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Abstract

Let G = (V,E) be a graph. The matching polytope of G, denoted by P (G), is the convex
hull of the incidence vectors of all matchings in G. As proved by Edmonds in 1965, P (G) is
determined by the following linear system π(G):

• x(e) ≥ 0 for each e ∈ E;

• x(δ(v)) ≤ 1 for each v ∈ V ;

• x(E[U ]) ≤ ⌊ 1

2
|U |⌋ for each U ⊆ V with |U | odd.

In 1978, Cunningham and Marsh strengthened this theorem by showing that π(G) is always
totally dual integral. In 1984, Edmonds and Giles initiated the study of graphs G for which
π(G) is box-totally dual integral. In this paper we present a structural characterization of
all such graphs, and develop a general and powerful method for establishing box-total dual
integrality.
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1 Introduction

Let Ax ≤ b, x ≥ 0 be a rational linear system and let P denote the polyhedron {x : Ax ≤
b, x ≥ 0}. We call P integral if it is the convex hull of all integral vectors contained in P . As
shown by Edmonds and Giles [10], P is integral if and only if the maximum in the LP-duality
equation

max{wTx : Ax ≤ b, x ≥ 0} = min{yTb : yTA ≥ wT, y ≥ 0}

has an integral optimal solution, for every integral vector w for which the optimum is finite.
If, instead, the minimum in the equation enjoys this property, then the system Ax ≤ b, x ≥ 0
is called totally dual integral (TDI). Furthermore, the system is called box-totally dual integral
(box-TDI) if Ax ≤ b, l ≤ x ≤ u, x ≥ 0 is TDI for all rational vectors l and u; in the
literature there is an equivalent definition of box-TDI systems, where the coordinates of u are
also allowed to be +∞ (see Schrijver [17], page 318). It is well known that many combinatorial
optimization problems can be naturally formulated as integer programs of the form max{wTx :
x ∈ P, integral}; if P is integral, then such a problem reduces to its LP-relaxation, thereby is
solvable in polynomial time. Edmonds and Giles [10] proved that total dual integrality implies
primal integrality: if Ax ≤ b, x ≥ 0 is TDI and b is integer-valued, then P is integral. So
the model of TDI systems plays a crucial role in combinatorial optimization; in particular, it
serves as a general framework for establishing various min-max theorems. The importance of
box-TDI systems can be seen from the fact that box constraints arise frequently in practice
and that box-total dual integrality strengthens total dual integrality. Therefore, these three
integrality properties have been subjects of extensive research; they are also the major concern
of polyhedral combinatorics (see Schrijver [17, 18] for comprehensive and in-depth accounts).
Since it is NP -hard in general to recognize linear systems with such integrality properties [14, 5],
we restrict our attention to Edmonds’ system for defining the matching polytope in this paper.

Let G = (V,E) be a graph. The matching polytope of G, denoted by P (G), is the convex hull
of the incidence vectors of all matchings in G. For each v ∈ V , we use δ(v) to denote the set of
all edges incident with v in G, and use d(v) (or dG(v) under some circumstances) to denote the
degree of v. For each U ⊆ V , we use G[U ] to denote the subgraph of G induced by U , and use
E[U ] to denote the edge set of G[U ]. Consider the linear system π(G) consisting of the following
inequalities:

(i) x(e) ≥ 0 for each e ∈ E;

(ii) x(δ(v)) ≤ 1 for each v ∈ V ;

(iii) x(E[U ]) ≤ ⌊12 |U |⌋ for each U ⊆ V with |U | odd,

where and throughout x(F ) =
∑

e∈F x(e) for any F ⊆ E. From a theorem of Birkhoff [1], it
follows that P (G) is determined by the inequalities (i) and (ii) if and only if G is bipartite. For a
general graph G, Edmonds [9] showed that adding (iii) is enough to give a description of P (G).

Theorem 1.1. (Edmonds [9]) For any graph G = (V,E), the matching polytope P (G) is deter-
mined by π(G).

As remarked by Schrijver [18], the matching polytope forms the first class of polytopes whose
characterization does not simply follow just from total unimodularity, and its description was a
breakthrough in polyhedral combinatorics.
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Pulleyblank and Edmonds [15] characterized which of the inequalities in π(G) give a facet
of the matching polytope. Define

• I(G) = {v ∈ V : d(v) ≥ 3, or d(v) = 2 and v is contained in no triangle, or d(v) = 1 and
the neighbor of v also has degree 1},

• T (G) = {U ⊆ V : |U | ≥ 3, G[U ] is factor-critical and 2-connected}.

Recall that a graph H is factor-critical if H\v has a perfect matching for each vertex v of H
(see Lovász and Plummer [13]).

Theorem 1.2. (Pulleyblank & Edmonds [15]) For any graph G = (V,E), each inequality in
π(G) is a nonnegative integer combination of the following inequalities:

(i) x(e) ≥ 0 for each e ∈ E;

(ii) x(δ(v)) ≤ 1 for each v ∈ I(G);

(iii) x(E[U ]) ≤ ⌊12 |U |⌋ for each U ⊆ T (G).

So they also determine the matching polytope P (G).

Cunningham and Marsh [7] strengthened Edmonds’ matching polytope theorem (that is,
Theorem 1.1) by showing that π(G) is actually TDI, which yields a min-max relation for the
maximum weight of a matching in G (see Theorem 25.2 in Schrijver [18]).

Theorem 1.3. (Cunningham & Marsh [7]) For any graph G = (V,E), the Edmonds system
π(G) is TDI.

Motivated by Theorems 1.1 and 1.3, Edmonds and Giles [11] initiated the study of graphs G
for which π(G) is box-TDI, and discovered the following counterexmaple. The purpose of this
paper is to give a structural characterization of all such graphs.

Figure 1: A graph G for which π(G) is not box-TDI

We define one term before presenting the main theorem. A graph K is called a fully odd
subdivision of a graph H if K is obtained from H by subdividing each edge of H into a path of
odd length (possibly the length is one).

Theorem 1.4. Let G = (V,E) be a graph. Then the Edmonds system π(G) is box-TDI if and
only if G contains no fully odd subdivision of F1, F2, F3, or F4 (see Figure 2) as a subgraph.
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Figure 2: Forbidden subgraphs

A polyhedron is called box-TDI if it can be defined by a box-TDI system. Cook [6] ob-
served that box-total dual integrality essentially is a property of polyhedra (see Theorem 22.8
in Schrijver [17]).

Theorem 1.5. (Cook [6]) Let Q be a box-TDI polyhedron and let Cx ≤ d be an arbitrary TDI
system such that Q = {x : Cx ≤ d}. Then Cx ≤ d is box-TDI.

So Theorem 1.4 actually tells us when the matching polytope is box-TDI. To establish the
“if” part of this theorem, we need a structural description of all graphs under consideration.
Due to the strict parity restriction, fully odd subdivisions are much more difficult to manipulate
than subdivisions, minors, and odd minors (see, for instance, [2, 12, 16]); this drawback makes
our description rather delicate and sophisticated. The other difficulty with the proof lies in the
lack of a proper tool for establishing box-total dual integrality. To the best of our knowledge,
there are only two general-purpose methods presently available, which are described below.

Theorem 1.6. (Cook [6]) A rational system Ax ≤ b, x ≥ 0, with x ∈ Rn, is box-TDI if and
only if it is TDI and for any rational vector c = (c1, c2, . . . , cn)

T , there exists an integral vector
c̃ = (c̃1, c̃2, . . . , c̃n)

T such that ⌊ci⌋ ≤ c̃i ≤ ⌈ci⌉, for all 1 ≤ i ≤ n, and such that every optimal
solution of max {cTx : Ax ≤ b, x ≥ 0} is also an optimal solution of max {c̃Tx : Ax ≤ b, x ≥
0}.

Nevertheless, this necessary and sufficient condition is very difficult to verify in practice. In
[18], Schrijver proved the following theorem (see Theorem 5.35), which implies that a number
of classical min-max theorems can be further strengthened with box-TDI properties.

Theorem 1.7. (Schrijver [18]) Let Ax ≤ b, x ≥ 0 be a rational system. Suppose that for any
rational vector c, the program max{cTx : Ax ≤ b, x ≥ 0} has (if finite) an optimal dual solution
y such that the rows of A corresponding to positive components of y form a totally unimodular
submatrix of A. Then Ax ≤ b, x ≥ 0 is box-TDI.

Since the aforementioned Edmonds system does not necessarily meet the total unimodularity
requirement, Schrijver’s theorem can hardly be applied in our proof directly. In this paper we
shall develop a general and powerful method for establishing box-total dual integrality; our proof
of Theorem 1.4 will rely heavily on this new approach.
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Let us introduce some notations and terminology before proceeding. As usual, let Q and
Z denote the sets of rationals and integers, respectively, and let Q+ and Z+ denote the sets
of nonnegative numbers in the corresponding sets. Set Z/k = {x/k : x ∈ Z} for each integer
k ≥ 2. For any set Ω of numbers and any finite set K, we use ΩK to denote the set of vectors
x = (x(k) : k ∈ K) whose coordinates are members of Ω. For each J ⊆ K, the |J |-dimensional
vector x|J = (x(j) : j ∈ J) stands for the projection of x to ΩJ .

Throughout this paper, a collection is a synonym of a multiset in which elements may occur
more than once, while elements of a set or a subset (of a collection) are all distinct. So if
X = {x1, x2, . . . , xm} is a collection, then possibly xi = xj for some distinct i, j. The size |X|
of X is defined to be m. If Y = {y1, y2, . . . , yn} is also a collection, then the union X ∪ Y of
X and Y is the collection {x1, x2, . . . , xm, y1, y2, . . . , yn}. Thus the size of X ∪ Y is |X| + |Y |,
which is different from what happens to the union of two sets. Similarly, we can define X ∩ Y
and X − Y of these two collections.

Let Ax ≤ b, x ≥ 0 be a rational system, where A = [aij ]m×n and b = (b1, b2, . . . , bm)T . We
call A integral if all aij are integers (not necessarily nonnegative). Let R be the set of indices
of all rows of A, and let S be the set of indices of all columns of A. For any collection Λ of
elements of R and any element s of S, set b(Λ) =

∑

r∈Λ br and dΛ(s) =
∑

r∈Λ ars. Notice that if
r appears k times in Λ, then br is counted k times in b(Λ), and ars is counted k times in dΛ(s).
An equitable subpartition of Λ consists of two collections Λ1 and Λ2 of elements of R (which are
not necessarily in Λ) such that

(i) b(Λ1) + b(Λ2) ≤ b(Λ);

(ii) dΛ1∪Λ2
(s) ≥ dΛ(s) for all s ∈ S; and

(iii) min{dΛ1
(s), dΛ2

(s)} ≥ ⌊dΛ(s)/2⌋ for all s ∈ S.

We call the system Ax ≤ b, x ≥ 0 equitably subpartitionable, abbreviated ESP, if every collection
Λ of elements of R admits an equitable subpartition. We refer to the above (i), (ii), and (iii) as
ESP property.

Theorem 1.8. Every ESP system Ax ≤ b, x ≥ 0, with A integral, is box-TDI.

We point out that the ESP property was first introduced by Ding and Zang [8] for linear
systems of the form Ax ≥ 1, x ≥ 0, where A is a 0-1 matrix and 1 is an all-one vector,
which has proved to be very effective in dealing with various packing and covering problems (see
[8, 4]). The property defined above is clearly a natural extension of the original definition in the
most general setting. Although recognizing box-TDI systems is an optimization problem, as we
shall see, our approach based on the ESP property is of transparent combinatorial nature and
hence is fairly easy to work with. Recently we have successfully characterized several important
classes of box-perfect graphs (see, for instances, [3, 6]) using this approach; one of our theorems
asserts that every parity graph is box-perfect, which confirms a conjecture made by Cameron
and Edmonds [3] in 1982. We strongly believe that the ESP property is exactly the tool one
needs for the study of box-perfect graphs, and shall further explore its connection with other
optimization problems.

The remainder of this paper is organized as follows. In Section 2, we show that the ESP
property implies box-total dual integrality, thereby proving Theorem 1.8. In Section 3, we
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demonstrate that every fully odd subdivision of F1, F2, F3, and F4 is an obstruction to box-total
dual integrality, which establishes the “only if” part of Theorem 1.4. In Section 4, we present
a structural description of all internally 2-connected graphs with no fully odd subdivision of
F1, F2, F3, or F4. In Section 5, we show that the restricted Edmonds system specified in Theorem
1.2 is ESP for all graphs considered in the preceding section. In Section 6, we derive the “if”
part of Theorem 1.4 (thus finish the proof) based on two summing operations.

2 ESP Property

The purpose of this section is to prove Theorem 1.8, which asserts that the ESP property
is sufficient for a linear system to be box-TDI. With a slight abuse of notation, we write
Min(A, b, l,u,w) for both the linear program min{αTb − βT l + γTu : αTA − βT + γT ≥
wT , α, β, γ ≥ 0} and its optimal value. When integrality is imposed on its solutions, we write
Min(A, b, l,u,w;Z) for both the corresponding integer program and its optimal value. Similarly,
we can define Min(A, b, l,u,w;Z/2). Recall the notations introduced in the preceding section:
R is the set of indices of all rows of A, and S is the set of indices of all columns of A. Suppose
(α∗,β∗,γ∗) is an optimal solution to Min(A, b, l,u,w;Z). Let Λ be the collection of elements in
R, such that each r ∈ R appears precisely α∗(r) times in Λ; we call Λ the row-index collection
of A corresponding to α∗.

We propose to establish the following statement, which clearly implies Theorem 1.8.

Theorem 2.1. Let Ax ≤ b, x ≥ 0 be a rational system, with A integral. Suppose that for any
l, u ∈ QS and w ∈ ZS with finite Min(A, b, l,u,w), there exists an optimal solution (α∗,β∗,γ∗)
to Min(A, b, l, u, 2w;Z), such that the row-index collection of A corresponding to α∗ admits an
equitable subpartition. Then Ax ≤ b, x ≥ 0 is box-TDI.

The proof given below is an adaption of that of Theorem 1.2 in [4]. For completeness and
ease of reference, we include all details here.

Schrijver and Seymour [17] established that a rational system Ax ≤ b, l ≤ x ≤ u, x ≥ 0
is TDI if and only if Min(A, b, l,u,w;Z/2) = Min(A, b, l,u,w;Z) for any integral vector w for
which Min(A, b, l,u,w) is finite (see Theorem 22.13 in Schrijver [17]), which amounts to saying
that Min(A, b, l,u, 2w;Z) = 2 · Min(A, b, l,u,w;Z). By definition, the LHS is bounded above
by the RHS. So we get the following necessary and sufficient condition for total dual integrality.

Lemma 2.2. The rational system Ax ≤ b, l ≤ x ≤ u, x ≥ 0 is TDI if and only if

Min(A, b, l,u, 2w;Z) ≥ 2 ·Min(A, b, l,u,w;Z)

for any integral vector w for which Min(A, b, l, u, w) is finite.

Proof of Theorem 2.1. By Lemma 2.2, it suffices to show that for any l ∈ QS, u ∈
(Q ∪ {+∞})S , and w ∈ ZS with finite Min(A, b, l, u, w), we have Min(A, b, l,u, 2w;Z) ≥
2·Min(A, b, l,u,w;Z). According to the hypothesis, there exists an optimal solution (α∗,β∗,γ∗)
to Min(A, b, l, u, 2w;Z), such that the row-index collection Λ of A corresponding to α∗ admits
an equitable subpartition (Λ1,Λ2). Our objective is to find a feasible solution (α,β,γ) to
Min(A, b, l,u,w;Z) based on both (α∗,β∗,γ∗) and (Λ1,Λ2), with αTb−βT l+γTu ≤ [(α∗)Tb−
(β∗)T l + (γ∗)Tu]/2
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Let us make some observations about β∗ and γ∗. For convenience, we may assume that
(1) β∗(s)γ∗(s) = 0 for all s ∈ S.
Otherwise, β∗(s) 6= 0 6= γ∗(s) for some column index s ∈ S. Set δ = Min{β∗(s), γ∗(s)}.

Clearly δ > 0. Let β′ be the vector obtained from β∗ by replacing β∗(s) with β∗(s) − δ,
and let γ′ be the vector obtained from γ∗ by replacing γ∗(s) with γ∗(s) − δ. Observe that
(α∗,β′,γ ′) is a feasible solution to Min(A, b, l, u, 2w;Z), and that (α∗)T b− (β′)T l + (γ ′)Tu =
(α∗)Tb− (β∗)T l + (γ∗)Tu− (u(v) − l(v))δ ≤ (α∗)Tb− (β∗)T l + (γ∗)Tu. So (α∗,β′,γ ′) is also
an optimal solution to Min(A, b, l,u, 2w;Z). Hence (1) holds because otherwise we can replace
(α∗,β∗,γ∗) with (α∗,β′,γ′) and repeat this process.

(2) β∗(s) = 0 for all s ∈ S with l(s) < 0.
Otherwise, β∗(s) > 0 for some s ∈ S with l(s) < 0. Let β′ be the vector obtained from β∗

by replacing β∗(s) with zero. Clearly, (α∗,β′,γ∗) is a feasible solution to Min(A, b, l,u, 2w;Z),
whose objective value is smaller than that of (α∗,β∗,γ∗); this contradiction justifies (2).

The inequality contained in (α∗)TA−(β∗)T +(γ∗)T ≥ 2wT corresponding to a column index
s reads dΛ(s)− β∗(s) + γ∗(s) ≥ 2w(s), which can be strengthened as follows.

