conditions:

• Dg(s, γs0, φ
s
0), the Frechet derivative of g with respect to its third parameter φ(·), exists

for any s ∈ [0, T ] and any γ(·), φ(·) ∈ C[0, T ];

• (extended uniform Lipschitz conditions) There exists a constant C such that for all
s ∈ [0, T ] and all γ(·), φ(·), ψ(·) ∈ C[0, T ], we have

|g(s, γs0, φ
s
0)− g(s, γs0, ψ

s
0)| ≤ C‖φs0 − ψs0‖∞,

and
‖Dg(s, γs0, φ

s
0)−Dg(s, γs0, ψ

s
0)‖ ≤ C‖φs0 − ψs0‖∞;

• (extended linear growth conditions) There exists a constant C such that for all s ∈ [0, T ]
and all γ(·), φ(·) ∈ C[0, T ], we have

g2(s, γs0, φ
s
0) ≤ C(1 + ‖γs0‖2∞ + ‖φs0‖2∞),

and
‖Dg(s, γs0, φ

s
0)‖2 ≤ C(1 + ‖γs0‖2∞ + ‖φs0‖2∞),

the solution Y to the continuous-time system (14) uniquely exists, and moreover, with prob-
ability 1, g(s,W s

0 , Y
s
0 ) is differentiable with respect to ρ.

11



Proof. We only sketch the proof, as it is essentially the standard argument for the existence
and uniqueness of the solution to a stochastic differential equation with the well-known
uniform Lipschitz and linear growth conditions; see, e.g., the proof of Theorem 2.2 in Chapter
5 of [29].

Consider the following Picard’s iteration:

Y(0)(t) ≡ 0, Y(n+1)(t) =

∫ t

0

g(s,W s
0 , Y

s
(n),0)ds+B(t), t ∈ [0, T ].

It can be easily verified that, for any n and any t ∈ [0, T ], Y(n)(t) is differentiable with respect
to ρ. Letting Z(n)(t) = d

dρ
Y(n)(t) for all n, we have

Z(0)(t) ≡ 0, Z(n+1)(t) =

∫ t

0

g(s,W s
0 , Y

s
(n),0)ds+ρ

∫ t

0

Dg(s,W s
0 , Y

s
(n),0)(Z

s
(n),0)ds, t ∈ [0, T ].

Now, applying the standard argument for the existence and uniqueness of the solution to a
stochastic differential equation, we deduce that there exists a stochastic process {Y (t), t ∈
[0, T ]} such that for any compact set K ⊂ R+,

lim
n→∞

sup
ρ∈K, t∈[0,T ]

|Yn(t)− Y (t)| = 0, a.s.

and furthermore, there exists a stochastic process Z(t), t ∈ [0, T ] such that for any compact
set K ⊂ R+,

lim
n→∞

sup
ρ∈K, t∈[0,T ]

|Zn(t)− Z(t)| = 0, a.s.

It then follows that Y (t) is differentiable with respect to ρ, and d
dρ
Y (t) = Z(t) with proba-

bility 1, and consequently, g(s,W s
0 , Y

s
0 ) is differentiable with respect to ρ.

4.2 Proof of Theorem 4.2

Fix W = w and let Y|w) be such that

Y|w)(t) = ρ

∫ t

0

g(s, ws0, Y
s
|w),0)ds+B(t), t ∈ [0, T ].

Then, by Theorem 7.1 of [25] (it can be checked that its assumptions are implied by Condition
(e)), we observe that µY|w)

∼ µB ∼ µY , where “∼” means “equivalent”, and furthermore,

dµY|w)|W

dµB
(Y T
|w),0|wT0 ) = exp

{
ρ

∫ T

0

g(s, ws0, Y
s
|w),0)dY|w)(s)−

ρ2

2

∫ T

0

g2(s, ws0, Y
s
|w),0)ds

}
.

It then follows from Lemma 4.10 in [25] that

dµY |W
dµB

(Y T
0 |wT0 ) = exp

{
ρ

∫ T

0

g(s, ws0, Y
s
0 )dY (s)− ρ2

2

∫ T

0

g2(s, ws0, Y
s
0 )ds

}
.

12



Note that, by definition, we have

I(W T
0 ;Y T

0 ) = E
[
log

dµWY

d(µW × µY )
(W T

0 , Y
T
0 )

]
= E

[
log

dµY |W
dµB

(Y T
0 |W T

0 )

]
− E

[
log

dµY
dµB

(Y T
0 )

]
=
ρ2

2

∫ T

0

E[g2(s)]ds− E
[
log

dµY
dµB

(Y T
0 )

]
.

Taking derivative with respect to ρ then yields

d

dρ
I(W T

0 ;Y T
0 ) = ρ

∫ T

0

E[g2(s)]ds+
ρ2

2

d

dρ

∫ T

0

E[g2(s)]ds− d

dρ
E
[
log

dµY
dµB

(Y T
0 )

]
= ρ

∫ T

0

E[g2(s)]ds+ ρ2
∫ T

0

E
[
g(s)

d

dρ
g(s)

]
ds− d

dρ
E
[
log

dµY
dµB

(Y T
0 )

]
.

Writing g(s, ws0, Y
s
0 ) as g̃(s), we have

d

dρ

(
dµY
dµB

(Y T
0 )

)
=

d

dρ

∫
dµY |W
dµB

(Y T
0 |wT0 )µW (dw)

=
d

dρ

∫
exp

{
ρ

∫ T

0

g̃(s)dY (s)− ρ2

2

∫ T

0

g̃2(s)ds

}
µW (dw)

=
d

dρ

∫
exp

{
ρ2
∫ T

0

g̃(s)g(s)ds+ ρ

∫ T

0

g̃(s)dB(s)− ρ2

2

∫ T

0

g̃2(s)ds

}
µW (dw)

=

∫ (∫ T

0

g̃(s)dY (s) + ρ

∫ T

0

d

dρ
g̃(s)dY (s) + ρ

∫ T

0

g̃(s)(g(s)− g̃(s))ds

+ ρ2
∫ T

0

g̃(s)
d

dρ
(g(s)− g̃(s)) ds

)
dµWY

dµB
(dw, Y T

0 )

=
dµY
dµB

(Y T
0 )

∫ (∫ T

0

g̃(s)dY (s) + ρ

∫ T

0

d

dρ
g̃(s)dY (s) + ρ

∫ T

0

g̃(s)(g(s)− g̃(s))ds

+ ρ2
∫ T

0

g̃(s)
d

dρ
(g(s)− g̃(s)) ds

)
µW |Y (dw|Y T

0 )

=
dµY
dµB

(Y T
0 )

(
E
[∫ T

0

g(s)dY (s)

∣∣∣∣Y T
0

]
+ ρE

[∫ T

0

d

dρ
g(s)dY (s)

∣∣∣∣Y T
0

]
+ ρ

∫ T

0

(E[g(s)|Y T
0 ]g(s)− E[g2(s)|Y T

0 ])ds

+ ρ2
∫ T

0

(
d

dρ
g(s)E[g(s)|Y T

0 ]− E
[
g(s)

d

dρ
g(s)

∣∣∣∣Y T
0

])
ds

)
.

Note that by the properties of conditional expectation and Itô integral, we have

E
[
E
[∫ T

0

g(s)dY (s)

∣∣∣∣Y T
0

]]
= E

[∫ T

0

g(s)dY (s)

]
= ρ

∫ T

0

E[g2(s)]ds,

13



and similarly,

E
[∫ T

0

E[g2(s)|Y T
0 ]ds

]
=

∫ T

0

E[g2(s)]ds,

and

ρE
[
E
[∫ T

0

d

dρ
g(s)dY (s)

∣∣∣∣Y T
0

]]
= ρ2

∫ T

0

E
[
g(s)

d

dρ
g(s)

]
ds = ρ2E

[∫ T

0

E
[
g(s)

d

dρ
g(s)

∣∣∣∣Y T
0

]
ds

]
.