(3) dΛ(s)− β∗(s) + γ∗(s) = 2w(s) for all s ∈ S with β∗(s) + γ∗(s) > 0.
Assume the contrary: dΛ(s)− β∗(s) + γ∗(s) > 2w(s) for some s ∈ S with β∗(s) + γ∗(s) > 0.

Set δ = dΛ(s)− β∗(s) + γ∗(s)− 2w(s). By assumption, δ > 0. If β∗(s) > 0, then γ∗(s) = 0 and
l(s) ≥ 0 by (1) and (2); in this case, let β′ be the vector obtained from β∗ by replacing β∗(s)
with β∗(s) + δ and let γ′ = γ∗. If γ∗(s) > 0, then β∗(s) = 0 by (1); in this case, let γ′ be the
vector obtained from γ∗ by replacing γ∗(s) with max{0, γ∗(s)−δ} and let β′ = β∗. Observe that
(α∗,β′,γ ′) is a feasible solution to Min(A, b, l,u, 2w;Z), and that (α∗)Tb− (β∗)T l+ (γ∗)Tu ≥
(α∗)Tb− (β′)T l+(γ ′)Tu. Hence (α∗,β′,γ ′) is also an optimal solution to Min(A, b, l,u, 2w;Z).
Let us replace (α∗,β∗,γ∗) with (α∗,β′,γ ′) and repeat this process until we get stuck. Clearly,
the resulting solution satisfies (1), (2) and (3) simultaneously.

For i = 1, 2, define a vector αi ∈ ZR
+, such that αi(r) is precisely the multiplicity of row

index r in Λi for all r ∈ R. By (i) of the ESP property, b(Λ1) + b(Λ2) ≤ b(Λ). So
(4) αT

1 b+αT
2 b ≤ (α∗)Tb.

Consider an arbitrary column index s ∈ S. Suppose dΛp(s) ≥ dΛq(s), where {p, q} = {1, 2}.
Since A is integral, dΛ(s) and dΛi

(s) for i = p, q are all integers. By (ii) and (iii) of the ESP
property, we have

(5) dΛp(s) ≥ ⌈dΛ(s)/2⌉ and dΛq (s) ≥ ⌊dΛ(s)/2⌋.
Set
• βp(s) = ⌈β∗(s)/2⌉ and γp(s) = ⌊γ∗(s)/2⌋, and
• βq(s) = ⌊β∗(s)/2⌋ and γq(s) = ⌈γ∗(s)/2⌉.

Then
(6) βp(s) + βq(s) = β∗(s) and γp(s) + γq(s) = γ∗(s).

Let us show that
(7) dΛi

(s)− βi(s) + γi(s) ≥ w(s) for i = 1, 2.
We distinguish between two cases according to the parity of dΛ(s). If dΛ(s) is even, then both

β∗(s) and γ∗(s) are even by (1) and (3). Thus dΛi
(s)−βi(s)+γi(s) ≥ (dΛ(s)−β∗(s)+γ∗(s))/2 ≥

w(s) for i = 1, 2 by (5). It remains to consider the case when dΛ(s) is odd. If β
∗(s) = γ∗(s) = 0,

then, by (5) for i = 1, 2, we have dΛi
(s)−βi(s)+γi(s) = dΛi

(s) ≥ (dΛ(s)−1)/2 ≥ (2w(s)−1)/2 =
w(s)− 1

2 . Thus dΛi
(s)−βi(s)+γi(s) ≥ w(s) for i = 1, 2 as the left-hand side is an integer. So we
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assume that β∗(s)+γ∗(s) > 0. It follows from (3) that dΛ(s)−β∗(s)+γ∗(s) = 2w(s). Since dΛ(s)
is odd, so is −β∗(s) + γ∗(s). Moreover, β∗(s)γ∗(s) = 0 by (1). From the definition, we see that
−βp(s)+γp(s) = (−β∗(s)+γ∗(s)−1)/2 and −βq(s)+γq(s) = (−β∗(s)+γ∗(s)+1)/2. Combining
them with (5), we conclude that dΛi

(s) − βi(s) + γi(s) ≥ (dΛ(s) − β∗(s) + γ∗(s))/2 = w(s) for
i = p, q, which establishes (7).

For i = 1, 2, set βi = (βi(s) : s ∈ S) and γi = (γi(s) : s ∈ S). By (7), we have αT
i A−βi+γi ≥

wT , and thus (αi,βi,γi) is a feasible solution to Min(A, l,u,w;Z). From (6), it follows that
β1 + β2 = β∗ and γ1 + γ2 = γ∗. Hence

∑2
i=1(−βT

i l + γT
i u) = −(β∗)T l + (γ∗)Tu. Using (4),

we obtain αT
i b− βT

i l + γT
i u ≤ [(α∗)Tb− (β∗)T l + (γ∗)Tu]/2 for i = 1 or 2; the corresponding

(αi,βi,γi) is a solution to Min(A, b, l,u,w;Z) as desired.

3 Forbidden Structures

Let G = (V,E) be a graph and let σ(G) be the system consisting of all the inequalities exhibited
in Theorem 1.2, which we call the restricted Edmonds system. By Theorems 1.2 and 1.3, σ(G) is
also a TDI system (see (41) on page 322 in Schrijver [17]). Thus the following statement follows
instantly from Theorem 1.5.

Lemma 3.1. The system σ(G) is box-TDI if and only if π(G) is box-TDI.

By definition, σ(G) is box-TDI if and only if, for any l ∈ QE, u ∈ (Q ∪ {+∞})E , and
w ∈ ZE, the minimum in the LP-duality equation

Maximize
∑

e∈E w(e)x(e)
Subject to

∑

e∈δ(v) x(e) ≤ 1 for each v ∈ I(G)
∑

e∈E[U ] x(e) ≤ ⌊12 |U |⌋ for each U ⊆ T (G)

l(e) ≤ x(e) ≤ u(e) for each e ∈ E
x(e) ≥ 0 for each e ∈ E

= Minimize
∑

v∈I(G) α(v) +
∑

U∈T (G)⌊
1
2 |U |⌋α(U) −

∑

e∈E l(e)β(e) +
∑

e∈E u(e)γ(e)

Subject to
∑

e∈δ(v) α(v) +
∑

e∈E[U ] α(U)− β(e) + γ(e) ≥ w(e) for each e ∈ E

α(u) ≥ 0 for each u ∈ I(G) ∪ T (G)
β(e), γ(e) ≥ 0 for each e ∈ E

has an integral optimal solution, provided the optimum is finite. These two problems are referred
to as G−Max and G−Min, respectively.

In this section we aim to prove the following lemma, which establishes the “only if” part of
Theorem 1.4.

Lemma 3.2. Let G = (V,E) be a graph containing a fully odd subdivision of some Fi (see
Figure 2), with 1 ≤ i ≤ 4, as a subgraph. Then π(G) (equivalently σ(G)) is not box-TDI.

We break the proof into a few lemmas.

Lemma 3.3. The system σ(Fi) is not box-TDI for 1 ≤ i ≤ 4.
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Figure 3: A labeling of forbidden subgraphs

Proof. Let Fi = (Vi, Ei) and set Ri = I(Fi) ∪ T (Fi) for 1 ≤ i ≤ 4. To establish the
statement, we need to find l ∈ QEi, u ∈ QEi , and w ∈ ZEi such that Fi−Min has no integral
optimal solution for each i. For this purpose, we label each Fi as depicted in Figure 3, and
distinguish among four cases.

Case 1. i = 1. Set w(e) = 1, l(e) = 0, and u(e) = 1/2 for each e ∈ E1. Define x ∈ QE1 ,
α ∈ QR1 , β ∈ QE1 , and γ ∈ QE1 as follows:

• x(e) = 1/4 if e ∈ {e1, e2, e3} and 1/2 otherwise;
• α(u) = 1/2 if u ∈ {v1, v2, v3} and 0 otherwise;
• β(e) = 0 for each e ∈ E1; and
• γ(e) = 1/2 if e ∈ {e4, e5, e6} and 0 otherwise.

It is straightforward to verify that x and (α,β,γ) are feasible solutions to F1−Max and F1−Min,
respectively, and have the same objective value of 9/4. By the LP-duality theorem, x and
(α,β,γ) are optimal solutions to F1−Max and F1−Min, respectively, with optimal value z∗ =
9/4. Since {l(e), u(e)} ⊆ Z/2 for all e ∈ E1 while z∗ /∈ Z/2, it follows that F1−Min has no
integral optimal solution.

Case 2. i = 2. Set w(e) = 1 if e ∈ E2\e4 and w(e4) = 2, and set l(e) = 0 and u(e) = 1/2
for each e ∈ E2. Define x ∈ QE2 , α ∈ QR2 , β ∈ QE2 , and γ ∈ QE2 as follows:

• x(e) = 1/4 if e ∈ {e1, e2, e3, e5, e8} and 1/2 otherwise;
• α(u) = 1/2 if u ∈ {v1, v2, v3, v4, {v1, v4, v5}} and 0 otherwise;
• β(e) = 0 for each e ∈ E2; and
• γ(e) = 1/2 if e ∈ {e4, e6, e7} and 0 otherwise.

It is easy to see that x and (α,β,γ) are feasible solutions to F2−Max and F2−Min, respectively,
and have the same objective value of 13/4. Similar to Case 1, we can thus deduce that F2−Min
has no integral optimal solution.

Case 3. i = 3. Set w(e) = 1 if e ∈ {e1, e2, e3, e5} and 2 otherwise, set l(e) = 0 for each
e ∈ E3, and set u(e) = 1 if e ∈ {e5, e7, e8} and 1/2 otherwise. Define x ∈ QE3 , α ∈ QR3 ,
β ∈ QE3 , and γ ∈ QE3 as follows:

• x(e) = 1/4 if e ∈ {e1, e3, e5, e8} and 1/2 otherwise;
• α(u) = 1/2 if u ∈ {v1, v4, v7, {v1, v4, v5, v6, v7}, V3} and 0 otherwise;
• β(e) = 0 for each e ∈ E2; and
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• γ(e) = 1/2 if e ∈ {e2, e4, e6} and 0 otherwise.
It is routine to check that x and (α,β,γ) are feasible solutions to F3−Max and F3−Min,
respectively, and have the same objective value of 19/4. Similar to Case 1, we can thus imply
that F3−Min has no integral optimal solution.

Case 4. i = 4. Set w(e) = 1 if e ∈ {e5, e7, e8, e9} and 2 otherwise, set l(e) = 0 for each
e ∈ E4, and set u(e) = 2/3 if e ∈ {e5, e8} and 1/3 otherwise. Define x ∈ QE4 , α ∈ QR4 ,
β ∈ QE4 , and γ ∈ QE4 as follows:

• x(e) = 1/6 if e ∈ {e1, e7, e9}, x(e5) = 1/2, x(e8) = 2/3, and 1/3 otherwise;
• α(u) = 1/2 if u ∈ {v1, v3, {v1, v2, v3, v4, v5}, V4} and 0 otherwise;
• β(e) = 0 for each e ∈ E2; and
• γ(e) = 1/2 if e ∈ {e2, e3, e4, e6, e8} and 0 otherwise.

It is not difficult to verify that x and (α,β,γ) are feasible solutions to F4−Max and F4−Min,
respectively, and have the same objective value of 9/2. Similar to Case 1, we can thus conclude
that F4−Min has no integral optimal solution.

The following simple observation can be found in Schrijver [17], on page 323.

Lemma 3.4. Let C ′ be obtained from a matrix C by deleting a column. If Cx ≤ d, x ≥ 0 is
box-TDI, then so is C ′x ≤ d, x ≥ 0.

The following lemma essentially states that each face of a TDI system is TDI again (see
Theorem 22.2 in Schrijver [17]).

Lemma 3.5. Let Cx ≤ d be a TDI system and let αTx ≤ β be one of its inequalities. Then
the system Cx ≤ d, −αTx ≤ −β is also TDI.

The lemma below follows immediately from the definition of box-TDI systems.

Lemma 3.6. Suppose α1 and α2 are two rational vector with α1 ≤ α2, and β1 and β2 are two
rational numbers with β1 ≥ β2. Then the system Cx ≤ d, αT

1 x ≤ β1, αT
2 x ≤ β2, x ≥ 0 is

box-TDI if and only if Cx ≤ d, αT
2 x ≤ β2, x ≥ 0 is box-TDI.

Lemma 3.7. Let Ax ≤ b, x ≥ 0 and A′x′ ≤ b′, x′ ≥ 0 be two rational systems such that

A =











aT
1 1

aT
2 1

A1 0
A2 1











, A′ =

























0T 1 1 0
0T 0 1 1
0T 0 −1 −1
aT
1 1 0 0

aT
2 0 0 1

A1 0 0 0
A2 1 1 1

























, b =











1
1
b1
b2











, and b′ =

























1
1

−1
1
1
b1

b2 + 1

























,

where a2 ≥ 0. If A′x′ ≤ b′, x′ ≥ 0 is box-TDI, then so is Ax ≤ b, x ≥ 0.

Proof. Let the rows and columns of A be indexed by disjoint sets R and S, respectively. We
partition R into {r1, r2}∪R1∪R2, where ri is the index of row i and Ri is the set of the indices of
all rows corresponding to Ai, for i = 1, 2, and partition S into T ∪{q1}, where q1 is the index of
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the last column. Next, let the rows of A′ be indexed by the set R′ = {p1, p2, p3, r1, r2}∪R1 ∪R2

and let the columns of A′ be indexed by the set S′ = T ∪ {q1, q2, q3}, where pi is the index of
row i and qi is the index of the ith column succeeding T , for i = 1, 2, 3. Thus q3 is the index of
the last column of A′.

We aim to show that the system Ax ≤ b, l ≤ x ≤ u, x ≥ 0 is TDI for all l ∈ QS and
u ∈ QS . To this end, let w be an arbitrary vector in ZS such that the optimal value of the
following LP-duality equation

max











wTx

∣

∣

∣

∣

∣

∣







A
I
−I





x ≤







b

u

−l





 ,x ≥ 0











= min











yT







b

u

−l







∣

∣

∣

∣

∣

∣

yT







A
I
−I





 ≥ wT ,y ≥ 0











(3.1)

is finite.
To verify that the minimum in (3.1) has an integral optimal solution, we define u′ ∈ (Q ∪

{+∞})S
′
, l′ ∈ QS′

, and w′ ∈ ZS′
, such that

(1) l′|S = l, u′|S = u, w′|S = w, (l′q2 , u
′
q2
) = (max{0, 1 − uq1},+∞), (l′q3 , u

′
q3
) = (l′q1 , u

′
q1
),

and w′
q2

= w′
q3

= 0,
and consider the primal-dual pair

max











w′Tx′

∣

∣

∣

∣

∣

∣







A′

I
−I





x′ ≤







b′

u′

−l′





 ,x′ ≥ 0











= min











y′T







b′

u′

−l′







∣

∣

∣

∣

∣

∣

y′T







A′

I
−I





 ≥ w′T ,y′ ≥ 0











.(3.2)

In what follows, we refer to the four problems in (3.1) and (3.2) as (3.1)-Max, (3.1)-Min,
(3.2)-Max and (3.2)-Min, respectively. We first claim that

(2) The two problems (3.1)-Max and (3.2)-Max have the same optimal value.
To justify this, let x be an arbitrary feasible solution to (3.1)-Max, and let x′ ∈ RS′

be
defined by x′|S = x, x′q2 = 1− xq1 , and x′q3 = xq1 . It is easy to see that x′ is a feasible solution

to (3.2)-Max. By (1), we have (w′)Tx′ = wTx.
Conversely, for any feasible solution x′ to (3.2)-Max, set x = x′|S . From the first three

inequalities contained in A′x′ ≤ b′, we deduce that x′q1 + x′q2 ≤ 1 and x′q2 + x′q3 = 1. So
x′q1 ≤ x′q3 . It follows that Ax ≤ b and hence x is a feasible solution to (3.1)-Max. Clearly,

wTx = (w′)Tx′. Combining the above two observations, we establish (2).
Since A′x′ ≤ b′, x′ ≥ 0 is a box-TDI system, the definition and (2) guarantee the existence

of an integral optimal solution ȳ′ to (3.2)-Min. Let
• ȳ′t be the coordinate of ȳ′ corresponding to constraint t contained in A′x′ ≤ b′ for each
t ∈ R′,

• ȳ′t be the coordinate of ȳ′ corresponding to the constraint x′t ≤ u′t for each t ∈ S′, and
• ȳ′−t be the coordinate of ȳ′ corresponding to the constraint −x′t ≤ −l′t for each t ∈ S′.

Observe that neither the box constraint x′t ≤ u′t when u′t = +∞ nor −x′t ≤ −l′t when l′t = 0
appears in (3.2)-Max, so

(3) ȳ′q2 = 0. Moreover, ȳ′q1 = ȳ′q3 = 0 if u′q1 = uq1 = +∞, and ȳ′−q2
= 0 if uq1 ≥ 1 (as l′q2 = 0).

Consider the constraints corresponding to the last three columns of A′ in (3.2)-Min, which
respectively, read

(4) ȳ′p1 + ȳ′r1 +
∑

t∈R2
ȳ′t + ȳ′q1 − ȳ′−q1

≥ w′
q1
,
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(5) ȳ′p1 + ȳ′p2 − ȳ′p3 +
∑

t∈R2
ȳ′t − ȳ′−q2

≥ 0 (see (3)), and

(6) ȳ′p2 − ȳ′p3 + ȳ′r2 +
∑

t∈R2
ȳ′t + ȳ′q3 − ȳ′−q3

≥ 0.

We may assume that (5) holds with equality; that is,

(7) ȳ′p1 + ȳ′p2 − ȳ′p3 +
∑

t∈R2
ȳ′t − ȳ′−q2

= 0.

Suppose the contrary: ȳ′p1 + ȳ′p2 − ȳ′p3 +
∑

t∈R2
ȳ′t − ȳ′−q2

, denoted by δ, is nonzero. By (1)
and (3.2), we have δ > 0. Let y′ be obtained from ȳ′ by replacing ȳ′r2 with ȳ′r2 + δ and replacing
ȳ′p3 with ȳ′p3 + δ. Since a2 ≥ 0, y′ is a feasible solution to (3.2)-Min. Since y′r2 − y′p3 = ȳ′r2 − ȳ′p3 ,
from the definition of b′ we see that y′ has the same objective value as ȳ′. Hence y′ is also an
optimal solution to (3.2)-Min. Therefore (7) follows, otherwise we replace ȳ′ with y′.

Let us proceed with the construction of an integral optimal solution ȳ to (3.1)-Min. Set
• ȳt = ȳ′t for t ∈ R ∪ T ,
• ȳ−t = ȳ′−t for t ∈ T ,
• ȳq1 = ȳ′q1 + ȳ′q3 + ȳ′−q2

, and
• ȳ−q1 = ȳ′−q1

+ ȳ′−q3
.

By (3), we have ȳq1 = 0 if uq1 = +∞. So ȳ is well defined. We propose to prove that
(8) ȳ is a feasible solution to (3.1)-Min.
For this purpose, it suffices to show that ȳ satisfies the constraint corresponding to column

q1 in (3.1)-Min, because w|T = w′|T . Note that ȳr1 + ȳr2 +
∑

t∈R2
ȳt + ȳq1 − ȳ−q1 = ȳ′r1 + ȳ′r2 +

∑

t∈R2
ȳ′r + (ȳ′q1 + ȳ′q3 + ȳ′−q2

) − (ȳ′−q1
+ ȳ′−q3

) =LHS of (4)+LHS of (6)−LHS of (5)≥RHS of
(4)= w′

q1
= wq1 , where the last inequality follows from (7). Thus (8) is established.

(9) (bT ,uT ,−lT )ȳ = ((b′)T , (u′)T ,−(l′)T )ȳ′.
To justify this, set ȳRi

= (ȳt : t ∈ Ri) for i = 1, 2, and set ȳK = (ȳt : t ∈ K) and
ȳ−K = (ȳ−t : t ∈ K) for any K ⊆ S. Similarly, we can define ȳ′

Ri
, ȳ′

K and ȳ′
−K for any K ⊆ S′.

By direct computation, we obtain

(bT ,uT ,−lT )ȳ

= ȳr1 + ȳr2 + bT1 ȳR1
+ bT2 ȳR2

+ uT
T ȳT − lTT ȳ−T + uq1 ȳq1 − lq1 ȳ−q1

= ȳr1 + ȳr2 + bT1 ȳR1
+ bT2 ȳR2

+ uT
T ȳT − lTT ȳ−T + uq1 ȳq1 − lq1 ȳ−q1 + LHSof (7)

= ȳ′r1 + ȳ′r2 + bT1 ȳ
′
R1

+ bT2 ȳ
′
R2

+ uT
T ȳ

′
T − lTT ȳ

′
−T + uq1(ȳ

′
q1
+ ȳ′q3 + ȳ′−q2

)− lq1(ȳ
′
−q1

+ ȳ′−q3
)

+ȳ′p1 + ȳ′p2 − ȳ′p3 +
∑

t∈R2

ȳ′t − ȳ′−q2

= ȳ′p1 + ȳ′p2 − ȳ′p3 + ȳ′r1 + ȳ′r2 + bT1 ȳ
′
R1

+ (bT2 ȳ
′
R2

+
∑

t∈R2

ȳ′t) + [uT
T ȳ

′
T + uq1(ȳ

′
q1
+ ȳ′q3)]

−[lTT ȳ
′
−T + lq1(ȳ

′
−q1

+ ȳ′−q3
) + (1− uq1)ȳ

′
−q2

]

= ȳ′p1 + ȳ′p2 − ȳ′p3 + ȳ′r1 + ȳ′r2 + bT1 ȳ
′
R1

+ (b2 + 1)T ȳ′
R2

+ (u′)T ȳ′
S′ − (l′)T ȳ′

−S′

= ((b′)T , (u′)T ,−(l′)T )ȳ′.

In view of (3), the same statement holds as well if uq1 = +∞ or uq1 ≥ 1. So (9) is true.
Combining (2), (8) and (9), we conclude that ȳ is an integral optimal solution to (3.1)-Min.

This proves the lemma.

Lemma 3.8. Let H be a subgraph of a graph G. If π(G) is box-TDI, then so is π(H).
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Proof. Let Ax ≤ b, x ≥ 0 stand for the system π(G). Clearly, π(H) arises from π(G) by
deleting the columns of A corresponding to edges outside H and then deleting some resulting
redundant inequalities as described in Lemma 3.6. It follows immediately from Lemma 3.4 and
Lemma 3.6 that π(H) is box-TDI as well, completing the proof.

Lemma 3.9. Let G be obtained from a graph H by subdividing one edge into a path of length
three. If σ(G) is box-TDI, then so is σ(H).

Proof. By hypothesis, G arises from H by subdividing one edge f = r1r2 into a path
P = r1p1p2r2, where dH(r1) ≤ dH(r2). Let q1, q2, q3 denote the three edges r1p1, p1p2, p2r2 on
P , respectively. Note that if E[U ], with U ∈ T (G), contains one of q1, q2, q3, then it contains
all of them. Let σ′(G) be obtained from σ(G) by adding two inequalities −x(q2)− x(q3) ≤ −1
and x(q1) + x(q2) + x(q3) ≤ 2 (redundant). Let σ′′(G) = σ′(G) if dG(r1) ≥ 2 and let σ′′(G)
be obtained from σ′(G) by adding one more redundant inequality x(q1) ≤ 1. Let A′x′ ≤ b′,
x′ ≥ 0 be the linear system corresponding to σ′′(G). Clearly, we can write A′ and b′ as speci-
fied in Lemma 3.7, where the last three columns of A′ correspond to q1, q2, q3, respectively, the
first two rows of A′ correspond to p1, p2, respectively, the third row corresponds to inequality
−x(q2) − x(q3) ≤ −1, the fourth and fifth rows correspond to r1, r2, respectively, and the rows
intersecting A2 correspond to those U ∈ T (G) such that E[U ] contains all of q1, q2, q3, if any,
and the inequality x(q1) + x(q2) + x(q3) ≤ 2. Let Ax ≤ b, x ≥ 0 be as described in Lemma
3.7, such that the first two rows of A correspond to vertices r1 and r2, respectively, and the last
column corresponds to edge r1r2, and let Cx ≤ d, x ≥ 0 stand for σ(H). Clearly, Cx ≤ d is
a subsystem of Ax ≤ b. If dH(r1) = 1, then the inequality x(f) ≤ 1 is contained in Ax ≤ b

but not in Cx ≤ d (recall the definition of σ(H) in Theorem 1.2). Moreover, if H contains a
triangle r1r2r3 such that dH(ri) = 2 for some 1 ≤ i ≤ 3, then x(δ(ri)) ≤ 1 is included in the
system Ax ≤ b but not in Cx ≤ d. Nevertheless, such an inequality is implied by the constraint
x(E[U ]) ≤ 1, with U = {r1, r2, r3}, which appears in both Ax ≤ b and Cx ≤ d. Thus Cx ≤ d

can be obtained from Ax ≤ b by possibly deleting the redundant inequality x(f) ≤ 1 and those
created by some degree-2 vertices contained in triangles in H. Since σ(G) is box-TDI, so are
σ′(G) and σ′′(G) by Lemma 3.5 and Theorem 1.5. Hence Ax ≤ b, x ≥ 0 is also box-TDI by
Lemma 3.7. From Lemma 3.6 we deduce that σ(H) is box-TDI as well.

Proof of Lemma 3.2. Let H be a fully odd subdivision of Fi contained in G for some
1 ≤ i ≤ 4. By Lemma 3.9, σ(H) and hence π(H) by Lemma 3.1 is not a box-TDI system. It
follows immediately from Lemma 3.8 that π(G) is not box-TDI either, completing the proof.

4 Structural Description

4.1 Preliminaries

We digress to introduce some other notations and terminology before proceeding. Let G be a
graph. We use V (G) and E(G) to denote the vertex and edge sets of G, respectively. For any
X ⊆ V (G) ∪E(G), we use G\X to denote the graph arising from G by deleting all members of
X, and set G\x = G\X if X = {x}. For any subgraph K of G, a K-bridge of G is a subgraph
B of G induced by either (i) an edge in E(G)\E(K) with both ends in V (K) or (ii) the edges
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in a component Ω of G\V (K) together with edges of G between Ω and K. We call B nontrivial
if it satisfies (ii). The vertices in V (B) ∩ V (K) are called feet of B. Throughout, by a path we
mean a simple one, which contains no repeated vertices. A path with ends x and y is called an
xy-path. A path is called odd if it is of odd length and even otherwise. For any two vertices
u, v on a path P , we use P [u, v] to denote the subpath of P connecting u and v, and define
P (u, v] = P [u, v]\u, P [u, v) = P [u, v]\v, and P (u, v) = P [u, v]\{u, v}. For any vertex u on a
cycle C, we use u− (resp. u+) to denote the vertex preceding (resp. succeeding) u on C in the
clockwise direction. For any two vertices u and v on C, we use C[u, v] to denote the segment of
C from u to v in the clockwise direction.

A graph G is called good if it contains no fully odd subdivision of F1, F2, F3, or F4 (see Figure
2) as a subgraph, called internally 2-connected (i-2-c) if it is connected and, for any v ∈ V , if G\v
is disconnected, then it has precisely two components with one of them being an isolated vertex,
and called fully subdivided if it is connected and bipartite, with bipartition (X,Y ), such that all
vertices in Y have degree at most two (we call X and Y the color 1 class and color 2 class of G,
respectively). For convenience, a single vertex is also viewed as a fully subdivided graph, which
has only color 1 class. Notice that if a fully subdivided graph G contains no pendant edges,
then it arises from a connected graph H by subdividing each edge exactly once.

Let C be a cycle with two distinguished edges u1u2 and v1v2 (not necessarily disjoint) such
that u1, v1, v2, u2 occur on C in clockwise cyclic order, and let H be obtained from C by adding
chords between C[u1, v1] and C[v2, u2], such that each vertex on C is incident with at least one
chord and such that if two chords x1y1 and x2y2 cross, then {x1, y1, x2, y2} induces a 4-cycle.
(Possibly a chord is parallel to u1u2 or v1v2.) We call H a ladder with top u1u2, bottom v1v2,
and outer cycle C. Let G be obtained from H by

• replacing each chord e with a complete bipartite graph Le = K2,n for some n ≥ 1, in which
one color class consists of the two ends of e only; and

• replacing each edge f in C\{u1v1, u2v2} with a fully subdivided graph Lf , in which both
ends of f belong to the color 1 class, where Lf = K2,t for some t ≥ 1 if f is contained in
a 4-cycle induced by two crossing chords.

We call G a plump ladder generated from H.

To establish the “if” part of Theorem 1.4, we need the following structural description of
good graphs.

Theorem 4.1. Let G = (V,E) be an i-2-c nonbipartite graph. Then G is good iff it is a subgraph
of one of the nine graphs depicted in Figure 4, where G9 is an arbitrary plump ladder, and the
words “odd” and “any” indicate the parities of the corresponding paths.

The remainder of this section is devoted to a proof of this theorem, in which we shall
repeatedly apply the following simple lemmas.

Lemma 4.2. Let G = (V,E) be an i-2-c graph, let U ⊆ V with |U | ≥ 2, and let v ∈ V \U . If
each vertex in U ∪ {v} has degree at least two in G, then there exist two paths from v to U that
have only v in common.

Proof. Suppose the contrary. Then G has a vertex w separating v from U , with w 6= v,
by Menger’s theorem. Let Ω1 be the component of G\w that contains v, and let Ω2 be the
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Figure 4: Primitive graphs

component of G\w that contains a vertex x in U\w. Since both v and x have degree at least
two in G, each of Ω1 and Ω2 contains at least two vertices, contradicting the hypothesis that G
is i-2-c.

Lemma 4.3. Let x, y be two distinct vertices in a connected graph G. Then G contains an
xy-path P together with an edge uv, with u ∈ V (P ) while v /∈ V (P ), unless the entire G is an
xy-path.

Lemma 4.4. Let H = (X,Y ;E) be a connected bipartite graph and let G = H + x1x2, with
{x1, x2} ⊆ X. Suppose G is i-2-c and dG(y0) ≥ 3 for some y0 ∈ Y . Then the following
statements hold:

(i) If dG(x0) ≥ 3 for some x0 ∈ X, then G has a cycle C that contains the edge x1x2 and
contains some x ∈ X and y ∈ Y , with dG(z) ≥ 3 for z = x, y;

(ii) If dH(x1) ≥ 2, then H contains an x1x2-path P and two disjoint edges x1y1 and y2x3, with
y2 ∈ V (P ) ∩ Y while {y1, x3} ∩ V (P ) = ∅.

Proof. (i) By Lemma 4.2 with U = {x1, x2} and v = y0, there exists a cycle C in G that
contains both edge x1x2 and vertex y0. We may assume that C contains no vertex x ∈ X with
dG(x) ≥ 3, otherwise we are done. Thus x0 /∈ V (C). By Lemma 4.2 with U = V (C) and v = x0,
there exists two paths P1 and P2 from x0 to C that have only x0 in common. For i = 1, 2, let
qi be the end of Pi in C. Then dG(qi) ≥ 3, so qi ∈ Y . Let Q denote the subpath of C\x1x2
between q1 and q2, and let C ′ be the cycle obtained from C ∪P1 ∪P2 by deleting all vertices on
Q(q1, q2). Then C ′ is as desired.
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(ii) By (i), G has a cycle that contains the edge x1x2 and some y ∈ Y with dG(y) ≥ 3; let C
be such a shortest cycle. Observe that C is an induced cycle in G, for otherwise it would have
a chord ab. Thus dG(z) ≥ 3 for z = a, b. Let Q be the subpath of C\x1x2 between a and b,
and let C ′ be obtained from C by deleting all vertices on Q(a, b) and adding edge ab. Then the
existence of C ′ contradicts the choice of C. It follows that G contains two edges x1y1 and yx3
such that {y1, x3} ∩ V (C) = ∅. Set P = C\x1x2 and y2 = y; we are done.

Lemma 4.5. Let H = (X,Y ;E) be a connected bipartite graph and let G = H + x1y1, with
x1 ∈ X and y1 ∈ Y . Suppose G is i-2-c. Then at least one of the following statements holds:

(i) H contains an x1y1-path P and an x2y2-path Q, such that V (P ) ∩ V (Q) = {x2, y2} and
that both P [x2, y2] and Q are of odd length. (Possibly x1 = x2 or y1 = y2.)

(ii) H contains an x1y1-path P and two disjoint edges y2x3 and x2y3, with {x2, y2} ⊆ V (P )
while {x3, y3} ∩ V (P ) = ∅ and with y2 on P [x1, x2], such that P [x1, y2], P [y2, x2], and
P [x2, y1] are all of odd length.

(iii) H contains an edge x2y2 such that H\x2y2 has precisely two components H1 = (X1, Y1;E1)
and H2 = (X2, Y2;E2), with {x1, x2} ⊆ X1 and {y1, y2} ⊆ Y2, and that dH(v) ≤ 2 for each
v ∈ Y1 ∪X2. (Possibly x1 = x2 or y1 = y2.)

Proof. Assume on the contrary that none of (i)-(iii) holds for H and, subject to this, |V (H)|
is minimum. Let A be the set of all pendant vertices of H outside {x1, y1}. Then H\A is not
2-connected, for otherwise, there would be two internally disjoint x1y1-paths in H, which satisfy
(i), contradicting our assumption. Since G is i-2-c, H\A contains a block chain B1, B2, . . . , Bt

connecting x1 and y1, with t ≥ 2, x1 ∈ V (B1) and y1 ∈ V (Bt). Let zi be the common vertex of
Bi and Bi+1 for 1 ≤ i ≤ t− 1, and set z0 = x1 and zt = y1.

(1) For each nontrivial block Bi, the vertices zi and zi+1 belong to the same color class of
Bi.

Otherwise, there would be two internal disjoint zizi+1-paths R1 and R2 in Bi. Let S1 (resp.
S2) be a z0zi-path (resp. zi+1zt-path) in H. Let P = S1 ∪ R1 ∪ S2 and Q = R2. Then they
satisfy (i), contradicting our assumption. So (1) is justified.