It then follows that

d

dρ
E
[
log

dµY
dµB

(Y T
0 )

]
= E

[
d

dρ
log

dµY
dµB

(Y T
0 )

]
= E

[
d

dρ

(
dµY
dµB

(Y T
0 )

)
/
dµY
dµB

(Y T
0 )

]
= E

[
E
[∫ T

0

g(s)dY (s)

∣∣∣∣Y T
0

]
+ ρE

[∫ T

0

d

dρ
g(s)dY (s)

∣∣∣∣Y T
0

]
+ ρ

∫ T

0

(E[g(s)|Y T
0 ]g(s)− E[g2(s)|Y T

0 ])ds+ ρ2
∫ T

0

(
d

dρ
g(s)E[g(s)|Y T

0 ]− E
[
g(s)

d

dρ
g(s)

∣∣∣∣Y T
0

])
ds

]
= ρ

∫ T

0

E[E[g(s)|Y T
0 ]g(s)]ds+ ρ2

∫ T

0

E
[
E[g(s)|Y T

0 ]
d

dρ
g(s)

]
ds.

So we have

d

dρ
I(W T

0 ;Y T
0 ) = ρ

∫ T

0

E[g2(s)]ds+ ρ2
∫ T

0

E
[
g(s)

d

dρ
g(s)

]
ds

− ρ
∫ T

0

E[E[g(s)|Y T
0 ]g(s)]ds− ρ2

∫ T

0

E
[
E[g(s)|Y T

0 ]
d

dρ
g(s)

]
ds

= ρ

∫ T

0

E[(g(s)− E[g(s)|Y T
0 ])2]ds+ ρ2

∫ T

0

E
[
(g(s)− E[g(s)|Y T

0 ])
d

dρ
g(s)

]
ds,

as desired.

4.3 Proof of Theorem 4.3

The proof consists of the following 6 steps:
Step 1. First of all, for any fixed W = w, by Theorem 7.7 of [25], µY |W=w ∼ µB with

dµY |W=w

dµB
(BT

0 ) = exp

(∫ T

0

g(s, ws0, B
s
0)dB(s)− 1

2

∫ T

0

g2(s, ws0, B
s
0)ds

)
,

where we have used Conditions (d) and (g) before invoking Theorem 7.7. Moreover, by
Condition (d), it follows from Theorem 7.2 that µY � µB with

dµY
dµB

(BT
0 ) =

∫
dµY |W=w

dµB
(BT

0 )dµW (w)

=

∫
exp

(∫ T

0

g(s, ws0, B
s
0)dB(s)− 1

2

∫ T

0

g2(s, ws0, B
s
0)ds

)
dµW (w),
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which is obviously positive with probability 1. It then follows from Lemma 6.8 of [25] that
µB � µY . So, in this step, we have shown that under the conditions specified in theorem,
we have µY ∼ µY |W=w ∼ µB.
Step 2. For any n and γ(·), φ(·) ∈ C[0, T ], we follow [25] and define a truncated version of
g as follows:

g(n)(t, γ
t
0, φ

t
0) = g(t, γt0, φ

t
0)1∫ t

0 g
2(s,γt0,φ

s
0)ds<n

.

Now, define a truncated version of Y as follows:

Y(n)(t) = ρ

∫ t

0

g(n)(s,W
s
0 , Y

s
0 )ds+B(t), t ∈ [0, T ],

which, as elaborated on Page 265 in [25], can be rewritten as

Y(n)(t) = ρ

∫ t

0

g(n)(s,W
s
0 , Y

s
(n),0)ds+B(t), t ∈ [0, T ].

It is well known that (see, e.g., Theorem 6.2.1 of [22]) that

I(W T
0 ;Y T

(n),0) =
1

2

∫ T

0

E[g2(n)(s,W
s
0 , Y

s
(n),0)]− E[E2[g(n)(s,W

s
0 , Y

s
(n),0)|Y s

(n),0]]ds,

and

I(W T
0 ;Y T

0 ) =
1

2

∫ T

0

E[g2(s,W s
0 , Y

s
0 )]− E[E2[g(s,W s

0 , Y
s
0 )|Y s

0 ]]ds.

Moreover, it follows from Theorem 4.2 (here, note that extra yet minor care has to be taken
since g(n)(s,W

s
0 , Y

s
(n),0) is only a piecewise differentiable function in ρ; cf. Condition (c)) that

d

dρ
I(W T

0 ;Y T
(n),0) = ρ

∫ T

0

E[g2(n)(s,W
s
0 , Y

s
(n),0)]− E[E2[g(n)(s,W

s
0 , Y

s
(n),0)|Y T

(n),0]]ds

+ ρ2
∫ T

0

E
[
(g(n)(s,W

s
0 , Y

s
(n),0)− E[g(n)(s, ,W

s
0 , Y

s
(n),0)|Y T

(n),0])
d

dρ
g(n)(s,W

s
0 , Y

s
(n),0)

]
ds.

(18)

Step 3. In this step, we will prove that

lim
n→∞

d

dρ
I(W T

0 ;Y T
(n),0) = ρ

∫ T

0

E[g2(s,W s
0 , Y

s
0 )]− E[E2[g(s,W s

0 , Y
s
0 )|Y T

0 ]]ds

+ ρ2
∫ T

0

E
[
(g(s,W s

0 , Y
s
0 )− E[g(s,W s

0 , Y
s
0 )|Y T

0 ])
d

dρ
g(s,W s

0 , Y
s
0 )

]
ds. (19)

Step 3.1. In this step, we observe that, with Condition (d), an application of the
dominated convergence theorem will yield

lim
n→∞

∫ T

0

E[g2(n)(s,W
s
0 , Y

s
(n),0)]ds =

∫ T

0

E[g2(s,W s
0 , Y

s
0 )]ds.
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Step 3.2. In this step, we will prove that

lim
n→∞

∫ T

0

E[E2[g(n)(s,W
s
0 , Y

s
(n),0)|Y T

(n),0]]ds =

∫ T

0

E[E2[g(s,W s
0 , Y

s
0 )|Y T

0 ]]ds. (20)

First of all, we note that

E[E2[g(n)(s,W
s
0 , Y

s
(n),0)|Y T

(n),0]] = E

[(∫
g(n)(s, w

s
0, Y

s
(n),0)µW |Y(n)

(dw|Y T
(n),0)

)2
]

= E

[(∫
g(n)(s, w

s
0, Y

s
(n),0)

dµY(n)|W

dµB
(Y T

(n),0|wT0 )µW (dw)/
dµY(n)

dµB
(Y T

(n),0)

)2
]

= E

[(∫
g(n)(s, w

s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)

)2

×
(
dµY(n)

dµB
(BT

0 )

)−1]
.

We now proceed with the following steps:
Step 3.2.1. In this step, we prove that in probability

dµY(n)

dµB
(BT

0 )→ dµY
dµB

(BT
0 ).

First of all,

dµY(n)

dµB
(BT

0 ) =

∫
exp

(
ρ

∫ T

0

g(n)(s, w
s
0, B

s
0)dB(s)− ρ2

2

∫ t

0

g2(n)(s, w
s
0, B

s
0)ds

)
µW (dw).

It then follows from the Itô isometry that

exp

(
ρ

∫ T

0

g(n)(s, w
s
0, B

s
0)dB(s)− ρ2

2

∫ t

0

g2(n)(s, w
s
0, B

s
0)ds

)
converges to

exp

(
ρ

∫ T

0

g(s, ws0, B
s
0)dB(s)− ρ2

2

∫ t

0

g2(s, ws0, B
s
0)ds

)
in probability. And moreover, it can be easily checked that

E
[∫

exp

(
ρ

∫ T

0

g(n)(s, w
s
0, B

s
0)dB(s)− ρ2

2

∫ t

0

g2(n)(s, w
s
0, B

s
0)ds

)
µW (dw)

]
= E

[
dµY(n)

dµB
(BT

0 )

]
= 1

and

E
[∫

exp

(
ρ

∫ T

0

g(s, ws0, B
s
0)dB(s)− ρ2

2

∫ t

0

g2(s, ws0, B
s
0)ds

)
µW (dw)

]
= E

[
dµY
dµB

(BT
0 )

]
= 1.