(2) Both B1 and Bt are trivial blocks.
Suppose the contrary: B1, say, is nontrivial. Let B′

1 be obtained from B1 by adding all
pendant edges with one end in B1 and the other end in A, and let (X ′

1, Y
′
1) be the bipartition

of B′
1, with {z0, z1} ⊆ X ′

1 (see (1)). Note that both z0 and z1 have degree at least two in B′
1. If

some vertex in Y ′
1 has degree at least three in B′

1, then Lemma 4.3 guarantees the existence of a
z0z1-path R and two disjoint edges z1a1 and a2b2, with a2 ∈ V (P )∩Y ′

1 while {a1, b2}∩V (R) = ∅.
Let S be a z1zt-path in H. Then R∪S, z1a1 and a2b2 satisfy (ii), contradicting our assumption.
It follows that each vertex in Y ′

1 has degree at most two in B′
1. Let H ′ be obtained from H

be deleting all vertices in B′
1\z1. With {z1, y1} in place of {x1, y1}, we see that neither (i) nor

(ii) holds H ′ (otherwise, the corresponding statement holds for H). Thus H ′ has the property
exhibited in (iii), and hence H = H ′ ∪B′

1 is also as described in (iii). This contradiction yields
(2).

By (2), we have B1 = z0z1 and Bt = zt−1zt. If z1 or zt−1 has degree two in H, say the former,
letting H ′ be obtained from H\{z0, z1} by deleting vertices in A which are adjacent to z0 or z1,
then at least one of (i), (ii) and (iii) holds for H ′, with {z2, y1} in place of {x1, y1}. Clearly,
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the corresponding statement holds for H. This contradiction implies that both z1 and zt−1 has
degree at least three in H. Let R be a shortest z1zt−1-path in H\{x1, y1}. Then H\{x1, y1}
contains edges z1z

′
1 and zt−1z

′
t−1, with {z′1, z

′
t−1} ∩ V (R) = ∅. Note that z′1 6= z′t−1 because they

belong to different color classes of H. Since z1z
′
1, zt−1z

′
t−1 and the path x1z1Rzt−1y1 satisfy (ii),

we reach a contradiction to the assumption again.

Lemma 4.6. Let G be obtained from two disjoint paths P = p0p1 . . . pm and Q = q0q1 . . . qn by
adding three edges p0q0, p0q1, p1q0 and adding a pm−1qn−1-path R of odd length, whose internal
vertices are all outside P ∪Q, where m ≥ 2 and n ≥ 2. Then G contains a fully odd subdivision
of F1 if m+ n is even and a fully odd subdivision of F2 otherwise.

Proof. We first consider the case when m+ n is even. Set K = G\{p0q0, p0q1} if m is odd
and K = G\{p1q0, q0q1} otherwise. Then K is a fully odd subdivision of F1.

It remains to consider the case when m+n is odd. By symmetry, we may assume that m is
odd and n is even. Consequently, G\p0q1 is a fully odd subdivision of F2.

Lemma 4.7. Let G1 (resp. G2) be obtained from a cycle C by adding two paths P1, P2 and
a pendant edge u3v4 (resp. by adding three paths P1, P2, P3), as shown in Figure 5, where the
parity of each uivi-path is indicated by even or odd, and possibly vi = ui+1 for 1 ≤ i ≤ 3 (with
u4 = u1). Suppose C[vj , uj+1] in G1 is of odd length for at least one j with 1 ≤ j ≤ 3. Then
both G1 and G2 contain a fully odd subdivision of F1 or F2.

Figure 5: Two configurations with F1 or F2

Proof. In both G1 and G2, let uiu
′
i and viv

′
i be the edges incident with ui and vi on Pi,

respectively, for each i.
To prove the statement for G1, we first consider the case when C is an odd cycle. If one

of C[v2, u3] and C[v3, u1] is odd, say the former, then either C ∪ {v2v
′
2, u3v4, u1u

′
1} or C ∪

{v2v
′
2, u3v4, v1v

′
1} is a fully odd subdivision of F1. So we assume that both C[v2, u3] and C[v3, u1]

are of even length, and hence C[v1, u2] is of odd length by hypothesis. Thus C∪{v1v
′
1, u2u

′
2, u3v4}

is a fully odd subdivision of F1. It remains to consider the case when C is an even cycle. Observe
that at least one of C[v2, u3] and C[v3, u1] is of odd length, for otherwise the parity of C implies
that C[v1, u2] is also of even length, contradicting the hypothesis. By symmetry, we may assume
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that C[v2, u3] is of odd length. Then either C ∪ P2 ∪ {v1v
′
1, u3v4} or C ∪ P2 ∪ {u1u

′
1, u3v4} is a

fully odd subdivision of F2.
Let us proceed to prove the statement for G2. If C[vj, uj+1] is of odd length for at least

one j with 1 ≤ j ≤ 3, say C[v2, u3], then C ∪ P1 ∪ P2 ∪ {u3u
′
3} contains a fully odd subdivision

of F1 or F2 by the statement for G1. So we assume that C[vj , uj+1] is of even length for all j
with 1 ≤ j ≤ 3. Thus C is an odd cycle. It follows that C ∪ {u1u

′
1, u2u

′
2, u3u

′
3} is a fully odd

subdivision of F1.

Lemma 4.8. Let G be obtained from a connected bipartite graph H = (X,Y ;E) by adding two
x1x2-paths P1 and P2 of odd length, with {x1, x2} ⊆ X, such that H, P1(x1, x2) and P2(x1, x2)
are pairwise disjoint. If G is i-2-c and good, then X = {x1, x2}.

Proof. By symmetry, we may assume that |V (P1)| ≤ |V (P2)|. So P2 has length at least
three. Observe that H contains no x1x2-path of length at least four, for otherwise, the union
of such a path and P1 ∪ P2 would yield a fully odd subdivision of F3 in G, a contradiction. We
claim that H contains no vertex in X\{x1, x2} with degree at least two. Suppose the contrary:
dH(x3) ≥ 2 for some x3 in X\{x1, x2}. Since G is i-2-c, Lemma 4.2 guarantees the existence of
two paths Q1 and Q2 from x3 to {x1, x2} in H that have only x3 in common. Thus Q1 ∪ Q2

would be a x1x2-path with length at least four in H, contradicting our previous observation. So
the claim is justified.

Suppose x3 is a vertex in X\{x1, x2}. Then x3 has only one neighbor y in H by the above
claim. Since G is i-2-c, from the claim we further deduce that y has no neighbor outside
{x1, x2, x3}. If y is adjacent to both x1 and x2, letting xix

′
i be the edge on P2 incident with xi

for i = 1, 2, then P1 ∪ {x1y, x2y, x3y, x1x
′
1, x2x

′
2} would yield a fully odd subdivision of F1 in G,

a contradiction. So y is adjacent to precisely one of x1 and x2, say the former. Thus G\x1 has
at least two components with two or more vertices, which contradicts the hypothesis that G is
i-2-c.

4.2 Nearly Bipartite Graphs

A graph G is called nearly bipartite if G is nonbipartite but G\e is bipartite for some edge e of
G. In this subsection we determine nearly bipartite good graphs.

Lemma 4.9. Let H = (X,Y ;E) be a connected bipartite graph and let G = H + x1x2, with
{x1, x2} ⊆ X. If G is i-2-c and good, then G is one of the six graphs depicted in Figure 6, where
α ∈ {odd, even}.

Proof. Suppose G 6= H1 in Figure 6. Then G contains a vertex in X and a vertex in Y , both
with degree at least three. So G has a cycle C containing x1x2 such that at least one C-bridge
has a foot in X and at least one C-bridge has a foot in Y by Lemma 4.4(i). Since H is bipartite,
C is an odd cycle.

In what follows, all bridges are C-bridges unless otherwise stated. For any vertex a on C,
we use N̄C(a) to denote the set of all neighbors of a outside C. We proceed by considering two
cases.

Case 1. Each bridge has its feet only in X or only in Y .
From the hypothesis of this case, it is clear that
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Figure 6: Nearly bipartite good graphs

(1) all bridges are nontrivial.
We say that a bridge is of type X (resp. type Y ) if it has feet only in X (resp. Y ), and that a
type-X bridge B1 and a type-Y bridge B2 cross if there exist four vertices u1, v1, u2, v2 which
occur on C in clockwise cyclic order, such that u1, u2 are two feet of B1 and v1, v2 are two feet
of B2. Observe that

(2) no type-X bridge crosses with a type-Y bridge.
Assume the contrary: some type-X bridgeB1 and type-Y bridgeB2 cross. Let {u1, u2, v1, v2}

be as specified in the above definition. Let P1 be a u1u2-path in B1 and let P2 be a v1v2-path
in B2. By (1), each of P1 and P2 has length at least two. Renaming the subscripts if necessary,
we may assume that x1x2 is contained in C[v2, u1]. Then the graph obtained from C ∪ P1 ∪ P2

by deleting all vertices on C(u2, v2) would be a fully odd subdivision of F3, contradicting the
hypothesis that G is good.

By symmetry and (2), one of the following five subcases occurs, where {A,B} = {X,Y }.
Subcase 1.1. There exist four vertices u1, u2, v1, v2, such that x1, v1, u1, u2, v2, x2 occur on

C in clockwise cyclic order and that u1, u2 are two feet of a type-A block B1 and v1, v2 are two
feet of a type-B block B2. (Possibly xi = vi for i = 1 or 2.)

In this subcase, note that
(3) no type-B block has a foot outside {v1, v2}.
Assume the contrary: B3 is a type-B block with a foot v3 6= vi for i = 1, 2. Then v3 is on

C[u1, x2] or on C[x1, u2], say the former. Let u1u
′
1 be an edge in B1, v1v

′
1 an edge in B2, and

v3v
′
3 an edge in B3. Then C ∪ {u1u

′
1, v1v

′
1, v3v

′
3} would be an odd subdivision of F1 in G; this

contradiction justifies (3).
(4) |N̄C(v1) ∪ N̄C(v2)| = 1.
Otherwise, there exist two distinct vertices v′1 and v′2 outside C, such that both v1v

′
1 and

v2v
′
2 are edges of G. Let u1u

′
1 be an edge in B1. Then C ∪ {u1u

′
1, v1v

′
1, v2v

′
2} would be an odd

subdivision of F1 in G, a contradiction. So (4) holds.
Let v0 be the only vertex in N̄C(v1) ∪ N̄C(v2). Then
(5) B2 is the only type-B bridge in G, which is the path R = v1v0v2.
From (3) and (4), it follows instantly that B2 is the only type-B bridge in G and R = v1v0v2 is

a path in B2. If B2 contains an edge v0v3 with v3 /∈ {v1, v2}, then C[v2, v1]∪R∪{v1v
+
1 , v

−
2 v2, v0v3}
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would be an odd subdivision of F1 in G, a contradiction. So (5) is established.
The same argument implies that
(6) no type-A bridge has a foot on C[v2, v1].
Let u3, u4 be two vertices on C, such that v1, u3, u4, v2 occur on C in clockwise cyclic order,

each of u3 and u4 is a foot of some type-A bridge, and no vertex in C(v1, u3) ∪ C(u4, v2) is a
foot of a type-A bridge. Then

(7) dG(uj) ≥ 3 for j = 3, 4.
Set K = C(u4, u3) ∪R and L = G\V (K). By (5) and (6), the only edges between K and L are
u−3 u3 and u4u

+
4 . It follows from (7) that

(8) dL(uj) ≥ 2 for j = 3, 4.
As H is a bipartite graph, so is L. Let (S, T ) be the bipartition of L, with {u3, u4} ⊆ S. If
dL(t) ≥ 3 for some t ∈ T , then Lemma 4.4(ii) guarantees the existence of a u3u4-path P and
two disjoint edges u4w1 and w2u5 in L, with w2 ∈ V (P ) ∩ T while {w1, u5} ∩ V (P ) = ∅. Thus
C[u4, u3]∪P ∪{v2v0, u4w1, w2u5} would be a fully odd subdivision of F1 in G. This contradiction
implies that L is a fully subdivided graph in which both u3 and u4 belong to color 1 class. Hence
G = H2 in Figure 6, because L ∪ C(v1, u3] ∪ C(u4, v2) is also fully subdivided.

Subcase 1.2. There exist four vertices u1, u2, v1, v2, such that x1, u1, u2, v1, v2, x2 occur on
C in clockwise cyclic order and that u1, u2 are two feet of a type-A bridge B1 and v1, v2 are two
feet of a type-B bridge B2. (Possibly x1 = u1 or x2 = v2.)

In this subcase, note that no type-B bridge B3 has a foot v3 on C(u1, u2), for otherwise, let
u2u

′
2 be an edge in B1, v1v

′
1 an edge in B2, and v3v

′
3 an edge in B3. Then C ∪{v3v

′
3, u2u

′
2, v1v

′
1}

would be a fully odd subdivision of F1, a contradiction. The same argument implies the existence
of four vertices u3, u4, v3, v4, such that x1, u3, u4, v3, v4, x2 occur on C in clockwise cyclic order,
no type-A (resp. type-B) bridge has a root outside C[u3, u4] (resp. C[v3, v4]), and each of u3
and u4 (resp. v3 and v4) is a foot of some type-A (resp. type-B) bridge.

Let K denote the union of C[u3, u4] and all type-A bridges, and L denote the union of
C[v3, v4] and all type-B bridges. Since H is bipartite, so are K and L. Using the same argument
as employed in the paragraph right above the description of the present subcase, with an edge
v3v

′
3 in a type-B bridge in place of v2v0 over there, we deduce that K is a fully subdivided

graph in which both u3 and u4 belong to color 1 class. Similarly, we can prove that L is a fully
subdivided graph in which both v3 and v4 belong to color 1 class. Renaming the subscripts of
x1 and x2 if necessary, we may assume that A = X and B = Y . It follows that G = H3 in
Figure 6, because both K ∪ C[x1, u4] and L ∪ C[v3, x2) are fully subdivided as well.

Subcase 1.3. There exist three vertices u1, u2, v, such that x1, u1, v, u2, x2 occur on C in
clockwise cyclic order and that u1, u2 are two feet of a type-A bridge B1 and v is the only foot
of a type-B bridge B2. (Possibly xi = ui for i = 1 or 2.)

In this subcase, we may assume that each type-B bridge has only one foot, otherwise one of
the previous two subcases occurs. Since G is i-2-c, we further obtain

(9) each type-B bridge is an edge.
Using the same argument as employed in Subcase 1.1, we deduce that

(10) B1 is only type-A bridge in G, which is either a path R = u1u0u2 or a star R∗ arising
from R by adding an edge u0u3. Moreover, no type-B bridge has a foot on C[u2, u1]. (Note that
if B1 6= R, then B1 = R∗ because G is i-2-c.)
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When B1 = R, let K be the union of C(u1, u2) and all type-B bridges. Then K is a fully
subdivided graph in which both u+1 and u−2 belong to color 1 class. So G = H2 in Figure 5
by (9) and (10). When B1 = R∗, the length of C[u1, u2] is two, for otherwise, C[u2, u1] ∪ R ∪
{u0u3, u1u

+
1 , u

−
2 u2} would be a fully odd subdivision of F1, a contradiction. Since G is i-2-c, B2

is the only type B-bridge having v as the root. Thus G = H4 in Figure 6.
Subcase 1.4. There exist three vertices u1, u2, v, such that x1, u1, u2, v, x2 occur on C in

clockwise cyclic order and that u1, u2 are two feet of a type-A bridge B1 and v is the only foot
of a type-B bridge B2. (Possibly x1 = u1 or x2 = v.)

Similar to Subcase 1.3, we may assume that each type-B bridge is an edge. The remainder
of the proof goes along the same line as that in Subcase 1.2. The same argument implies the
existence of four vertices u3, u4, v3, v4, such that x1, u3, u4, v3, v4, x2 occur on C in clockwise
cyclic order, no type-A (resp. type-B) bridge has a foot outside C[u3, u4] (resp. C[v3, v4]), and
each of u3 and u4 (resp. v3 and v4) is a foot of some type-A (resp. type-B) bridge. Let K
denote the union of C[u3, u4] and all type-A bridges, and L denote the union of C[v3, v4] and all
type-B bridges. Since G contains no fully odd subdivision of F1, from Lemma 4.4(ii) we deduce
that K is a fully subdivided graph in which both u3 and u4 belong to color 1 class. (The details
can be found in the paragraph right above Subcase 1.2.) Clearly, L is a fully subdivided graph
in which both both v3 and v4 belong to color 1 class. Renaming the subscripts of x1 and x2 if
necessary, we see that G = H3 in Figure 6.

Subcase 1.5. There exist two vertices u, v, such that x1, u, v, x2 occur on C in clockwise
cyclic order and that u is the only foot of a type-A bridge B1 and v is the only foot of a type-B
bridge B2. (Possibly x1 = u or x2 = v.)

In this subcase, we may assume that each bridge has only one foot in C, otherwise one of
the previous subcases occurs. It follows that each bridge is an edge because G is i-2-c. Using
the same argument as employed in Subcase 1.2, we obtain four vertices u3, u4, v3, v4, such that
x1, u3, u4, v3, v4, x2 occur on C in clockwise cyclic order, no type-A (resp. type-B) bridge has a
foot outside C[u3, u4] (resp. C[v3, v4]), and each of u3 and u4 (resp. v3 and v4) is a foot of some
type-A (resp. type-B) bridge. Renaming the subscripts of x1 and x2 if necessary, it is easy to
see that G = H3 in Figure 6.

Therefore, if G 6= H1 and Case 1 occurs, then G is Hi for some 2 ≤ i ≤ 4

Case 2. Some bridge has feet in both X and Y .
In this case, we may assume that
(11) the length of C is at least five.
Suppose the contrary: C is a triangle x1x2y1 (as C is an odd cycle). By hypothesis, some

bridge B has feet y1 and xi for i = 1 or 2, say the former. Let C ′ be obtained from the path
x1x2y1 by adding an x1y1-path in B. Since C ′ contains the edge x1x2 and H is bipartite, this
new cycle C ′ is again odd and of length at least five. Note that C ′ has a bridge, x1y1, with feet
in both X and Y . So (11) holds, otherwise we replace C by C ′.