It then follows from Theorem 5.5.2 of [11] that

lim
n→∞

E
[∫ ∣∣∣∣(exp

(
ρ

∫ T

0

g(n)(s, w
s
0, B

s
0)dB(s)− ρ2

2

∫ t

0

g2(n)(s, w
s
0, B

s
0)ds

)
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− exp

(
ρ

∫ T

0

g(s, ws0, B
s
0)dB(s)− ρ2

2

∫ t

0

g2(s, ws0, B
s
0)ds

))∣∣∣∣µW (dw)

]
= 0,

which further implies that∫
exp

(
ρ

∫ T

0

g(n)(s, w
s
0, B

s
0)dBs −

ρ2

2

∫ t

0

g2(n)(s, w
s
0, B

s
0)ds

)
µW (dw)

converges to ∫
exp

(
ρ

∫ T

0

g(s, ws0, B
s
0)dBs −

ρ2

2

∫ t

0

g2(s, ws0, B
s
0)ds

)
µW (dw)

in probability.

Step 3.2.2. In this step, we will prove that in probability∫
g(n)(s, w

s
0, B

s
0)
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)→
∫
g(s, ws0, B

s
0)
dµY |W
dµB

(BT
0 |wT0 )µW (dw).

First of all, it is easy to check that in probability

g(n)(s, w
s
0, B

s
0)
dµY(n)|W

dµB
(BT

0 |wT0 )→ g(s, ws0, B
s
0)
dµY |W
dµB

(BT
0 |wT0 ).

And moreover, we have

E
[∫
|g(n)(s, ws0, Bs

0)|
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)

]
= E[|g(n)(s,W (s), Y s

(n),0)|]

converges to

E[|g(s,W (s), Y s
0 )|] = E

[∫
|g(s, ws0, B

s
0)|
dµY |W
dµB

(BT
0 |wT0 )µW (dw)

]
.

So, similarly as in Step 3.1.1, we deduce that∫
g(n)(s, w

s
0, B

s
0)
dµY(n)|W

dµB
(BT

0 |w)µW (dw)→
∫
g(s, ws0, B

s
0)
dµY |W
dµB

(BT
0 |w)µW (dw).

in probability.
Step 3.2.3. Note that Steps 3.2.1 and 3.2.2 collectively yield that(∫

g(n)(s, w
s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)

)2

×
(
dµY(n)

dµB
(BT

0 )

)−1
converges to (∫

g(s, ws0, B
T
0 )
dµY |W
dµB

(BT
0 |wT0 )µW (dw)

)2

×
(
dµY
dµB

(BT
0 )

)−1
17



in probability. Now, applying Jensen’s inequality, we have(∫
g(n)(s, w

s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)

)2

×
(
dµY(n)

dµB
(BT

0 )

)−1
=

(∫
g(n)(s, w

s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)/
dµY(n)

dµB
(BT

0 )

)2

×
dµY(n)

dµB
(BT

0 )

≤
(∫

g2(n)(s, w
s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)/
dµY(n)

dµB
(BT

0 )

)
×
dµY(n)

dµB
(BT

0 )

=

∫
g2(n)(s, w

s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw).

Note that

E
[∫

g2(n)(s, w
s
0, B

T
0 )
dµY(n)|W

dµB
(BT

0 |wT0 )µW (dw)

]
= E[g2(n)(s,W

s
0 , Y

s
(n),0)]→ E[g2(s,W s

0 , Y
s
0 )] <∞,

where the finiteness is due to Condition (d). Finally, the desired (20) follows from the
generalized dominated convergence theorem (see, e.g., Theorem 19 on Page 89 of [36]).

Step 3.3. In this step, we establish the following two convergences:

lim
n→∞

∫ T

0

E
[
g(n)(s,W

s
0 , Y

s
(n),0)

d

dρ
g(n)(s,W

s
0 , Y

s
(n),0)

]
ds =

∫ T

0

E
[
g(s,W s

0 , Y
s
0 )

d

dρ
g(s,W s

0 , Y
s
0 )

]
ds

(21)
and

lim
n→∞

∫ T

0

E
[
E[g(n)(s,W

s
0 , Y

s
(n),0)|Y T

(n),0]
d

dρ
g(n)(s,W

s
0 , Y

s
(n),0)

]
ds =

∫ T

0

E
[
E[g(s,W s

0 , Y
s
0 )|Y T

0 ]
d

dρ
g(s,W s

0 , Y
s
0 )

]
ds.

(22)
Step 3.3.1. In this step, we will prove (21). Writing g(n)(s,W

s
0 , Y

s
(n),0), g(s,W s

0 , Y
s
0 ) as

g(n)(s), g(s) for notational simplicity, we have∫ T

0

E
[
g(n)(s)

d

dρ
g(n)(s)

]
ds−

∫ T

0

E
[
g(s)

d

dρ
g(s)

]
ds

=

∫ T

0

E
[
g(n)(s)

d

dρ
g(n)(s)

]
ds−

∫ T

0

E
[
g(s)

d

dρ
g(n)(s)

]
ds+

∫ T

0

E
[
g(s)

d

dρ
g(n)(s)

]
ds−

∫ T

0

E
[
g(s)

d

dρ
g(s)

]
ds

=

∫ T

0

E
[
(g(n)(s)− g(s))

d

dρ
g(n)(s)

]
ds−

∫ T

0

E
[
g(s)

(
d

dρ
g(n)(s)−

d

dρ
g(s)

)]
ds.

The desired convergences then follow from the fact that as n tends to infinity,(∫ T

0

E
[
(g(n)(s)− g(s))

d

dρ
g(n)(s)

]
ds

)2

≤
∫ T

0

E[(g(n)(s)−g(s))2]ds

∫ T

0

E

[(
d

dρ
g(n)(s)

)2
]
ds→ 0

and(∫ T

0

E
[
g(s)

(
d

dρ
g(n)(s)−

d

dρ
g(s)

)]
ds

)2

≤
∫ T

0

E[g2(s)]ds

∫ T

0

E

[(
d

dρ
g(n)(s)−

d

dρ
g(s)

)2
]
ds→ 0.
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Step 3.3.2. In this step, we will prove (22). To see this, note that∫ T

0

E
[
E[g(n)(s,W

s
0 , Y

s
(n),0)|Y T

(n),0]
d

dρ
g(n)(s,W

s
0 , Y

s
(n),0)

]
ds

=

∫ T

0

E
[
E[g(n)(s,W

s
0 , Y

s
(n),0)|Y T

(n),0]E
[
d

dρ
g(n)(s,W

s
0 , Y

s
(n),0)

∣∣∣∣Y T
(n),0

]]
ds,

whose convergence to∫ T

0

E
[
E[g(s,W s

0 , Y
s
0 )|Y T

0 ]E
[
d

dρ
g(s,W s

0 , Y
s
0 )

∣∣∣∣Y T
0

]]
ds

can be established using a similar argument as in Step 3.2.
Step 3.4. Note that Steps 3.1, 3.2 and 3.3 collectively yield (19).

Step 4. In this step, we will prove

lim
n→∞

I(W T
0 ;Y T

(n),0) = I(W T
0 ;Y T

0 ). (23)

Obviously, it suffices to prove that

lim
n→∞

∫ T

0

E[g2(n)(s,W
s
0 , Y

s
(n),0)]ds =

∫ T

0

E[g2(s,W s
0 , Y

s
0 )]ds, (24)

and

lim
n→∞

∫ T

0

E[E2[g(n)(s,W
s
0 , Y

s
(n),0)|Y s

(n),0]]ds =

∫ T

0

E[E2[g(s,W s
0 , Y

s
0 )|Y s

0 ]]ds. (25)

Note that (24) has been established in Step 3.1, and the proof of (25) can be established
using a parallel argument as in Step 3.2.
Step 5. In this step, we will establish the continuity of the following terms with respect to
ρ: ∫ T

0

E[g2(s,W s
0 , Y

s
0 )]ds,

∫ T

0

E[E2[g(s,W s
0 , Y

s
0 )|Y T

0 ]]ds,

and∫ T

0

E
[
g(s,W s

0 , Y
s
0 )

d

dρ
g(s,W s

0 , Y
s
0 )

]
ds,

∫ T

0

E
[
E[g(s,W s

0 , Y
s
0 )|Y T

0 ]
d

dρ
g(s,W s

0 , Y
s
0 )

]
ds.

Note that the continuity of
∫ T
0
E[g2(s,W s

0 , Y
s
0 )]ds immediately follows from the dominated

convergence theorem together with Condition (d) and the fact that g(s,W s
0 , Y

s
0 ) is continuous

in ρ. And moreover, a parallel argument can be used to establish the continuity of∫ T

0

E
[
g(s,W s

0 , Y
s
0 )

d

dρ
g(s,W s

0 , Y
s
0 )

]
ds.

To establish the continuity of
∫ T
0
E[E2[g(s,W s

0 , Y
s
0 )|Y T

0 ]]ds, it suffices to prove that for
any sequence {ρn} convergent to ρ,

lim
n→∞

E[E2[g(s,W s
0 , Y

(ρn),s
0 )|Y (ρn),T

0 ]] =

∫ T

0

E[E2[g(s,W s
0 , Y

(ρ),s
0 )|Y (ρ),T

0 ]]ds,
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which can be shown in a parallel argument as in Step 3.2, where the following similar
convergence is proven:

lim
n→∞

∫ T

0

E[E2[g(n)(s,W
s
0 , Y

s
(n),0)|Y T

(n),0]]ds =

∫ T

0

E[E2[g(s,W s
0 , Y

s
0 )|Y T

0 ]]ds.

Furthermore, similarly as in Step 3.3.2, the continuity of∫ T

0

E
[
E[g(s,W s

0 , Y
s
0 )|Y T

0 ]
d

dρ
g(s,W s

0 , Y
s
0 )

]
ds

can be established as well.
Step 6. It then follows from (18) that, for any τ > 0,

I(W T
0 ;Y

(τ),T
(n),0 ) =

∫ τ

0

d

dρ
I(W T

0 ;Y
(ρ),T
(n),0 )dρ

= ρ

∫ τ

0

∫ T

0

E[g2(n)(s,W
s
0 , Y

(ρ),s
(n),0 )]− E[E2[g(n)(s,W

s
0 , Y

(ρ),s
(n),0 )|Y (ρ),T

(n),0 ]]dsdρ

+ ρ2
∫ τ

0

∫ T

0

E
[
(g(n)(s,W

s
0 , Y

(ρ),s
(n),0 )− E[g(n)(s, ,W

s
0 , Y

(ρ),s
(n),0 )|Y (ρ),T

(n),0 ])
d

dρ
g(n)(s,W

s
0 , Y

(ρ),s
(n),0 )

]
dsdρ,

where we have used the superscripts (ρ) and (τ) to specify the underlying parameters. It
then follows from the dominated convergence theorem that

I(W T
0 ;Y

(τ),T
0 ) =

∫ τ

0

ρ

∫ T

0

E[g2(s,W s
0 , Y

(ρ),s
0 )]− E[E2[g(s,W s

0 , Y
(ρ),s
0 )|Y (ρ),T

0 ]]dsdρ

+

∫ τ

0

ρ2
∫ T

0

E
[
(g(s,W s

0 , Y
(ρ),s
0 )− E[g(s, ,W s

0 , Y
(ρ),s
0 )|Y (ρ),T

(n),0 ])
d

dρ
g(s,W s

0 , Y
(ρ),s
0 )

]
dsdρ. (26)

Note that Step (5) has established the continuity of the following terms in ρ,∫ T

0

E[g2(s,W s
0 , Y

(ρ),s
0 )]− E[E2[g(s,W s

0 , Y
(ρ),s
0 )|Y T

0 ]]ds

and ∫ T

0

E
[
(g(s,W s

0 , Y
(ρ),s
0 )− E[g(s, ,W s

0 , Y
(ρ),s
0 )|Y T

(n),0])
d

dρ
g(s,W s

0 , Y
(ρ),s
0 )

]
ds.

So, the desired formula (15) then follows from taking the derivative of (26) with respect to
τ , and the proof of the theorem is then complete.

Remark 4.8. Theorem 4.1 is indeed included by Theorem 4.3 as a special case. More pre-
cisely, the power constraint (12) trivially implies Conditions (b), (c) and (d). Note that
Theorem 4.3 still holds true if Condition (f) is replaced by the following somewhat cumber-
some condition: for any n,

d

dρ
g(n)(s,W (s), Y s

(n),0) =

(
d

dρ
g(s,W (s), Y s

0 )

)
1∫ s

0 g
2(t,W (t),Y t

0 )dt<n
, a.s.,

20



which is also implied by (12). So, Theorem 4.3 recovers Theorem 4.1 with a direct and
rigorous proof 1.

Remark 4.9. To show (20), as opposed to our approach in Step 3.2, a possible and seem-
ingly more natural first step is to establish the convergence of E2[g(n)(s,W

s
0 , Y

s
(n),0)|Y T

(n),0]

(either in probability or distribution) as n tends to infinity, which, however, has eluded our
multiple attempts. Note that for the above-mentioned convergence, the martingale conver-
gence theorem may not be applied, since it is not clear if the σ-algebra generated by Y T

(n),0

gets larger at n increases. Similar hurdles were encountered in our attempts to prove (22)
and (25), and parallel arguments as in Step 3.2 have to be used instead. Here, we remark
that, in general, the problem of establishing the convergence of a sequence of conditional
expectations can be rather subtle and challenging; see some positive results in [13] and [6]
where some fairly strong assumptions are imposed.

5 Possible Future Directions

The significant impact of the original I-MMSE relation (2) on non-feedback/memoryless
channels presages many possible applications of the extended I-MMSE relations (10), (11),
(16), (17) to situations where the feedback/memory are present; moreover, we envision
that our new approach can provide new perspectives to examine a number of aspects in
information theory. In this section, we will discuss some promising future directions one
can further pursue based on this work. In a nutshell, the possible further directions can be
summarized as follows:

1. further extend the I-MMSE relation to colored Gaussian feedback channels, general
feedback channels, and its limiting version in terms of mutual information rate;

2. explore the properties of the extended MMSE;

3. explore the applications of the extended I-MMSE relation to Gaussian feedback chan-
nels, multi-user Gaussian channels, Gaussian channels with input/output memory;

4. explore the applications of our new approach to other information-theoretic quantities,
higher order derivatives, entropy power inequalities, and so on.

5.1 Further Extensions of the I-MMSE Relation

Colored Gaussian feedback channels. The discrete-time I-MMSE relation (2) carries
over verbatim to linear vector Gaussian channels [14], and its extensions to more general
settings include derivatives with respect to arbitrary parameterizations [31], higher order
derivatives [33], and so on. Extensions of the continuous-time I-MMSE relation (13) have

1For sticklers demanding mathematical rigor and perfection: It is known that there are multiple “missing
steps” in the proof of Theorem 4.1 in [14]: For instance, the differentiability of I(XT

0 ;Y T
0 ) with respect to

snr does not seem to be trivial and thereby demands careful justifications, which are however absent in [14];
also, from (259) to (270) in the proof of Lemma 5 (a key lemma for the proof of Theorem 4.1), the authors
assumed that for a sequence of random variable Xn convergent to 0 almost surely, limn→∞ E[Xn] = 0, which
is not true in general.
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been studied as well; representative work include fractional Brownian motion noise [9] and
an abstract Wiener space [48, 45]. On the other hand, all the above-mentioned extensions
have been confined to the scenarios where the feedback are absent.