Let B be an arbitrary bridge with a foot x3 ∈ X and a foot y1 ∈ Y . Let us show that
(12) If x1, x3, y1, x2 occur on C in clockwise cyclic order, then x3 = x1 and y1 = x−2 . If

x1, y1, x3, x2 occur on C in clockwise cyclic order, then x3 = x2 and y1 = x+1 . (So B has
precisely two feet in C.)

To justify this, we only consider the situation when x1, x3, y1, x2 occur on C in clockwise
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cyclic order, as the other situation is simply a mirror image. If B has a foot x ∈ X on C(x1, x2],
then B contains a path P connecting x and y1. Since H is bipartite, the length of P is odd.
Thus C ∪ P would be a fully odd subdivision of F3 by (11), a contradiction. So x3 = x1. The
same argument implies that B has no foot y ∈ Y on C(x1, x

−
2 ) and hence y1 = x−2 . This proves

(12).
Symmetry allows us to assume hereafter that some bridge B has feet x1 and y1 = x−2 .

Observe that x2 has no neighbor z outside C, for otherwise, let P be an x1y1-path in B. Then
the union of the odd cycle Py1x2x1 and {x1x

+
1 , y

−
1 y1, x2z} would be a fully odd subdivision of

F1, a contradiction. So
(13) every bridge having x2 as a foot is the edge x+1 x2 (see (12)).

Similarly, we can prove that
(14) if x+1 x2 is an edge of G, then every bridge having x1 as a foot is the edge x1y1.

Let us distinguish between two subcases.
Subcase 2.1. x+1 x2 is an edge of G.
In this subcase, let u and v be two vertices on C[x+1 , y1], such that {u, v} is a subset of

X or of Y , dG(a) ≥ 3 for a = u or v (say the former), and dG(b) = 2 for any vertex b in
C(x+1 , u) ∪ C(v, y1), if any. Let K be the union of C[u, v] and all bridges with a foot in C[u, v],
and let (S, T ) be the bipartition of K, with {u, v} ⊆ S. If dK(t) ≥ 3 for some t ∈ T , then
Lemma 4.4(ii) guarantees the existence of a uv-path P and two disjoint edges uw1 and w2w3 in
K, with w2 ∈ V (P ) ∩ T while {w1, w3} ∩ V (P ) = ∅. Set L = C[v, u] ∪ P ∪ {x+1 x2, uw1, w2w3} if
C[x+1 , u] is of odd length and L = C[v, u] ∪ P ∪ {x1y1, uw1, w2w3} otherwise. Then L is a fully
odd subdivision of F2. This contradiction implies that K is a fully subdivided graph in which
both u and v belong to color 1 class. Thus G = H5 in Figure 6 by (13) and (14).

Subcase 2.2. x+1 x2 is not an edge of G.
In this subcase, dG(x2) = 2 by (13). Let G1 be the graph arising from G by deleting all

vertices in B\{x1, y1}, and let G2 be obtained from B by adding the path x1x2y1. Then G1 and
G2 have only path x1x2y1 in common. For i = 1, 2, let Ci be an induced cycle containing the
path x1x2y1 in Gi. Note that Ci is an odd cycle.

(15) Every Ci-bridge in Gi has its feet only in X or only in Y for i = 1, 2.
Suppose the contrary: some Ci-bridge K in Gi has a foot x ∈ X and a foot y ∈ Y . Let P

be an xy-path in K. Notice that P is of odd length. If {x, y} = {x1, y1}, then C1 ∪ C2 ∪ P is a
full odd subdivision of F4. If {x, y} 6= {x1, y1}, then Ci ∪ P is a fully odd subdivision of F3. So
we reach a contradiction in either situation, and hence (15) holds.

It follows from (15) and the structural description in Case 1 that
(16) Gi is isomorphic to Hi in Figure 5 for some 1 ≤ i ≤ 4.
We may assume that
(17) the fully subdivided graph involved in H2 is not a path, otherwise such an H2 can be

drawn as an H1.
Let us now prove that
(18) Neither G1 nor G2 is H2.
Suppose the contrary: G1 is H2, say. Let K denote the fully subdivided graph involved in H2

(see Figure 5). Let P1 = P1[x1, u1] and P2 = P2[x2, u2] be the two paths marked with α in H2 in
Figure 5, and let u0 be the common neighbor of u1 and u2, which is of degree two. By (17) and
Lemma 4.3, we can find an edge ab inK and a u1u2-path Q, such that Q(u1, u2) is fully contained
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in K, a ∈ V (Q) while b /∈ V (Q), and both Q[u1, a] and Q[a, u2] have odd length. Let x1x
′
1 and

y1y
′
1 be two disjoint edges in G2, with x2 /∈ {x′1, y

′
1}. Set L = P1∪P2∪Q∪{ab, u1u0, x1x

′
1, x1x2} if

α =odd and L = P1∪P2∪Q∪{ab, u2u0, y1y
′
1, x1x2} otherwise. Then L is a fully odd subdivision

of F1. Thus (18) follows.
The same argument implies that
(19) Neither G1 nor G2 is H4.
From (16), (18) and (19), we see that Gi is isomorphic to either H1 or H3 in Figure 5 for

i = 1, 2. Let G1 = Hp and G2 = Hq, where both p and q belong to {1, 3}. It is a routine matter
to check for all possible combinations of p and q, the resulting graph G can always be drawn as
an H6 in Figure 6.

Therefore, if G 6= H1 and Case 2 occurs, then G is either H5 or H6 in Figure 5.
Combining the observations in both Case 1 and Case 2, we conclude that G is one of the six

graphs as depicted in Figure 6.

4.3 D-subgraphs

A diamond is obtained from K4 (the complete graph with four vertices) by deleting an edge. A
diamond K with vertices s, t, u, v in a graph G = (V,E) is called a D-subgraph of G if uv /∈ E,
dG(s) = dG(t) = 3, and G\{s, t} is connected. In this subsection we determine good graphs
with D-subgraphs.

Lemma 4.10. Let G = (V,E) be an i-2-c and good graph with a D-subgraph. Then G is
one of the three graphs depicted in Figure 7, where odd and any stand for the parities of the
corresponding paths.

Figure 7: Good graphs with D-subgraphs

Proof. By hypothesis, G contains a diamond K with vertices s, t, u, v such that uv /∈ E,
dG(s) = dG(t) = 3, and G\{s, t} is connected. Depending on the structure of G\{s, t}, we
distinguish among three cases.

Case 1. G\{s, t} is bipartite, in which u and v are in the same color class.
In this case, set H = G\{s, t} and G′ = H + uv. From Lemma 4.9 with (x1, x2) = (u, v), we

see that G′ is Hi in Figure 5 for some 1 ≤ i ≤ 6. So G is obtained from Hi by replacing the
edge x1x2 with the diamond K.

Subcase 1.1. i = 1. In this subcase, clearly G = J1 in Figure 7.
Subcase 1.2. i = 2. In this subcase, we may assume that the fully subdivided graph L

involved in H2 in Figure 5 is not a path, otherwise H2 can be drawn as H1, so the current
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subcase is the same as the previous one. Let P1 = P1[x1, y1] and P2 = P2[x2, y2] be the two
paths marked with α in H2 in Figure 5, and let y0 be the common neighbor of y1 and y2, which
is of degree two. By Lemma 4.3, we can find an edge ab in L and a y1y2-path Q, such that
Q(y1, y2) is fully contained in L, a ∈ V (Q) while b /∈ V (Q), and both Q[y1, a] and Q[a, y2] have
odd length. By Lemma 4.6, K ∪ P1 ∪ P2 ∪Q ∪ {y1y0, ab} contains a fully odd subdivision of F2

in G, a contradiction.
Subcase 1.3. i = 3. In this subcase, we may assume that neither of the fully subdivided

graphs L1 (with x1 ∈ V (L1)) and L2 involved in H3 in Figure 5 is a path, otherwise Subcase
1.1 occurs. By Lemma 4.3, we can find an edge ab in L1, an edge cd in L2, and an x1x2-path
Q in H3\x1x2, such that {a, c} ∈ V (Q) while {b, d} ∩ V (Q) = ∅, and Q[x1, a] is of even length
while Q[c, x2] is of odd length. Note that Q is of even length. By Lemma 4.6, K ∪Q ∪ {ab, cd}
contains a fully odd subdivision of F2 in G, a contradiction.

Subcase 1.4. i = 4 and 5. In this subcase, Lemma 4.6 guarantees the existence of a fully
odd subdivision of F2 in G, a contradiction.

Subcase 1.5. i = 6. In this subcase, let x1x2y1 be the path of length two contained in H6.
From its structure, we see that H6 contains two odd cycles C1 and C2 which have only the path
x1x2y1 in common. Let L be obtained from C1 ∪ C2 by replacing the edge x1x2 with the path
ustv in K. Then L is a fully odd subdivision of F3 in G, a contradiction again.

Therefore, if Case 1 occurs, then G = J1 in Figure 7.

Case 2. G\{s, t} is bipartite, in which u and v are in different color classes.
In this case, set G′ = G\t and H = G′\us. From Lemma 4.9 with (x1, x2) = (u, s), we see

that G′ is Hi in Figure 5 for some 1 ≤ i ≤ 6 and i 6= 5 (because dH5
(x2) = 3 while dG′(s) = 2).

So G is obtained from Hi by adding vertex t and three edges tx1, tx2, ty1, where y1 is the only
neighbor of x2 other than x1 in Hi. Note that y1 corresponds to v in K.

Subcase 2.1. i = 1. In this subcase, clearly G = J1 in Figure 7.
Subcase 2.2. i = 2. In this subcase, once again we may assume that the fully subdivided

graph L involved in H2 in Figure 5 is not a path. Let P1 = P1[x1, z1] and P2 = P2[x2, z2] be
the two paths marked with α in H2 in Figure 5, and let z0 be the common neighbor of z1 and
z2, which is of degree two. By Lemma 4.3, we can find an edge ab in L and a z1z2-path Q, such
that Q(z1, z2) is fully contained in L, a ∈ V (Q) while b /∈ V (Q), and both Q[z1, a] and Q[a, z2]
have odd length. By Lemma 4.6, K ∪ P1 ∪ P2 ∪Q ∪ {z1z0, ab} contains a fully odd subdivision
of F1 in G, a contradiction.

Subcase 2.3. i = 3. In this subcase, once again we may assume that neither of the fully
subdivided graphs L1 (with x1 ∈ V (L1)) and L2 involved in H3 in Figure 5 is a path. By Lemma
4.3, we can find an edge ab in L1, an edge cd in L2, and an x1x2-path Q in H3\x1x2, such that
{a, c} ∈ V (Q) while {b, d} ∩ V (Q) = ∅, and Q[x1, a] is of even length while Q[c, x2] is of odd
length. Note that Q is of even length. By Lemma 4.6, K ∪ Q ∪ {ab, cd} contains a fully odd
subdivision of F1 in G, a contradiction.

Subcase 2.4. i = 4. In this subcase, Lemma 4.6 guarantees the existence of a fully odd
subdivision of F1 in G, a contradiction.

Subcase 2.5. i = 6. In this subcase, let x1x2y1 be the path of length two contained in H6.
From its structure, we see that H6 contains two odd cycles C1 and C2 which have only the path
x1x2y1 in common. Since G is simple, at least one of C1 and C2 has length at least five, say
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C1. Let e, f be the two edges incident with x1, y1 in C1\x2, respectively. Then C2 ∪ {e, f, x2t}
would be a fully odd subdivision of F1 in G, a contradiction again.

Therefore, if Case 2 occurs, then G = J1 in Figure 7 as well.

Case 3. G\{s, t} is nonbipartite.
By hypothesis of the present case, G\{s, t} contains an induced odd cycle C. By Lemma 4.2,

G contains two disjoint paths from s to C which have only s in common, and these two paths
yield two induced disjoint paths P1 = P1[u, x] and P2 = P2[v, y], where x, y are two vertices on
C. Let Q1 (resp. Q2) be the xy-segment of C with odd (resp. even) length. Observe that the
length of Q2 is two, for otherwise, let R be an xy-path of odd length contained in K ∪ P1 ∪ P2.
Then R ∪ C would be a fully odd subdivision of F3, a contradiction. We reserve the symbol z
for the internal vertex of Q2 hereafter, and consider two subcases.

Subsase 3.1. dG(z) = 2.
Let L = K ∪ P1 ∪ P2 ∪ C. In view of the degrees of s, t and z, no edge of G outside L is

incident with any one in {s, t, z}. Recall that P1 and P2 are induced paths in G, and C is an
induced cycle. If G 6= L, then G contains an edge e outside L, which is between P1 and P2,
or has precisely one end in P1 ∪ P2 ∪ Q1 (and the other end outside L), or is between Q1 and
P1∪P2; in each situation, it is a routine matter to check, using Lemma 4.6, that L∪{e} contains
a fully odd subdivision of F1 or F2. This contradiction implies that G = L and hence G = J2 in
Figure 7.

Subsase 3.2. dG(z) ≥ 3.
In this subcase, let x′ be the vertex adjacent to x on the path suP1, and let y′ be the vertex

adjacent to y on the path tvP2. Let us show that
(1) dG(z) = 3 and NG(z), the neighborhood of z in G, is either {x, y, x′} or {x, y, y′}.
To justify this, note that z has no neighbor w outside {x, x′, y, y′}, for otherwise, C ∪

{zw, xx′, yy′} would be a fully odd subdivision of F1, a contradiction. Assume on the con-
trary that z is adjacent to both x′ and y′. Then x′ 6= s because NG(s) = {t, u, v}. Let a be the
vertex adjacent to x on Q1, and let b be the neighbor of x′ on suP1 other than x. Then the
union of the triangle xx′z and {xa, x′b, zy′} would be a fully odd subdivision of F1 in G. This
contradiction yields (1).

Symmetry allows us to assume that
(2) NG(z) = {x, y, x′}.

Notice that
(3) Q1 = xy.
Otherwise, let a and b be as defined in the proof of (1). Then a 6= y. So the union of the

triangle xx′z and {xa, x′b, zy} would be a fully odd subdivision of F1 in G. This contradiction
justifies (3).

With x in place of z, the same argument implies that
(4) NG(x) = {x′, y, z}.
Let L = K ∪ P1 ∪ P2 ∪ {x′z}. In view of (2), (4) and the degrees of s and t, no edge of G

outside L is incident with any one in {s, t, x, z}. Recall that P1 and P2 are induced paths in G.
If G 6= L, then G contains an edge e outside L, which either is between P1[u, x

′] and P2 or has
precisely one end in P1[u, x

′]∪P2; in either situation L∪ {e} contains a fully odd subdivision of
F1 or F2 by Lemma 4.6. This contradiction implies that G = L and hence G = J3 in Figure 7.
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Therefore, if Case 3 occurs, then G = J2 or J3 in Figure 7.
Combining the above three cases, we conclude that G is one of the three graphs depicted in

Figure 7.

4.4 Reductions and Extensions

A signed graph is a triple G = (V,E,Σ), where (V,E) is an undirected graph and Σ ⊆ E.
Throughout this section,

G may have parallel edges, but neither Σ nor E\Σ contains multiple members. (4.1)

An edge e of G is called odd if e ∈ Σ and even otherwise. The realization G∗ of G is the ordinary
graph arising from G by subdividing each even edge exactly once. A path or a cycle in G is
called odd (resp. even) if it contains an odd (resp. even) number of odd edges. Naturally, G is
called bipartite if it contains no odd cycles. It is easy to see that G is bipartite if and only if G∗

is bipartite if and only if V can be partitioned into (X,Y ) such that edges between X and Y
are precisely odd edges of G (as usual, X and Y are called two color classes of G). We also call
G good if G∗ is good, and call G i-2-c if G∗ is i-2-c.

In this subsection we explore properties of signed graphs that are determined by their real-
izations. So we may simply think of a signed graph G as a (compact) representation of G∗.

Let G1 = (V1, E1) and G2 = (V2, E2) be two subgraphs of a signed graph G = (V,E,Σ),
such that

• E1 and E2 form a partition of E;
• V1 ∩ V2 = {x, y}; and
• both G1 and G2 are connected, G2 is bipartite, and |E2| ≥ 2.

We define bipartite reduction (or simply B-reduction) as follows. When x, y are in different color
classes of G2 and xy is not an odd edge in G1, the operation of reducing G to G′

1 = G1 + xy,
where xy is defined to be odd in G′

1, is called a B1-reduction; when x, y are in the same color
class of G2 and xy is not an even edge in G1, the operation of reducing G to G′

1 = G1+xy, where
xy is defined to be even in G′

1, is called a B2-reduction. Correspondingly, we say that G is a
Bi-extension of G′

1 by using xy for i = 1 or 2, and call both B1- and B2-extensions B-extensions.
Notice that (4.1) is preserved on G′

1 under either reduction operation. So a reduction of a
signed graph results in a signed graph again. Let us make some other trivial observations about
signed graphs, which will be used implicitly in our discussion.

• A reduction of a nonbipartite signed graph is again nonbipartite;
• A reduction of an i-2-c signed graph is again i-2-c;
• A reduction of a good signed graph is again good; and
• A reduction of a signed graph has fewer edges than the original graph.
The following simple observation reveals that the B-extensions enjoy some transitivity prop-

erty.