In view of our results on extensions of the I-MMSE relation, one of the possible future
directions is to further extend the I-MMSE relation to colored Gaussian feedback channels
in both discrete time and continuous time.

While the proposed direction is well within reach in discrete time, the same problem
appears to be far more challenging in continuos time due to the inherent intractability of
continuous-time Gaussian processes. A natural goal in this direction is to find the broadest
class of continuous-time Gaussian processes for which the extended I-MMSE relation holds.
One special class of Gaussian processes that appear to be tractable are those featuring
canonical representations [21] (in terms of the standard Brownian motions) without discrete
spectrum terms (see (6.8.2) of [22]), and thereby Girsanov’s theorem [25], a key technical
ingredient used in our proofs of Theorems 4.2 and 4.3, can be carried over to such processes.
Since fractional Brownian motions are a special class of separable Gaussian processes, one
would arrive at results which include the ones in [9] as special cases.

General feedback channels. The exploration of fundamental relationships between
information and estimation measures has not been confined to Gaussian channels only. As a
matter of fact, a considerable amount of work, largely inspired by the I-MMSE relation for
Gaussian channels, have been devoted to investigating non-Gaussian channels for parallel
relations. In this direction, representative work include additive channels [15], arbitrary
channels [32], Poisson channels [16, 2, 41], binomial and negative binomial channels [40,
41]. This thread of efforts have culminated in a recent paper [23], where a unified general
formula relating information and estimation measures was derived for Lévy channels, which
encompass Gaussian channels and a number of other non-Gaussian channels as special cases.

One of the possible directions is to further generalize the result in [23] to Levy channels
with feedback/memory, in either discrete or continuous time. Alternatively, one can also
consider deriving the extended I-MMSE relation for channel featuring noise with jumps
(obviously, noise of this type naturally exists in a variety of real-life situations). For this
direction, it might be wiser to first consider additive Levy processes (which are different
from Levy channels in [23] in spite of the same name), which have been extensively studied
in mathematical theory and practical applications. Note that such extension, if successful,
would generalize the one in [10], which only deals with pure jump processes. A key ingredient
for success would be an “explicit” Girsanov-type theorem for Leyy processes.

Limiting version. For most non-degenerate channels with feedback/memory, the ca-
pacity is computed via maximizing the (directed) mutual information rate, rather than the
mutual information. This fact necessitates the consideration of the limiting version of the
extended I-MMSE relation in discrete time as n tends to infinity.

There are hurdles for the journey along this direction: First of all, not all input processes
will guarantee the limit of the mutual information rate is well-defined. Another issue is the
differentiability/smoothness/analyticity of the mutual information rate, which may fail for
certain channels [18, 19]. So, it makes senses to focus one’s attention on identifying channels
with explicit and reasonable assumptions on the input process for the existence of the mutual
information rate and its derivative.

Probably a feasible first step is to examine Gaussian channels with Markovian input
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processes: at least for discrete-time Gaussian channels with ARMA noise, the capacity will
be achieved by Markovian input processes [24]. Moreover, for certain Gaussian channels with
a finite input alphabet, the analyticity/smoothness/asymptotics of the mutual information
rate has been established [19].

5.2 Properties of the Extended MMSE

Properties of the discrete-time MMSE associated with Gaussian non-feedback channels, such
as monotonicity, continuity, smoothness, analyticity, concavity and asymptotics, have been
extensively studied [17, 46]. These properties have been utilized in a wide range of applica-
tions; in particular, the following two properties [17] of the MMSE are of great interest and
of direct use in deriving the capacity regions of some multi-user Gaussian channels, such as
Gaussian wiretap channels [3] and Gaussian broadcast channels [4]:

• Gaussian inputs are the hardest to estimate, which means that any non-Gaussian input
yields strictly smaller MMSE than a Gaussian input of the same variance;

• The single-crossing property, which, roughly speaking, says that a Gaussian MMSE
curve (with respect to the snr) only intersects with a non-Gaussian MMSE curve at
most once.

Naturally one may consider exploring whether or to what extent these properties hold for
the extended MMSE in both discrete and continuous time. It is clear that for the extended
MMSE, whether these two properties will hold depends on the adopted encoding schemes,
which points out a natural future direction: to explore for what encoding schemes these two
properties hold for the extended MMSE. In this direction, one reasonable candidate would
be Gaussian channels with linear feedback encoding schemes; see, e.g., [37, 22].

5.3 Applications to Gaussian Feedback Channels

Despite extensive efforts spent on colored Gaussian feedback channels, the capacity of such
channels has largely remained unknown, except for some special cases [24]. The extended
I-MMSE relations may be helpful to deepen our understanding of colored Gaussian feedback
channels: First, notice that an application of the Cauchy-Schwarz inequality yields that the
correctional term of an extended MMSE can be upper bounded by the MMSE term, up to a
multiplicative constant. Since the MMSE term “corresponds” to Gaussian channels without
feedback, it is plausible to at least derive some bound [12] (which may depend on the signal-
to-noise ratio) between the ratio of the feedback capacity and non-feedback capacity. Second,
written as the sum of an MMSE term and a correctional term, an extended MMSE can be of
great help, in both discrete and continuous time, to describe the asymptotical behavior [8]
of the feedback capacity for the regime when snr is small or large.

While deriving the capacity of a general colored Gaussian feedback channel seems to be
far-fetched, one may consider making use of the extended MMSE relations to derive the
feedback capacity for some special colored Gaussian feedback channels. It is well known
(see, e.g., Ihara [22]) that for colored Gaussian feedback channels, linear feedback schemes
are sufficient to achieve the capacity. This fact can be a major boost of the chance of deriving
the exact capacity using the extended I-MMSE: under a linear feedback encoding scheme,
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the inputs and the outputs are de facto jointly Gaussian, which means both the MMSE and
the correctional terms can be explicitly computed. Note that the above-mentioned idea is
particularly promising for the case when the Gaussian noise is Markovian, which implies
that the correctional term is a scaled version of the MMSE term, and further the desired
property that the extended MMSE is maximizeable by a Gaussian distribution.

5.4 Applications to Multi-User Gaussian Channels

Discrete-time. The original I-MMSE relation has been applied to discrete-time multi-user
non-feedback Gaussian channels including Gaussian broadcast channels, wiretap channels
and interference channels and so on. Naturally, one tempting direction is to explore the
possible applications of the extended I-MMSE relation to discrete-time multi-user Gaussian
channels when the feedback is present. For this purpose, one of the imminent problems is to
identify those multi-user Gaussian channels for which linear feedback coding schemes achieve
the capacity regions. Alternatively, one can also look into whether a “multi-user” version
of the extended I-MMSE relation exists, which may involve conditional mutual information
with multiple message sets. As might be expected, such a multi-user extended I-MMSE
relation can provide more insights between the interactions among the users.

Continuous-time. Recently, the infinite bandwidth capacity regions of a continuous-
time white Gaussian multiple access channel with/without feedback, a continuous-time white
Gaussian interference channel without feedback and a continuous-time white Gaussian broad-
cast channel without feedback have been derived in [26]. The continuous-time I-MMSE
relation has been applied to derive the capacity region of continuous-time white Gaussian
broadcast channels. It is very natural to further extend the above-mentioned results and de-
rive the capacity region for more general Gaussian multi-user channels with feedback, such
formulas might be of great help for the derivation of the capacity region of continuous-time
white Gaussian broadcast channels with feedback, or even more general continuous-time
multi-user channels.

5.5 Applications to Gaussian Memory Channels

It is conceivable that the extended I-MMSE relations (11) and (17) may be helpful for us
to further understand Gaussian memory channels, which are suitable for modeling some
storage systems, such as flash memories [1]. To be more precise, we believe that such
extended relations will be helpful in terms of estimating/computing the capacity (region) of
(multi-user) Gaussian channels with input/output memory.

5.6 Applications of Our New Approach

Other than the extended I-MMSE relations, one may also consider whether/how the proposed
new approach for deriving the extended I-MMSE relation can be applied elsewhere. Below
is a list of several scenarios where it can be instrumental.

Other information-theoretic quantities. Other than recovering and extending the
original I-MMSE relation, the proposed approach in this paper may be further applied to
study other information-theoretic quantities as well, which has been evidenced by the simple
and direct proof (see Section 2.2) for the classical de Brunij’s identity [39, 5]. It is our
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opinion that investigations on whether our approach can be applied elsewhere, particularly
to the situations where the derivatives of certain information-theoretic quantity are needed,
is highly likely to bear fruit. Here, we remark that the derivative of relative entropy has
been examined for channels involving mismatched estimation without feedback; see [42, 44].

Higher order derivatives. The second order derivative of the mutual information
and entropy power function have also been computed in [17, 33], which, among many other
applications, have played a key role in understanding the concavity of the mutual information
and deriving entropy power inequalities for Gaussian channels [5, 7, 33, 34]. We expect that
such results can be extended to Gaussian feedback channels. Rough computations suggest
that the framework of our approach can also be applied to compute higher order derivatives
explicitly. Other than understanding concavity, such explicit expressions can also help to
characterize the asymptotic behavior of the mutual information and entropy power function
associated with Gaussian feedback channels. In this direction, some Talyor-series-expansion-
like formulae seem to be within reach, which, undoubtedly, will yield a finer characterization
of the behavior of the mutual information and entropy power function of Gaussian feedback
channels.

Entropy power inequalities. The ideas and techniques in the proof of the original
I-MMSE relation has been used to give new and simpler proofs of a number of entropy power
inequalities [43] associated with Gaussian non-feedback channels. It is certainly worthwhile
to look into whether these inequalities can be extended to Gaussian feedback channels using
our new approach. And, obviously, the same questions can be asked in the continuous-time
setting, which, however, appears to be much more challenging.

Acknowledgement. We would like to thank Dongning Guo, Young-Han Kim, Tsachy
Weissman for insightful suggestions and comments, and for pointing out relevant references.

Appendices

A Key Lemmas

The following two well-known lemmas are the main tools that will be used to justify the
interchanges between a differentiation and an integration in this paper; for their proofs,
see [11, Theorem A.5.1, Theorem A.5.2].

Lemma A.1. Let f(x, θ) be a continuously differentiable function with respect to θ and X
be a random variable. Let ε > 0 and suppose that
(i) u(θ) = E[f(X, θ)] <∞ for all θ ∈ (θ0 − ε, θ0 + ε), and
(ii) v(θ) = E[ ∂

∂θ
f(X, θ)] is continuous at θ = θ0, and

(iii) E
(∫ θ0+ε

θ0−ε

∣∣ ∂
∂θ
f(X, θ)

∣∣ dθ) <∞,

then we have u′(θ0) = v(θ0), i.e.,

d

dθ
E[f(X, θ)]

∣∣∣∣
θ=θ0

= E
[
∂

∂θ
f(X, θ)

]∣∣∣∣
θ=θ0

.

The following lemma is a direct consequence of the above one.
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Lemma A.2. Let f(x, θ) be a continuously differentiable function with respect to θ and X
be a random variable. Let ε > 0 and suppose that
(i) u(θ) = E[f(X, θ)] <∞ for θ ∈ (θ0 − ε, θ0 + ε), and

(ii) E

[
sup

θ∈(θ0−ε,θ0+ε)

∣∣ ∂
∂θ
f(X, θ)

∣∣] <∞,

then we have u′(θ0) = v(θ0), i.e.,

d

dθ
E[f(X, θ)]

∣∣∣∣
θ=θ0

= E
[
∂

∂θ
f(X, θ)

]∣∣∣∣
θ=θ0

.

B Justifications for the interchanges in Section 2.1

1. We first prove that for any ρ0 ∈ R,

d

dρ

∫
R
fY |X(Y |x)fX(x)dx

∣∣∣∣
ρ=ρ0

=

∫
R

d

dρ
fY |X(Y |x)fX(x)dx

∣∣∣∣
ρ=ρ0

,

or equivalently, we prove that for any ρ0 ∈ R and for any x′, z′ ∈ R,

d

dρ

∫
R
fY |X(ρx′ + z′|x)fX(x)dx

∣∣∣∣
ρ=ρ0

=

∫
R

d

dρ
fY |X(ρx′ + z′|x)fX(x)dx

∣∣∣∣
ρ=ρ0

. (27)

In what follows, fix x′, z′ ∈ R and ε > 0. Straightforward computations yield that for all
ρ ∈ (ρ0 − ε, ρ0 + ε)∫

R
fY |X(ρx′ + z′|x)fX(x)dx ≤ 1√

2π

∫
R
fX(x)dx ≤ 1√

2π
,

and moreover,

∂

∂ρ
fY |X(ρx′ + z′|x) =

∂

∂ρ

[
e−(ρx

′−ρx+z′)2/2
]

= −e−(ρx′−ρx+z′)2/2(ρx′ − ρx+ z′)(x′ − x),

which, together with the assumption that E[X2] <∞, immediately implies that∫
R

sup
ρ∈(ρ0−ε,ρ0+ε)

∣∣∣∣ ∂∂ρfY |X(ρx′ + z′|x)fX(x)

∣∣∣∣ dx <∞.
The interchange as in (27) then immediately follows from an invocation of Lemma A.2.

2. We next prove that for any ρ0 ∈ R,

d

dρ
E[log fY (Y )]

∣∣∣∣
ρ=ρ0

= E
[
d

dρ
log fY (Y )

]∣∣∣∣
ρ=ρ0

. (28)

Note that, by the assumption that E[X2] <∞, we have

E[Y 2] = ρ2E[X2] + E[N2] <∞,
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which immediately implies the finiteness of E[log fY (Y )] for all ρ ∈ (ρ− ε, ρ+ ε). As in the
proof of Section 2.1, we have

E
[
d

dρ
log fY (Y )

]
= ρE[(X − E[X|Y ])2] = ρ(E[X2]− E[E2[X|Y ]]),

which means to prove the continuity of E
[
d
dρ

log fY (Y )
]

at ρ = ρ0, it suffices to prove that

of E[E2[X|Y ]] at ρ = ρ0.
As a matter of fact, we will prove the aforementioned continuity at any ρ. We first show

that

E[X|Y ] =
1

fY (Y )

∫
R

x√
2π
e−(Y−ρx)

2/2fX(x)dx

is continuous in ρ. To see this, note that for any ρ, we have

x√
2π
e−(Y−ρx)

2/2fX(x) ≤ |x|√
2π
fX(x),

of which the right hand side is integrable. It then follows from the fact that x√
2π
e−(Y−ρx)

2/2fX(x)

is continuous at any ρ and the dominated convergence theorem that∫
R

x√
2π
e−(Y−ρx)

2/2fX(x)dx

is continuous in ρ. A similar argument can be applied to show that fY (Y ) is also continuous
in ρ, which immediately implies the continuity of E[X|Y ] in ρ.

We are now ready to show that E[E2[X|Y ]] is continuous in ρ. To see this, note that it
follows from E[X2] < ∞ that {E[X2|Y ], ρ ≥ 0} forms a family of uniformly integrable
random variables. This, together with the fact that E2[X|Y ] ≤ E[X2|Y ], implies that
{E2[X|Y ], ρ ≥ 0} also forms a collection of uniformly integrable random variables. The
continuity of E[E2[X|Y ]] then follows from that of E[X|Y ] and the uniform integrability of
{E2[X|Y ], ρ ≥ 0}.