Lemma 4.11. If G′ is a B-extension of G′′ obtained by replacing an edge e with a bipartite
graph He, and G is a B-extension of G′ using an edge in He, then G is also a B-extension of
G′′ using e.
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A diamond K with vertices s, t, u, v in a signed graph G = (V,E,Σ) is called a D-subgraph
of G if all five edges of K are odd, uv /∈ Σ, dG(s) = dG(t) = 3, and G\{s, t} is connected. For
simplicity, G is called D-free if it contains no D-subgraph.

Lemma 4.12. Let G = (V,E,Σ) be an i-2-c and good signed graph, and let G′ = (V ′, E′,Σ′)
be obtained from G by a series of B-reductions. Suppose G is D-free, while G′ contains a
D-subgraph K with vertices s, t, u, v such that uv /∈ Σ′. Then the following statements hold:

(i) There exists an i-2-c and good signed graph G′′ which also contains K as a D-subgraph,
such that G is obtained from G′′ by performing precisely one B-extension using edge st;

(ii) If all edges of G are odd, then G is the graph shown in Figure 8.

Figure 8: Good graphs containing D-subgraphs in reductions

Proof. Since L = G′\{s, t} is connected and uv /∈ Σ′, there exists a uv-path Q of length at
least two in the realization L∗ of L. Let uu′ and vv′ be the two edges of Q incident with u and
v, respectively. Our proof is based on the following two observations about B-reductions.

(1) If the edge su in K is created to replace a bipartite graph Hsu in a B-reduction, then
Hsu consists of precisely two edges incident with u, including su;

To justify this, note that Hsu contains no edge sw with w 6= u, for otherwise, the union of
the triangle stv and three edges sw, tu, vv′ would yield a fully odd subdivision of F1 in G∗, a
contradiction. So u is cutvertex of Hsu. As G′ is also i-2-c, Hsu contains precisely two edges,
including su. Thus (1) is established.

(2) If the edge st in K is created to replace a bipartite graph Hst in a B-reduction, then Hst

is an odd st-path of length at least three, each uv-path in L is odd, and none of four edges in
K\st arises from B-reductions.

Assume the contrary: Hst is not an odd st-path. Then, by Lemma 4.3, Hst contains an odd
st-path P (as st ∈ Σ′) and an edge ab with a ∈ V (P ) while b /∈ V (P ). By symmetry, we may
assume that P [a, t] is odd. Thus the union of the odd cycle sP tvs and three edges ab, tu, vv′

would yield a fully odd subdivision of F1 in G∗. This contradiction implies that Hst is an odd
path with at least three edges.

If L contains an even uv-path R, then R∪{su, sv, tv}∪Hst would yield a fully odd subdivision
of F3 in G∗, a contradiction again. In particular, it follows that the path Q is of odd length.

If one of the remaining four edges in K, say su (by symmetry), is created to replace a
bipartite graph Hsu in a B-reduction. By (1), Hsu contains precisely two edges us and ux. Let
ss′ be the edge on Hst incident with s. Then Q ∪ usv ∪ {ux, ss′, vt} would yield a fully odd
subdivision of F1 in G∗. This contradiction establishes (2).

Now we are ready to present a proof of (i) and (ii). Since G contains no D-subgraph and all
edges in K\st are symmetric, from (1) we deduce that st in K is created to replace a bipartite
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graph Hst in a B-reduction. Hence none of the four edges in K\st arises from B-reductions by
(2). In view of Lemma 4.11, we may assume the existence of a subset Ω of E, such that G is
obtained from G′ by performing B-extensions using all edges e in Ω, with each e replaced by a
bipartite graph He. Let G′′ be obtained from G′ by replacing each e ∈ Ω\st with He. Clearly,
G is a B-extension of G′′ using st. As G′′ is an i-2-c and good signed graph and contains K as
a D-subgraph, (i) is established.

Without loss of generality, we assume that G′ = G′′. Recall (2), Hst is an odd st-path of
length at least three. Imitating the proof of this statement, we deduce that L is an odd uv-path
as well. Therefore, G is as depicted in Figure 8. This proves (ii).

4.5 Irreducible Graphs

Let G = (V,E,Σ) be an i-2-c good signed graph with all edges odd. By virtue of Lemma 4.10, we
may assume that G is D-free, otherwise a structural description of G is already available. If G
can be reduced by a series of B-reductions to a signed graph G′ that contains a D-subgraph, then
G is as depicted in Figure 8 by Lemma 4.12. So we may further assume that G can be reduced
by a series of B-reductions to an i-2-c, good, D-free signed graph, to which no B-reduction is
applicable. This class of signed graphs is exactly the subject of our study in this subsection.
For convenience, we call a signed graph irreducible if it is i-2-c, good, D-free, nonbipartite, and
admits no B-reductions.

Lemma 4.13. The list of all irreducible signed graphs is as given in Figure 9, where T10 is an
arbitrary ladder in which only the top and bottom are odd edges.

Figure 9: Irreducible signed graphs

Let us exhibit some properties satisfied by an irreducible signed graph G = (V,E,Σ) and
analyze a few cases before presenting a proof of this lemma. Note that if |V | = 2, then G is T1

in Figure 9 (for G is nonbipartite), which is called a 2-gon.

Lemma 4.14. Let G = (V,E,Σ) be an irreducible signed graph with |V | ≥ 3. Then the following
statements hold:

(i) dG(v) ≥ 3 for all v ∈ V , so both G and G∗ are 2-connected; and
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(ii) |Σ| ≥ 2.

Proof. (i) Let us first show that dG(v) 6= 1 for any v ∈ V . Otherwise, let u be neighbor of
v, let uw be an edge in G with w 6= v, and let H be the bipartite graph consisting of uv and
uw only. Then we can perform a B-reduction on G by replacing H with uw (having the same
parity as before), which contradicts the hypothesis that G is irreducible.

Let us turn to proving that dG(v) 6= 2 for any v ∈ V . Otherwise, let u and w be the neighbors
of v, and let H be the graph consisting of edges uv, uw, and the edge vw with the same parity as
the path R = uvw, if any. (Possibly G contains both odd and even vw.) Then H is a bipartite
graph, and hence we can perform a B-reduction on G by replacing H with an edge vw (having
the same parity as R), a contradiction again.

Combining the above two observations, we see that dG(v) ≥ 3 for all v ∈ V . Since G is i-2-c,
it follows instantly that G and G∗ are both 2-connected.

(ii) Suppose on the contrary that |Σ| = 1. Let Σ = {uv} and H = G\uv. Then we can
perform a B-reduction on G by replacing H with an even edge uv, contradicting the hypothesis
that G is irreducible.

Lemma 4.15. Let G = (V,E,Σ) be an irreducible signed graph that contains a triangle with
three odd edges. Then G is Ti in Figure 9 for some i with 2 ≤ i ≤ 7.

Proof. We shall first give a structural description of G∗ (the realization of G), and then
transform it into information about G. Depending on presence or absence of K4 (the complete
graph with four vertices) in G∗, we consider two cases.

Case 1. G∗ contains a K4.
In this case, let U = {u1, u2, u3, u4} be the vertex set of a K4 in G∗. Observe that
(1) G∗ contains no two edges uiu5 and uju6 with 1 ≤ i 6= j ≤ 4 and {u5, u6} ∩ U = ∅.
Suppose the contrary. Symmetry allows us to assume that i = 1 and j = 2. Then the union

of the triangle u1u2u3 and three edges u1u5, u2u6, u3u4 would be an F1 in G∗. This contradiction
justifies (1).

Throughout N̄A(v) stands for the set of all neighbors of a vertex v outside a vertex subset
A in G∗.

(2) |N̄U (ui)| ≤ 1 for all 1 ≤ i ≤ 4.
Otherwise, |N̄U (u1)| ≥ 2, say. Then N̄U (ui) = ∅ for i = 2, 3, 4 by (1). Thus u1 is a cutvertex

of G∗, a contradiction.
From (1) and (2), we deduce that G∗ contains at most one vertex outside U . If U is the

whole vertex set of G∗, then G∗ and hence G = K4, which is exactly T4 in Figure 9. It remains to
consider the situation when G∗ contains a fifth vertex u5. By Lemma 4.14(i), G∗ is 2-connected,
so u5 has at least two neighbors in U , which implies that G is T3, T6 or T7 in Figure 9.

Case 2. G∗ contains no K4.
In this case, let A = {u1, u2, u3} be the vertex set of a triangle in G∗ (see the hypothesis).

By Lemma 4.14(i), we have dG(ui) ≥ 3, so N̄A(ui) 6= ∅ for i = 1, 2, 3. If these three sets are
pairwise disjoint, then G∗ would contain an F1, a contradiction. Thus, by symmetry, we may
assume that u1 and u2 have a common neighbor u4 6= u3. So U = {u1, u2, u3, u4} induces a
diamond K in G∗ by the hypothesis of the present case. Notice that

(3) if N̄U (ui) 6= ∅ 6= N̄U (uj) for i = 1 or 2 and j = 3 or 4, then |N̄U (ui) ∪ N̄U (uj)| = 1.
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Suppose the contrary: |N̄U (ui) ∪ N̄U (uj)| ≥ 2, say i = 1 and j = 3. Then G∗ contains two
edges u1u

′
1 and u3u

′
3 with {u′1, u

′
3} ∩ U = ∅. Thus the union of the triangle u1u2u3 and three

edges u1u
′
1, u2u4, u3u

′
3 would be an F1 in G∗. This contradiction establishes (3).

If both u3 and u4 have degree two in G∗, then there would be two even edges between u1
and u2 in G, contradicting (4.1). So we may assume, by symmetry, that

(4) N̄U (u3) 6= ∅.
(5) N̄U (ui) 6= ∅ for i = 1 or 2.
Assume the contrary: N̄U (ui) = ∅ for i = 1, 2. If N̄U (u4) 6= ∅, then G\{u1, u2} is connected

(for otherwise each of u3 and u4 would be a cutvertex of G∗). Thus K is a D-subgraph of G,
contradicting the hypothesis that G is irreducible. If N̄U (u4) = ∅, then u3 would be a cutvertex
of G∗. This contradiction proves (5).

By (5) and symmetry, we may assume that u5 is a vertex in N̄U (u1). By (3) and (4), u3
is adjacent to u5 in G∗. Furthermore, u5 is the only vertex outside U that is adjacent to U .
As G∗\u5 is connected, the whole vertex set of G∗ is {u1, u2, . . . , u5}. From the hypothesis of
the present case, we see that u5 is nonadjacent to u2. Thus G is either T2 or T5 in Figure 9,
depending on whether u5 is adjacent to u4.

Lemma 4.16. Let G = (V,E,Σ) be an irreducible signed graph such that G\{u1v1, u2v2} is
disconnected for some two odd edges u1v1 and u2v2. If one component of G\{u1v1, u2v2} contains
a 2-gon on {u1, u2}, then G is T8 in Figure 9.

Proof. By Lemma 4.14(i), G is 2-connected. So u1v1 and u2v2 are disjoint, andG\{u1v1, u2v2}
has precisely two components G1 and G2, with {u1, u2} ⊆ V (G1). According to the hypothesis,
{u1, u2} induces a 2-gon in G1; let P = u1u0u2 be the path corresponding to the even u1u2 in
G∗

1. We claim that
(1) G∗

2 contains a v1v2-path of odd length.
Suppose the contrary: there is no v1v2-path of odd length in G∗

2. Since G∗ is 2-connected,
G∗

2 contains no odd cycle by Menger’s theorem, and hence is a bipartite graph in which v1 and
v2 belong to the same color class. By Lemma 4.14(i), dG(vi) ≥ 3 for i = 1, 2, so G2 contains at
least two edges. Hence we can perform a B2-reduction on G by replacing the whole G2 with an
even edge v1v2, contradicting the hypothesis that G is irreducible. Therefore (1) holds.

(2) Let Q be a v1v2-path of odd length in G∗
2, and let N̄Q(v) be the set of all neighbors of a

vertex v in G∗
2 outside Q. If N̄Q(vi) 6= ∅ for i = 1, 2, then |N̄Q(v1) ∪ N̄Q(v2)| = 1.

Otherwise, let v1v
′
1 and v2v

′
2 be two disjoint edges in G∗

2, with {v′1, v
′
2} ∩ V (Q) = ∅. Then

P ∪Q ∪ v1u1u2v2 ∪ {v1v
′
1, v2v

′
2} would be a fully odd subdivision of F2 in G∗, a contradiction.

(3) G∗
2 contains an edge v1v2.

To justify this, let Q be a v1v2-path of odd length in G∗
2 (see (1)); subject to this, Q is

as short as possible. Suppose for a contradiction that the length of Q is at least three. Write
Q = a0a1a2 . . . at, where t is odd and at least three.

(4) If G∗
2 contains an edge aiaj, with j ≥ i+ 2, then j = i+ 2

Suppose the contrary: j − i ≥ 3. Let Q′ be the path arising from Q by replacing Q[ai, aj ]
with edge aiaj . If j − i is odd, then Q′ is also a v1v2-path of odd length, which is shorter
than Q. Thus the existence of Q′ contradicts the choice of Q. So we assume that j − i is even.
Consequently, j−i ≥ 4. Since Q is of odd length, either Q[a0, ai] or Q[aj , at] is of odd length, say
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the former. Thus the union of the odd cycle Q′ ∪ v2u2u1v1 and three edges aiai+1, aj−1aj, u0u2
would be a fully odd subdivision of F1, a contradiction.

(5) If G∗
2 contains two edges aiai+2 and ajaj+2, with j ≥ i+ 1, then j = i+ 1.

Otherwise, let Q′ be the path arising from Q by replacing Q[ai, ai+2] with edge aiai+2 and
replacing Q[aj , aj+2] with edge ajaj+2. Then Q′ is also a v1v2-path of odd length, which is
shorter than Q, a contradiction.

(6) If G∗
2 contains an edge aiai+2, then ai+1 has no neighbor in G∗

2 outside Q.
Otherwise, let a′i+1 be such a neighbor of ai+1. Then the triangle aiai+1ai+2 together with

three edges ai−1ai, ai+1a
′
i+1, ai+2ai+3, with a−1 = u1 and at+1 = u2, would be an F1 in G∗

2. This
contradiction justifies (6).

If G∗
2 contains only one edge of the form aiai+2, then ai+1 has degree two in G∗

2 by (4) and
(6), contradicting Lemma 4.14(i). If G∗

2 contains two edges of the form aiai+2 and ai+1ai+3,
then both ai+1 and ai+2 have degree three in G∗ by (4), (5) and (6). Thus the diamond
on {ai, ai+1, ai+2, ai+3} would be a D-subgraph of G, contradicting the hypothesis that G is
irreducible. From (4) and (5), we thus deduce that Q is an induced path in G∗. So, by
Lemma 4.14(i), each vertex ai has at least one neighbor in G∗

2 outside Q. In view of (2),
there exists a vertex b in G∗

2 such that N̄Q(a0) ∪ N̄Q(at) = {b}. The same proof of (2) yields
N̄Q(a0)∪ N̄Q(a1) = {b}. Thus the triangle a0a1b together with three edges a0u1, a1a2, bat would
be an F1 in G∗. This contradiction completes the proof of (3).

Let Q stand for the odd edge v1v2. By (2), we have N̄Q(v1)∪ N̄Q(v2) = {v3} for some vertex
v3 in G∗

2. Since G∗
2\v3 is connected, {v1, v2, v3} is the whole vertex set of G∗

2, and hence G2

is a 2-gon on {v1, v2}, which in turn implies that G1 is also a 2-gon on {u1, u2} by symmetry.
Therefore G is T8 in Figure 9.

Lemma 4.17. Let G = (V,E,Σ) be an irreducible signed graph that contains an odd cycle with
at least three odd edges. Suppose G contains no triangle with three odd edges and contains no
cut with two odd edges as described in Lemma 4.16. Then G is T9 in Figure 9.

Proof. An odd cycle in G is called a long cycle if it contains at least three odd edges. In our
proof we reserve the symbol C for a long cycle in G such that |V (C)| is minimum and, subject
to this, |E(C)∩Σ| is maximum. As usual, an edge outside C is called a chord of C if it has two
ends on C. Each component of C\Σ is called a gap of C. Note that if a gap contains at least
two vertices, then it consists of even edges only. For convenience, a chord e of C is also called a
chord of a gap R if e is between two vertices of R.

(1) Each chord of a gap is an odd edge.
Assume the contrary: some chord uv of a gap R is even. Let C ′ be obtained from C by

replacing R[u, v] with this chord uv. Then C ′ is an odd cycle and contains all odd edges in C.
Since C ′ is shorter than C, the existence of C ′ contradicts the choice of C. So (1) is established.