Moreover, it can be readily verified that

E
[∫ ρ0+ε

ρ0−ε

∣∣∣∣ ddρ log fY (Y )

∣∣∣∣ dρ] = E
[∫ ρ0+ε

ρ0−ε

∣∣∣∣∫
R
(Y − ρx)(X − x)fX|Y (x|Y )dx

∣∣∣∣ dρ]
≤ E

[∫ ρ0+ε

ρ0−ε

∫
R
|(Y − ρx)(X − x)| fX|Y (x|Y )dxdρ

]
≤ E

[∫ ρ0+ε

ρ0−ε

∫
R
(|Y X|+ |Y x|+ ρ|xX|+ ρ|x2|)fX|Y (x|Y )dxdρ

]
= E[E[|Y X|] + |Y |E[|X||Y ] + ρ|X|E[|X||Y ] + ρE[X2|Y ]]

= 2E[|Y X|] + ρE[E2[|X||Y ]] + ρE[X2]

≤ ρE[X2] +
1

2
E[X2] +

1

2
E[N2] + 2ρE[X2],

which is finite due to the assumption that E[X2] <∞ and the fact that E[N2] <∞. So, by
Lemma A.1, we can switch the integration and differentiation as in (28), and therefore

d

dρ
I(X;Y ) = −E

[
d

dρ
log pY (Y )

]
= E[(X − E[X|Y ])2].
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C Justifications for the interchanges in Section 2.2

We need to verify that for any t0 > 0,

d

dρ

∫
R
fY |X(Y |x)fX(x)dx

∣∣∣∣
t=t0

=

∫
R

d

dρ
fY |X(Y |x)fX(x)dx

∣∣∣∣
t=t0

,

or equivalently, we prove that for any t0 > 0 and for any x′, z′ ∈ R,

d

dt

∫
R
fY |X(x′ +

√
tz′|x)fX(x)dx

∣∣∣∣
t=t0

=

∫
R

d

dt
fY |X(x′ +

√
tz′|x)fX(x)dx

∣∣∣∣
t=t0

,

which follows from a parallel argument as in the proof of (27). We also need to verify that
for any t0 > 0,

d

dρ
E[log fY (Y )]

∣∣∣∣
t=t0

= E
[
d

dρ
log fY (Y )

]∣∣∣∣
t=t0

,

which follows from a parallel argument as in the proof of (28).

D Justifications for the interchanges in the Proof of
Theorem 3.1

In this section, we fix ε > 0 and we sometimes write gi(W
i
1, Y

i−1
1 ) as gi for notational

simplicity.
1. We first prove that for any ρ0 ∈ R+, with probability 1,

d

dρ

∫
Rn

f(Y n
1 |wn1 )f(wn1 )dwn1

∣∣∣∣
ρ=ρ0

=

∫
Rn

d

dρ
f(Y n

1 |wn1 )f(wn1 )dwn1

∣∣∣∣
ρ=ρ0

. (29)

It follows from straightforward computations that for all ρ ∈ (ρ0 − ε, ρ0 + ε)∫
R
f(Y n

1 |wn1 )f(wn1 )dwn1 ≤
1

(
√

2π)n

∫
R
f(wn1 )dwn1 ≤

1

(
√

2π)n
.

Moreover, we have

d

dρ
f(Y n

1 |wn1 ) =
n∑
i=1

(Yi−ρgi(wi1, Y i−1
1 ))

(
gi(W

i
1, Y

i−1
1 )−gi(wi1, Y i−1

1 )+ρ
d

dρ
(gi(W

i
1, Y

i−1
1 )−gi(wi1, Y i−1

1 ))

)
f(Y n

1 |wn1 ).

It then follows from (8) that, with probability 1,∫
Rn

sup
ρ∈[ρ0−ε,ρ0+ε]

∣∣∣∣ ddρf(Y n
1 |wn1 )f(wn1 )

∣∣∣∣ dwn1 <∞.
The interchange as in (29) then immediately follows from an invocation of Lemma A.2.

2. We next prove that for any ρ0 ∈ R,

d

dρ
E[log f(Y n

1 )]

∣∣∣∣
ρ=ρ0

= E
[
d

dρ
log f(Y n

1 )

]∣∣∣∣
ρ=ρ0

. (30)
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Note that, by (8), we have for all ρ ∈ [ρ0 − ε, ρ0 + ε] and for all i,

E[Y 2
i ] = ρ2E[ sup

ρ∈[ρ0−ε,ρ0+ε]
g2i (W

i
1, Y

i−1
1 )] + E[Z2

i ] <∞,

which implies that H(Yi) is upper bounded. On the other hand, it follows from

H(Yi) ≥ H(Yi|Y i−1
1 ,Wi) = H(Zi)

that H(Yi) is lower bounded, and so we have obtained the finiteness of E[log f(Y n
1 )]. As in

the proof of Theorem 3.1, we have

E
[
d

dρ
log f(Y n

1 )

]
= ρ

n∑
i=1

E
[
(gi − E[gi|Y n

1 ])2
]

+ ρ2
n∑
i=1

E
[
(gi − E[gi|Y n

1 ])
d

dρ
gi

]
= ρ

n∑
i=1

(E[g2i ]− E[E2[gi|Y n
1 ]]) + ρ2

n∑
i=1

(E[gi
d

dρ
gi]− E[E[gi|Y n

1 ]
d

dρ
gi]).

So, to prove the continuity of E
[
d
dρ

log f(Y n
1 )
]

at ρ = ρ0, it suffices to prove that of

E[g2i (W
i
1, Y

i−1
1 )], E[E2[gi(W

i
1, Y

i−1
1 )|Y n

1 ]], E[gi(W
i
1, Y

i−1
1 )

d

dρ
gi(W

i
1, Y

i−1
1 )], E[E[gi(W

i
1, Y

i−1
1 )|Y n

1 ]
d

dρ
gi(W

i
1, Y

i−1
1 )]

at ρ = ρ0. With Condition (8) and the fact that for all feasible i, gi(W
i
1, Y

i−1
1 ) is continuous

in ρ, the continuity of E[g2i (W
i
1, Y

i−1
1 )] immediately follows from the dominated convergence

theorem. Similarly, it can be also verified that

E

[
sup

ρ∈[ρ0−ε,ρ0+ε]

∣∣∣∣gi(W i
1, Y

i−1
1 )

d

dρ
gi(W

i
1, Y

i−1
1 )

∣∣∣∣
]
<∞,

which implies the continuity of E[gi(W
i
1, Y

i−1
1 ) d

dρ
gi(W

i
1, Y

i−1
1 )]. Moreover, a similar argu-

ment as in Section B can be used to establish the continuity of E[E2[gi(W
i
1, Y

i−1
1 )|Y n

1 ]] and

E[E[gi(W
i
1, Y

i−1
1 )|Y n

1 ] d
dρ
gi(W

i
1, Y

i−1
1 )] in ρ. We then obtain the continuity of E

[
d
dρ

log f(Y n
1 )
]
,

as desired.
Moreover, we verify that

E
[∫ ρ0+ε

ρ0−ε

∣∣∣∣ ddρ log f(Y n
1 )

∣∣∣∣ dρ] = E

[∫ ρ0+ε

ρ0−ε

∣∣∣∣∣
∫
Rn

n∑
i=1

(Yi − ρgi(wi1, Y i−1
1 )

(
gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 )

+ρ
d

dρ
(gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 ))

)
f(wn1 |Y n

1 )dwn1

∣∣∣∣ dρ]
≤ E

[∫ ρ0+ε

ρ0−ε

∫
Rn

n∑
i=1

∣∣∣∣(Yi − ρgi(wi1, Y i−1
1 )

(
gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 )

+ρ
d

dρ
(gi(W

i
1, Y

i−1
1 )− gi(wi1, Y i−1

1 ))

)∣∣∣∣ f(wn1 |Y n
1 )dwn1dρ

]
<∞,

where the finiteness then follows from (8). So, by Lemma A.1, the integration and differen-
tiation in (30) can be interchanged.
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E Justifications for the interchanges in the Proof of
Theorem 4.2

In this section, let ε > 0 and we sometimes write g(s,W s
0 , Y

s
0 ) as g(s) for notational simplicity.

1. We first prove that for any ρ0 ∈ R+,

d

dρ

∫ T

0

E[g2(s,W s
0 , Y

s
0 )]ds

∣∣∣∣
ρ=ρ0

= 2

∫ T

0

E
[
g(s,W s

0 , Y
s
0 )

d

dρ
g(s,W s

0 , Y
s
0 )

]
ds

∣∣∣∣
ρ=ρ0

.

It immediately follows from Condition (d) that for any ρ ∈ [ρ0 − ε, ρ0 + ε],∫ T

0

E[g2(s,W s
0 , Y

s
0 )]ds <∞,

and moreover, ∫ T

0

E

[
sup

ρ∈[ρ0−ε,ρ0+ε]
2g(s,W (s), Y s

0 )
d

dρ
g(s,W (s), Y s

0 )

]

≤
∫ T

0

E

[
sup

ρ∈[ρ0−ε,ρ0+ε]
g2(s,W (s), Y s

0 )

]
ds+

∫ T

0

E

[
sup

ρ∈[ρ0−ε,ρ0+ε]

(
d

dρ
g(s,W (s), Y s

0 )

)2
]
ds <∞.

The desired interchange then immediately follows from Lemma A.2.
2. We next prove that for any ρ0 ∈ R+, we have, with probability 1,

d

dρ

∫
dµY |W
dµB

(Y T
0 |w)µW (dw)

∣∣∣∣
ρ=ρ0

=

∫
d

dρ

dµY |W
dµB

(Y T
0 |w)µW (dw)

∣∣∣∣
ρ=ρ0

.

First of all, it follows from Theorem 7.1 of [25] that µY ∼ µB, and

dµY
dµB

(Y T
0 ) =

∫
dµY |W
dµB

(Y T
0 |w)µW (dw)

is finite almost surely, which can be further written as

dµY
dµB

(Y T
0 ) =

∫
exp

{
ρ2
∫ T

0

g̃(s)g(s)ds+ ρ

∫ T

0

g̃(s)dBs −
ρ2

2

∫ T

0

g̃2(s)ds

}
µW (dw), (31)

where g(s, ws0, Y
s
0 ) is written as g̃(s) for notational simplicity. Emphasizing the dependence

on ρ, we write

b(ρ) = exp

{
ρ2
∫ T

0

g̃(s)g(s)ds+ ρ

∫ T

0

g̃(s)dBs −
ρ2

2

∫ T

0

g̃2(s)ds

}
,

and write

a(ρ) =

∫
d

dρ
b(ρ)µW (dw).
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We now establish the continuity of a(ρ) with respect to ρ. To see this, note that it follows
from a routine estimation that

lim
ε→0

E

[∣∣∣∣a(ρ+ ε)− a(ρ)

ε
−
∫

d2

dρ2
b(ρ)µW (dw)

∣∣∣∣2
]

= 0,

where we have used the boundedness of g(s). This further implies that for any ρ, we have,
with probability 1,

a(ρ)− a(0) =

∫ ρ

0

∫
d2

dγ2
b(γ)µW (dw)dγ.

The continuity of a(ρ) then immediately follows (or, more precisely, a(ρ) has a continuous
modificaiton). Moreover, it is straightforward to verify that

E
[∣∣∣∣ ddρb(ρ)

∣∣∣∣] <∞.
Finally, with all the technical conditions checked, the desired interchange then immediately
follows from Lemma A.1.

3. Finally, we will prove that for any ρ0 ∈ R+,

d

dρ
E
[
log

dµY
dµB

(Y T
0 )

]∣∣∣∣
ρ=ρ0

= E
[
d

dρ
log

dµY
dµB

(Y T
0 )

]∣∣∣∣
ρ=ρ0

.

First of all, we will show that for all ρ ∈ [ρ0− ε, ρ0 + ε], E
[
log dµY

dµB
(Y T

0 )
]

is finite. To see

this, first note that it follows from Theorem 7.1 of [25] that

dµY
dµB

(Y T
0 ) =

1

E[e−
∫ T
0 XdY+1/2

∫ T
0 X2ds|Y T

0 ]
.

By Jensen’s inequality, we have

E
[
−
∫ T

0

XdYs +
1

2

∫ T

0

X2ds|Y T
0

]
≤ logE[e−

∫ T
0 XdYs+

1
2

∫ T
0 X2ds|Y T

0 ],

and, by the easy fact that log x ≤ x for any x > 0,

logE[e−
∫ T
0 XdYs+

1
2

∫ T
0 X2ds|Y T

0 ] ≤ E[e−
∫ T
0 XdYs+

1
2

∫ T
0 X2ds|Y T

0 ],

The desired finiteness then follows from∣∣∣logE[e−
∫ T
0 XdYs+

1
2

∫ T
0 X2ds|Y T

0 ]
∣∣∣ ≤ ∣∣∣∣E[−

∫ T

0

XdYs +
1

2

∫ T

0

X2ds|Y T
0 ]

∣∣∣∣+E[e−
∫ T
0 XdYs+

1
2

∫ T
0 X2ds|Y T

0 ].

Next, as in the proof of Theorem 4.2, we have

E
[
d

dρ
log

dµY
dµB

(Y T
0 )

]
= ρ

∫ T

0

E[E2[g(s)|Y T
0 ]]ds+ ρ2

∫ T

0

E
[
E[g(s)|Y T

0 ]
d

dρ
g(s)

]
ds.
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Note that∫ T

0

sup
ρ∈[ρ0−ε,ρ+ε]

E[E2[g(s)|Y T
0 ]]ds ≤

∫ T

0

sup
ρ∈[ρ0−ε,ρ+ε]

E[E[g2(s)|Y T
0 ]]ds =

∫ T

0

sup
ρ∈[ρ0−ε,ρ+ε]

E[g2(s)]ds <∞,

and furthermore,∫ T

0

sup
ρ∈[ρ0−ε,ρ+ε]

E
[
E[g(s)|Y T

0 ]
d

dρ
g(s)

]
ds ≤ 1

2

(∫ T

0

sup
ρ∈[ρ0−ε,ρ+ε]

E
[
E2[g(s)|Y T

0 ]
]

+ sup
ρ∈[ρ0−ε,ρ+ε]

E

[(
d

dρ
g(s)

)2
]
ds

)
<∞.

It then immediately follows that E
[
d

dρ
log dµY

dµB
(Y T

0 )

]
is continuous with respect to ρ. More-

over, note that∫ ρ0+ε

ρ0−ε
E
[∣∣∣∣ ddρ log

dµY
dµB

(Y T
0 )

∣∣∣∣] dρ =

∫ ρ0+ε

ρ0−ε
E
[∣∣∣∣ ddρ

(
dµY
dµB

(Y T
0 )

)
/
dµY
dµB

(Y T
0 )

∣∣∣∣] dρ
≤
∫ ρ0+ε

ρ0−ε
E
[ ∣∣∣∣E [∫ T

0

g(s)dY (s)

∣∣∣∣Y T
0

]∣∣∣∣+ ρ

∣∣∣∣E [∫ T

0

d

dρ
g(s)dY (s)

∣∣∣∣Y T
0

]∣∣∣∣
+ ρ

∫ T

0

∣∣E[g(s)|Y T
0 ]g(s)− E[g2(s)|Y T

0 ]
∣∣ ds+ ρ2

∫ T

0

∣∣∣∣ ddρg(s)E[g(s)|Y T
0 ]− E

[
g(s)

d

dρ
g(s)

∣∣∣∣Y T
0

]∣∣∣∣ ds]dρ.
It then follows from Condition (d) that∫ ρ0+ε

ρ0−ε
E
[∣∣∣∣ ddρ log

dµY
dµB

(Y T
0 )

∣∣∣∣] dρ <∞.
Finally, with all the technical conditions checked, the desired interchange follows from
Lemma A.1.
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