(2) Each gap has at most one chord.
Suppose for a contradiction that some gap R has two chords u1v1 and u2v2. By (1), both

u1v1 and u2v2 are odd edges. If R[u2, v2] ⊂ R[u1, v1], then R[u1, v1] corresponds to a path of
length at least four in G∗, and hence C ∪{u1v1} would yield a fully odd subdivision of F3 in G∗,
a contradiction. So, renaming subscripts of vertices if necessary, we assume that both v1 and
u2 are on R[u1, v2]. Let C ′ be the cycle obtained from C by replacing R[u1, v2] with the path
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u1v1R[v1, u2]u2v2. Then C ′ is an odd cycle and contains two more odd edges than C. Since C ′

is not longer than C, the existence of C ′ contradicts the choice of C. So we obtain (2).
An edge e outside C is called a leaving edge of a gap R if e has precisely one end in R.
(3) Each gap has at least one leaving edge.
To justify this, let R be an arbitrary gap, and let u and v be its two ends such that u−u and

vv+ are two odd edges on C. By Lemma 4.14(i), dG(x) ≥ 3 for all vertices x. So the statement
holds trivially if u = v. It remains to consider the case when u 6= v. Suppose on the contrary
that R has no leaving edge. In view of (2) and the degrees of vertices on R, we deduce that
{u, v} induces a 2-gon in G and {u−u, vv+} is a cut as described in Lemma 4.16, contradicting
the hypothesis of our lemma. So (3) holds.

A path P is called C-external if all internal vertices of P are outside C.
(4) Let P be a C-external uv-path between two different gaps. If C[u, v] is even and corre-

sponds to a path in G∗ of length at least four, then P is even.
Otherwise, C∪P would correspond to a fully odd subdivision of F3 in G∗. This contradiction

justifies (4).
(5) Each chord between two different gaps is an even edge.
To justify this, let uv be such a chord. Renaming the vertices if necessary, we may assume

that C[u, v] is even. Since C[u, v] ∪ {uv} is not a triangle with three odd edges by hypothesis,
C[u, v] corresponds to a path of length at least four in G∗. Thus (5) follows instantly from (4).

(6) Let P1, P2 be two disjoint even C-external paths. If ui, vi are the ends of Pi for i = 1, 2
such that u1, u2, v1, v2 occur on C in clockwise cyclic order, then precisely one of C[u1, u2],
C[u2, v1], C[v1, v2], and C[v2, u1] is odd.

Suppose the contrary: at least two of C[u1, u2], C[u2, v1], C[v1, v2], and C[v2, u1] are odd,
so exactly three of them are odd as C is odd. By symmetry, we may assume that C[u1, u2],
C[u2, v1], and C[v1, v2] are odd. Let Q1 = C[v2, u1] ∪ P1 and Q2 = P2 ∪ C[u2, v1]. Then Q1

corresponds to an even path of length at least four in G∗, and Q2 corresponds to an odd path.
Thus Q1∪Q2∪C[v1, v2] would correspond to a fully odd subdivision of F3 in G∗, a contradiction.
So (6) is proved.

The following statements (7)-(9) are concerned with three leaving edges ei = uivi for i =
1, 2, 3 of three different gaps of C, such that u1, u2, u3 occur on C in clockwise cyclic order and
that C[u1, u2], C[u2, u3] and C[u3, u1] are all odd.

(7) At most one of e1, e2, e3 is even, and at least two of them have vertices in common
(possible are identical).

Assume that contrary: at least two of e1, e2, e3 are even, or they are pairwise disjoint. For
i = 1, 2, 3, let uiwivi be the path corresponding to ei in G∗ if ei is even, and let wi = vi if ei is
odd. Note that ei is even if vi ∈ V (C) by (5). It is then a routine matter to check that the union
of C∗ (realization of C) and three edges uiwi for i = 1, 2, 3 would yield a fully odd subdivision
of F1 in G∗, no matter what the locations of the vertices vi are. This contradiction justifies (7).

(8) The vertices v1, v2, v3 are not all identical.
Otherwise, v1 = v2 = v3. By (5) and (7), this vertex is outside C. Observe that at least one

of e1, e2, e3 is even, for otherwise, let C ′
i be the cycle C[ui, ui+1] ∪ uiv1ui+1 for i = 1, 2, 3, where

u4 = u1 if i = 3. From the choice of C, we see that C ′
i is not shorter than C. So C is a triangle

with three odd edges, which contradicts the hypothesis of the present lemma. It follows from
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(7) that precisely one of e1, e2, e3 is even, say e3. Since u1v1u2 is not a triangle with three odd
edges, C[u3, u2] corresponds to a path of length at least four. From (4) with (u, v) = (u3, u2),
we conclude that P = u3v1u2 is even, a contradiction.

(9) If v1 = v3, then it is outside C. Furthermore, both e1 and e3 are odd edges.
Suppose the contrary: v1 is on C. Then both e1 and e3 are even by (5), contradicting (7).

In view of (8), we have v2 6= v1. Also, e2 is even if v2 ∈ V (C). Thus, if one of e1 and e3 is even,
then C ∪ {e1, e2, e3} corresponds to a subgraph of G∗ which contains a fully odd subdivision of
F1. This contradiction implies that both e1 and e3 are odd. So (9) holds.

Let R1, R2, . . . , Rκ be all the gaps of C that occur on C in clockwise cyclic order, and let
ei = uivi be a leaving edge of Ri, with ui ∈ V (Ri) for 1 ≤ i ≤ κ.

(10) If κ ≥ 5 and e2 /∈ {e1, e3}, then v2 is outside C and v2 = vi for i = 1 or 3. Furthermore,
both e2 and ei are odd edges.

Suppose the contrary: v2 6= vi for i = 1, 3. From (7) and (9), we deduce that v1 = v3 and is
outside C. Furthermore, both e1 and e3 are odd. Applying (7), (8) and (9) to edges e2, e3, e4,
we see that either e2 = e4 or v2 = v4 6= v1, and v2 is outside C. Moreover, both e2 and e4 are
odd. Let P1 = u1v1u3 and let P2 = e2 if e2 = e4 and P2 = u2v2u4 otherwise. Then the existence
of these two paths contradicts (6). Thus v2 = vi for i = 1 or 3, which is outside C by (5) and
(7). So (10) is established.

(11) κ = 3.
Suppose on the contrary that κ 6= 3. Then κ ≥ 5 because it equals the total number of odd

edges on C. By (10) and symmetry, we may assume that G contains a u1u2-path P1, which
is either e1 = e2 or u1v1u2. Using the edges e2, e3, e4 and (10), we see that G also contains a
u3u4-path P2, which is either e3 = e4 or u3v3u4. By (8), P1, P2 and e5 are pairwise disjoint.
It thus follows from Lemma 4.7 that G∗ contains a fully odd subdivision of F1 or F2. This
contradiction yields (11).

Symmetry and (11) allow us to assume hereafter that e1 = e3 or v1 = v3. Let u4u5 be the
odd edge contained in C[u3, u1] such that u3, u4, u5, u1 occur on C in clockwise cyclic order. We
claim that

(12) u3 = u4, u5 = u1, and e1 = e3.
Assume that contrary: u3 6= u4, say. If R3 has a chord e4 incident with u4, then e4 is odd

by (1). Thus C ∪{e4, e1, e2} would yield a fully odd subdivision of F2 in G∗. This contradiction
implies that u4 is not adjacent to any vertex on R3 except u−4 . Next, we show that R3 has no
leaving edge incident with u4. Otherwise, let e5 = u4v4 be such a leaving edge. Using the edges
e1, e2, e5 and using (5), (7) and (10), we conclude that either v4 = v1 or v2 and e5 is odd, or
e2 = e5 and is even. Observe that if v4 = v1, then u1v1u4C[u4, u1]u1 would be an odd cycle
that contradicts the choice of C. In the remaining two cases, the existence of the two paths
with edge sets {e1, e3} and {e2, e5}, respectively, would contradict (6). Combining the above
two observations, we conclude that dG(u4) = 2, contradicting Lemma 4.14(i). Hence u3 = u4
and u5 = u1. Since G contains no triangle with three odd edges, we further have e1 = e3. So
(12) is justified.

Let u6u7 and u8u9 be two odd edges in C\u4u5, such that u4, u5, . . . , u9 occur on C in
clockwise cyclic order.

(13) R1 or R3 has at least one leaving edge outside {e1, u4u5}.
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Otherwise, neither R1 nor R3 has a leaving edge outside {e1, u4u5}. By Lemma 4.14(i),
dG(ui) ≥ 3 for i = 6, 9, so u1 = u6 and u3 = u9. Consequently, {u6u7, u8u9} is an edge cut
as described in Lemma 4.16, contradicting the hypothesis of the present lemma. Hence (13) is
true.

Let e6 be an arbitrary leaving edge of R1 or R3 outside {e1, u4u5}, having at least one end u10
in R1 ∪R3. With {e1, e2, e6} in place of {e1, e2, e3}, from (7) we see that e6 and e2 have vertex
in common. From (12) we can further deduce that e6 = e2. Furthermore, (u10, u2) = (u6, u7)
if u10 is on R1, and (u10, u2) = (u9, u8) otherwise. It follows that e2 is the unique leaving edge
of R1 and R3 outside {e1, u4u5}. Next, R2 has no leaving edge f other than e2, for otherwise
C ∪ {e1, e2, f} would yield a fully odd subdivision of F1 or F2 by Lemma 4.7, a contradiction.
Finally, since dG(ui) ≥ 3 for 6 ≤ i ≤ 9, we have u7 = u8 and u3 = u9 if u10 is on R1 and u1 = u6
otherwise. Combining the above observations, we conclude that G is T9 in Figure 9.

Proof of Lemma 4.13. In view of Lemmas 4.15–4.17, we may assume that
(1) each odd cycle in G contains precisely one odd edge.

By Lemma 4.14(i), G is 2-connected. Since G is nonbipartite, it has an odd cycle C, with odd
edge e1 = u1u2. As |Σ| ≥ 2 by Lemma 4.14(ii), there exists an odd edge e2 = v1v2 outside C in G.
By Menger’s theorem, G contains two disjoint paths Q1, Q2 from v1, v2 to two distinct vertices
w1, w2 on C, respectively, where u1, w1, w2, u2 occur on C in clockwise cyclic order, and wi, vi are
the two ends of Qi for i = 1, 2. Set P1 = C[u1, w1], P2 = C[w2, u2], and K = C ∪Q1∪Q2∪{e2}.
From (1) it is easy to see that

(2) e1, e2 are the only odd edges in K.
Consequently, C[w1, w2] = w1w2, for otherwise, K would correspond to a fully odd subdivision
of F3 in G∗, a contradiction. For convenience, we assume that

(3) each of P1, P2, Q1, Q2 is an induced path in G.
We claim that

(4) e1, e2 are the only odd edges in G.
Suppose the contrary: G contains a third odd edge e3. Then Menger’s theorem guarantees

the existence of a path R traversing e3 with both ends x, y in K. Using (1) and (2), it is a
routine matter to check that e1, e2, e3 are the only odd edges in K ∪R. Now let us proceed by
considering all possible locations of x and y. If {x, y} = {w1, w2}, then K ∪ R would yield a
fully odd subdivision of F4 in G∗. So {x, y} 6= {w1, w2}. If {x, y} ⊆ V (Pi ∪Qi) for i = 1 or 2, or
x ∈ V (P1)\w1 and y ∈ V (Q2)\w2, or x ∈ V (P2)\w2 and y ∈ V (Q1)\w1, then we can easily find
a cycle with precisely three odd edges, contradicting (1). If R is between P1 and P2 or between
Q1 and Q2, say the former, then C ∪ R would yield a fully odd subdivision of F3 in G∗. Thus
we can reach a contradiction in each case, and hence (4) is established.

(5) Pi ∪Qi is an induced path in G for i = 1, 2.
Suppose the contrary: some edge f is a bridge of P1 ∪Q1, say. From (3) we see that one end

a of f is on P1\w1 and the other end b on Q1\w1. Thus the graph obtained from K ∪ {f} by
deleting all vertices on Q1(w1, b) would correspond to a fully odd subdivision of F3 in G∗. This
contradiction establishes (5).

Let H be the union of the cycle C ′ = K\w1w2 and all its chords. Then G = H, because any
bridge of H would cause a B2-reduction in G by (4) and (5), contradicting the hypothesis that
G is irreducible.
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(6) If x1y1 and x2y2 are two disjoint chords of C ′ such that u1, x1, x2, y1, y2 occur on C ′ in
clockwise cyclic order, then x1x2 and y1y2 are two edges of C ′.

Assume the contrary: x1x2 or y1y2 is not an edge of C ′, say the former. Then C ′[y2, y1] ∪
{x1y1, x2y2} would yield a fully odd subdivision of F3 in G∗. This contradiction yields (6).

By Lemma 4.14(i), dG(v) ≥ 3 for all vertices v of G. So each vertex is incident with at least
one chord of C ′. Combining this with the above observations, we conclude that G is a ladder
with only top e1 and bottom e2 odd. So G is F10 in Figure 9.

4.6 B-extensions

In the previous subsections we have observed that the property of being good is preserved under
B-reductions, and have determined all irreducible signed graphs. Although this property is
not maintained under B-extensions, let us proceed to show that the original graph can still be
“deciphered” from irreducible signed graphs by using such reverse operations of B-reductions
and meanwhile avoiding occurrence of forbidden structures.

Throughout this subsection, G = (V,E,Σ) is an i-2-c good signed graph with all edges odd,
and Ir(G) is the set of all irreducible graphs arising from G. Moreover, Gi for 1 ≤ i ≤ 9 are all
as depicted in Figure 4, and Tj for 1 ≤ i ≤ 10 are all as shown in Figure 9.

Lemma 4.18. If T1 ∈ Ir(G), then G is a subgraph of one of G2 and G6 −G9.

Proof. Let {v1, v2} be the vertex set of T1 and let e (resp. f) denote the even (resp. odd)
edge of T1. We may assume that f is created in T1 to replace a connected bipartite subgraph
of G in a B-reduction, for otherwise, f is an edge of G and G\f is bipartite. So G is nearly
bipartite, and hence is one of the six graphs depicted in Figure 6 by Lemma 4.9, which are
subgraphs of G2 and G6 −G9, respectively.

Let L (resp. R) be the connected bipartite subgraph of G replaced by e (resp. f) in a
B-reduction. Let L′ be obtained from L by adding an edge v1v2 and let R′ be obtained from R
by adding a path v1v3v2, where v3 is a new vertex outside R. Since G is i-2-c and good, so are
L′ and R′. Since L′\v1v2 and R′\v1v3 are bipartite graphs, both L′ and R′ are nearly bipartite.
By Lemma 4.9, L′ is one of Hi for 1 ≤ i ≤ 6 in Figure 6, and R′ is one of Hj for 1 ≤ j ≤ 6 and
j 6= 5 (as dH5

(x2) = 3 while dR′(v3) = 2). Let x3 be the neighbor of x2 in Hj corresponding to
v2 in R′; keep in mind that x3 in on a path marked by α in Figure 6 when j = 1, 2, 4. Let Li

be obtained from Hi (potential L
′) by deleting x1x2, and let Rj be obtained from Hj (potential

R′) by deleting x2. For convenience, we relabel (x1, x2) as (v1, v2) in Li, and relabel (x1, x3) as
(v1, v2) in Rj . Observe that

(1) L 6= L5.
Assume on the contrary that L = L5. By Lemma 4.3, either R contains a v1v2-path P

together with an edge u1u2, with u1 ∈ V (P ) while u2 /∈ V (P ) or R is a path of odd length at
least three. In the former case, symmetry allows us to assume that P [v1, u1] is odd. Let wi be
the vertex above vi in H5 (see Figure 6) for i = 1, 2. Then the cycle w2v1Pv2w2 together with
v1w1, u1u2 and an edge incident with w2 outside {w2v1, w2v2} would be a fully odd subdivision of
F1 in G. In the latter case, let Q be a w1w2-path in L5\{v1, v2}. Then the three paths w1Qw2v2,
w1v2, and w1v1Rv2 would be a fully odd subdivision of F3. So we reach a contradiction in either
case. Hence (1) is justified.
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(2) If L = L4, then G is a subgraph of G2.
To justify this, note that R is a v1v2-path, for otherwise, Lemma 4.3 guarantees the existence

of a v1v2-path P together with an edge u1u2 in R, with u1 ∈ V (P ) while u2 /∈ V (P ). By
symmetry, we may assume that P [v1, u1] is odd. For i = 1, 2, let ai be the pendant vertex right
above vi in Figure 6, let Qi be the aivi-path corresponding to the straight line segment linking
ai and vi, and let bi, ci be the two vertices succeeding ai on Qi. If α =odd (see Figure 6), then
the cycle b1Q1[b1, v1]v1Pv2Q2[v2, c2]c2b1 together with edges u1u2, a1b1, b2c2 would yield a fully
odd subdivision of F1. If α =even (see Figure 6), then the cycle c1Q1[c1, v1]v1Pv2Q2[v2, b2]b2c1
together with edges u1u2, b1c1, a2b2 would yield a fully odd subdivision of F1. So we reach a
contradiction in either case. As R is a path, it is clear that G is a subgraph of G2, as desired.

The same argument yields the following statement.
(3) If R = R4, then G is a subgraph of G2.
(4) If L = L2 and L cannot be drawn as L1, then G is G8.
To justify this, let Pi be the path starting with vi and marked by α in L2, let ui be the end of

Pi other than vi for i = 1, 2, and let u3 be the common neighbor of u1 and u2 (see Figure 6). Since
L2 cannot be drawn as L1, the fully subdivided subgraph in L2 is not a path. So, by Lemma 4.3,
there exists a u1u2-path Q in L2\u3 and an edge w1w2, with w1 ∈ V (Q) while w2 /∈ V (Q), such
that Q[u1, w1] is of odd length. We claim that R is a path, for otherwise, Lemma 4.3 guarantees
the existence of a v1v2-path S together with an edge z1z2, with z1 ∈ V (S) while z2 /∈ V (S). By
symmetry, we may assume that S[v1, z1] is odd. Then the cycle P1 ∪ P2 ∪Q ∪ S together with
edges w1w2, z1z2 and one of u2u3 and u1u3 (depending on whether α =odd; see Figure 6) would
yield a fully odd subdivision of F1. This contradiction justifies our claim. It follows instantly
that G is G8.

Similarly, we can establish the following statement.
(5) If R = R2 and R cannot be drawn as R1, then G is G8.
(6) If L = L6, then G is a subgraph of a plump ladder G9.
To justify this, let v0 be the neighbor of v2 other than v1, let P1, P2 be two v0v1-paths of odd

length in L6\v2, and let J be the bipartite subgraph of G induced by V (R) ∪ {v0}. By Lemma
4.8, one color class of J is {v0, v1}. So G is a subgraph of a plump ladder G9, as desired.

Using the same argument, we get the following statement.
(7) If R = R6, then G is a subgraph of a plump ladder G9.
(8) If L = L1 and R = R1, then clearly G is G6 or a subgraph of G8.
(9) If L = L1 and R = R3, then G is G6 or a subgraph of G8.
To justify this, let C be a shortest cycle in G containing v1 and v2 and intersecting both

L1\{v1, v2} and R3\{v1, v2}, let a1 = v1 and a4 = v2, and let a1, a2, . . . , a6 be six vertices occur
on C in clockwise cyclic order, where C[a4, a5] and C[a6, a1] are the two paths marked by α in
L1 (see Figure 6), and a2a3 is the edge connecting two fully subdivided subgraphs in R3. Let
Bi stand for the fully subdivided subgraph containing both a2i−1 and a2i in G for i = 1, 2, 3. If
α =even or if one of B1, B2, B3 is an a2i−1a2i-path, then clearly G is G6 or a subgraph of G8.
Otherwise, each Bi contains an edge bib

′
i such that bi is on C[a2i−1, a2i] and that C[a2i−1, bi]

is of even length, because a2i−1 and a2i are both contained in the color 1 class of Bi. Thus
C ∪ {b1b

′
1, b2b

′
2, b3b

′
3} would be a fully odd subdivision of F1. This contradiction establishes (9).

The same argument yields the following two statements.
(10) If L = L3 and R = R1, then clearly G is G6 or a subgraph of G8.
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(11) If L = L3 and R = R3, then clearly G is G6 or a subgraph of G8.
Combining the above observations, we see that G is a subgraph of one of G2, G6, G8 and G9,

as desired.

Lemma 4.19. If Ti ∈ Ir(G) for i = 5, 6 or 7, then G = Ti and hence is a subgraph of G1.

Proof. Let v1, v2, . . . , v5 for all the vertices of Ti. We propose to show that no edge e in
Ti is created to replace a connected bipartite subgraph He of G in a B-reduction. Assume the
contrary: some edge e = vsvt of Ti is a counterexample. Let P be a shortest vsvt-path in He.
Note that P is of odd length. So either P has length at least three or He\e contains an edge
f incident with e. Let K be obtained from Ti by replacing e with P or with {e, f}. It is then
a routine matter to check that K and hence G contains a fully odd subdivision of F1. This
contradiction establishes the desired statement. Hence G = Ti, as desired.

Lemma 4.20. If Ti ∈ Ir(G) for i = 2, 8 or 9, then G is G3.

Proof. Label the vertices of Ti as v1, v2, v3, v4, with v4 = v1 in T2, so that C = v1v2v3v4v1
is a cycle in Ti, and that each of {v1, v2} and {v3, v4} induces a 2-gon in Ti. For convenience,
we assume that v1, v2, v3, v4 occur on C in clockwise cyclic order, and that both the odd v1v2
and odd v3v4 are contained in C. Let He = (Xe, Ye;Ee) be the connected bipartite subgraph of
G replaced by an edge e in Ti in a B-reduction, where the two ends of e are contained in Xe if
e is even. Let us show that

(1) for even e = a1a2 ∈ {v1v2, v3v4} in Ti, the entire He is a a1a2-path of length two.
Moreover, for e = v2v3 in T9, the entire He is a v2v3-path.

To justify this, let P1 and P2 be two disjoint odd a1a2-paths in Ti. By Lemma 4.8 with
H = He, we have

(2) Xe = {a1, a2}.
Let C ′ = C if i = 2 or 8, and let C ′ be obtained from C by replacing v2v3 with a shortest
v2v3-path in Hv2v3 if i = 9. By (2), Hv2j−1v2j contains a v2j−1v2j-path Qj of length two for
j = 1, 2. Set K = C ′ ∪Q1 ∪Q2. Suppose on the contrary that (1) is false. Then G has an edge
f with one end in {v1, v4} or on C ′[v2, v3] and the other end outside K (see (2)). From Lemma
4.7 we deduce that K ∪ {f} contains a fully odd subdivision of F1 or F2. This contradiction
establishes (1).

(3) For each odd edge e = b1b2 in Ti, the entire He is a b1b2-path.
Otherwise, Lemma 4.3 guarantees the existence of a b1b2-path R and an edge c1c2 in He,

with c1 ∈ V (R) while c2 /∈ V (R). Let Qj be a v2j−1v2j-path in Hv2j−1v2j , and let K be obtained
from Ti by replacing even v2j−1v2j with Qj for j = 1, 2 and replacing e with R ∪ {c1c2}. It is
then a routine matter to check that K contains a fully odd subdivision of F1 or F2. So (3) holds.

Combining (1) and (3), we conclude that G is G3.

Lemma 4.21. If T3 ∈ Ir(G), then G is G5.

Proof. Let v1, v2, v3, v4 be four vertices of T3 such that {v1, v2} induces a 2-gon, and let
He = (Xe, Ye;Ee) be the connected bipartite subgraph of G replaced by an edge e in Ti in a
B-reduction, where the two ends of e are contained in Xe if e is even. We propose to show that

(1) for the even e = v1v2 in T3, the entire He is a v1v2-path of length two.
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To justify this, let P1 and P2 be two disjoint odd v1v2-paths in T3. By Lemma 4.8 with
H = He, we have Xe = {v1, v2}. Let Q be a v1v2-path of length two. If He 6= Q, then He\e
contains an edge viv5 for i = 1 or 2. Let K be obtained from T3 by replacing the even v1v2 with
Q ∪ {viv5}. Then K and hence G contains a fully odd subdivision of F1. This contradiction
establishes (1).

(2) For the odd e = v1v2 in T3, the entire He is a v1v2-path.
Otherwise, Lemma 4.3 guarantees the existence of a v1v2-path Q and an edge u1u2 in He,

with u1 ∈ V (Q) while u2 /∈ V (R). Let R be a v1v2-path in Hf , where f is the even v1v2, and
let K be obtained from Ti by replacing even v1v2 with R and replacing e with Q∪ {u1u2}. It is
then a routine matter to check that K and hence G contains a fully odd subdivision of F1. So
(2) follows.

(3) No odd edge e 6= v1v2 in T3 is created to replace a connected bipartite subgraph He of
G in a B-reduction.

Otherwise, imitating the proof of Lemma 4.19, we can easily find a fully odd subdivision of
F1 in G. Thus (3) holds.

Combining (1)-(3), we see that G is G5.

Lemma 4.22. If T4 ∈ Ir(G), then G is G2 or G7.

Proof. Let v1, v2, v3, v4 be the vertices of T4, and let He be the connected bipartite subgraph
of G replaced by an edge e of T4 in a B-reduction. We propose to show that

(1) One end vi of e has precisely one neighbor v′i in He, such that He\vi is a fully subdivided
graph in which both v′i and vj , the other end of e, belong to the color 1 class.

To justify this, note that He + vivj is i-2-c, so at least one of (i), (ii) and (iii) in Lemma
4.5 holds with H = He and (x1, y1) = (vi, vj). It is easy to see that if (i) or (ii) is true, then
G would contain a fully odd subdivision of F3 or F1. So (iii) of Lemma 4.5 occurs; that is,
H contains an edge x2y2 such that He\x2y2 has precisely two components H1 = (X1, Y1;E1)
and H2 = (X2, Y2;E2), with {x1, x2} ⊆ X1 and {y1, y2} ⊆ Y2, and that dH(v) ≤ 2 for any
v ∈ Y1 ∪ X2. (Possibly x1 = x2 or y1 = y2.) Let P be a shortest x1y1-path in H. Then P
traverses x1, x2, y2, y1 in order. We claim that H1 = P [x1, x2] or H2 = P [y2, y1]. Otherwise, H1

contains an edge z1z
′
1 with z1 on P [x1, x2] while z′1 outside P [x1, x2], and H2 contains an edge

z2z
′
2 with z2 on P [y2, y1] while z′2 outside P [y2, y1]. Observe that z1 ∈ X1 and z2 ∈ Y2. Let K

be obtained from T4 by replacing e with P ∪ {z1z
′
1, z2z

′
2}. It is easy to see that K and hence G

contains a fully odd subdivision of F1. This contradiction proves our claim, which immediately
yields (1).

(2) We may assume that for any three vertices vi, vj , vk of T4, at least one of the edges vivj
and vjvk is not created in T4 to replace a connected bipartite subgraph of G in a B-reduction.

Suppose the contrary: vivj (resp. vjvk) is created in T4 to replace a connected bipartite
subgraph Hvivj (resp. Hvjvk) of G in a B-reduction. Observe that

(3) if K is a complete graph with vertex set U = {u1, u2, u3, u3}, then each H described
below contains a fully odd subdivision of F1.

• H arises from K by adding two disjoint edges u1u5 and u2u6, with {u5, u6} ∩ U = ∅;

• H arises from K by adding one edge u1u5, with u5 /∈ U , and subdividing u2u3 into a path
of length at least two; and

• H arises from K by subdividing each of u1u2 and u1u3 into a path of length at least two.
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From (3) it is easy to see that at least one of Hvivj and Hvjvk , say the former, consists of
two edges incident with vj only; let vjv5 be the edge other than vivj . Let H ′

vjvk
be obtained

from Hvjvk by adding the edge vjv5. We may thus assume that vjvk is created in T4 to replace
the connected bipartite subgraph H ′

vjvk
of G in a B-reduction, while vivj is not created in T4 in

any B-reduction. So (2) follows.
(4) If both v1v2 and v3v4 are created in T4 to replace connected bipartite subgraph Hv1v2

and Hv3v4 of G, respectively, in B-reductions, then Hv2i−1v2i is a v2i−1v2i-path for i = 1, 2.
Suppose the contrary: Hv1v2 , say, is not a v1v2-path. Then there exist a v1v2-path P and an

edge a1a2 in Hv1v2 , with a1 ∈ V (P ) while a2 /∈ V (P ). By Lemma 4.3, Hv3v4 contains either a
v3v4-path Q of length at least three or two edges v3v4 and vjv5 for j = 3 or 4. Let S be obtained
from T4 by replacing v1v2 with P ∪ {a1a2} and replacing v3v4 with Q or with {v3v4, vjv5}. It is
then a routine matter to check that S and hence G contains a fully odd subdivision of F1. This
contradiction implies (4).

From (1) we deduce that if precisely one edge of T4 is created to replace a connected bipartite
subgraph of G in a B-reduction, then G is G7. In view of (4), if two disjoint edges of T4 are
created to replace connected bipartite subgraphs of G in B-reductions, then G is G2. By (2),
the present lemma is thus established.

Lemma 4.23. If T10 ∈ Ir(G), then G is a subgraph of a plump ladder G9.

Proof. By Lemma 4.13, T10 is a ladder in which only the top u1u2 and bottom v1v2 are odd
edges. Let C be the outer cycle of T10. Renaming the subscripts of vertices, we assume that
u1, v1, v2, u2 occur on C in clockwise cyclic order. By definition, each even edge e = x1x2 in T10

is created to replace a connected bipartite subgraph He of G in a B-reduction; let (Xe, Ye) be
the bipartition of He, such that {x1, x2} ⊆ Xe. For an odd edge e, we also use He to denote the
corresponding bipartite subgraph of G involved in a B-reduction, if any. We propose to show
that

(1) if e = x1x2 is a chord of C, then Xe = {x1, x2}.
To justify this, let C∗ be the cycle corresponding to C in G∗, and let P1 = C∗[x1, x2] and

P2 = C∗[x2, x1]. Then both P1 and P2 are of odd length. So (1) follows instantly from Lemma
4.8.

(2) If e = x1x2 is in C\{u1u2, v1v2}, then dHe(y) ≤ 2 for all y ∈ Ye.
Suppose the contrary: dHe(y) ≥ 3 for some y ∈ Ye. Since G is i-2-c, Lemma 4.2 guarantees

the existence of two paths Q1 and Q2 from y to {x1, x2} in He that have only y in common.
Clearly, we may further assume that both Q1 and Q2 are induced. Thus y has a third neighbor
y′ outside Q1 ∪Q2 in He. By Lemma 4.14(i), both x1 and x2 have degree at least three in T10.
So C has a chord ri incident with xi for i = 1, 2. Let x1x

′
1 be an edge in Hr1 , let R be a path

connecting the two ends of r2 in Hr2 , and let C ′ be obtained from C by replacing edge x1x2
with path Q1 ∪Q2. Then C ′ ∪R ∪ {x1x

′
1, yy

′} would yield a fully odd subdivision of F2 in G∗.
This contradiction establishes (2).

(3) If e = x1x2 in C\{u1u2, v1v2} is contained in a 4-cycle induced by two crossing chords of
C, then Xe = {x1, x2}.

To justify this, let x1y1 and x2y2 be two crossing chords of C, and let C ′ be the cycle obtained
from C replacing edges x1x2, y1y2 with x1y1, x2y2. Then x1x2 becomes a chord of C ′. Using
(1), with C ′ in place of C, we deduce that Xe = {x1, x2}. So (3) is justified.
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(4) If e ∈ {u1u2, v1v2}, then He is as described in Lemma 4.5(iii), with H = He and x1, y1
being the ends of e.

To justify this, we only need to consider the case when e = u1u2 by symmetry. Thus x1 = u1
and y1 = u2. Symmetry also allows us to assume that C[u1, v1] contains at least one edges.
By Lemma 4.14(i), both u1 and v1 have degree at least three in T10. So C contains two chords
r1 = u1u3 and r2 = v1v3. Let R1 = u1u4u3 by a path in Hr1 and let R2 = v1v4v3 be a path in
Hr2 (see (1)). Since H + u1u2 is i-2-c, at least one of (i), (ii) and (iii) in Lemma 4.5 holds.

If (i) is true, then H contains an u1u2-path P and an x2y2-path Q, such that V (P )∩V (Q) =
{x2, y2} and that both P [x2, y2] and Q are of odd length. Let S be obtained from C\u1u2 by
replacing C[v1, v3] with R2. Then S ∪ P ∪Q would yield a fully odd subdivision of F3 in G∗, a
contradiction.

If (ii) is true, then H contains an u1u2-path P and two disjoint edges y2x3 and x2y3, with
{x2, y2} ∈ V (P ) while {x3, y3}∩V (P ) = ∅ and with y2 on P [u1, x2], such that P [u1, y2], P [y2, x2],
and P [x2, u2] are all of odd length. Let C ′′ be obtained from C by replacing C[u2, u1] with P and
replacing C[v1, v3] with R2. Then C ′′ ∪ {u1u4, y2x3, x2y3} would yield a fully odd subdivision of
F1 in G∗, a contradiction again.

So neither (i) nor (ii) of Lemma 4.5 occurs, and hence (4) follows.
By (4) and Lemma 4.5(iii), if Ha1a2 , with a1a2 ∈ {u1u2, v1v2}, exists, then Ha1a2 contains

an edge a′1a
′
2 such that Ha1a2\a

′
1a

′
2 has precisely two components Ha1a

′
1
= (X1, Y1;E1) and

Ha2a
′
2
= (X2, Y2;E2), with {a1, a

′
1} ⊆ X1 and {a2, a

′
2} ⊆ X2, and that dH(v) ≤ 2 for any

v ∈ Y1 ∪ Y2. Let K be obtained from T10 by first replacing each edge e with He as specified
in (1)-(4) and then adding a bipartite graph Lf = K2,n for some n ≥ 1, in which one color
class consists of the two ends of f only, for each f in {u1u

′
2, u

′
1u

′
2, v1v

′
2, v

′
1v2, }, if any. Clearly, G

is a subgraph of K, and K is a subgraph of a plump ladder G9. So the desired statement holds.

We are now ready to finish the structural description of good graphs.

Proof of Theorem 4.1. It is routine to check that none of G1, G2, . . . , G9 depicted in
Figure 4 contains a fully odd subdivision of F1, F2, F3 or F4 as a subgraph. So if G is a subgraph
of one of these nine graphs, then G is good.

Conversely, let G be an i-2-c, good and nonbipartite graph; we view it as a signed graph with
all edges odd. By Lemma 4.13, {T1, T2, . . . , T10} in Figure 9 is the set of all possible irreducible
signed graphs arising from G. The lemmas proved in this subsection assert that G is a subgraph
of one of G1, G2, . . . , G9 depicted in Figure 4, no matter what the irreducible signed graphs Ti

arising from G are, completing the proof.

5 Primitive Graphs

By Theorem 4.1, every i-2-c good graph is bipartite or is a subgraph of one of the nine graphs
G1, G2, . . . , G9 (see Figure 4). The purpose of this section is to show that the restricted Edmonds
system σ(G) is ESP when G is bipartite or Gi for 1 ≤ i ≤ 9.

To facilitate better understanding of an ESP system σ(G), we give an intuitive interpretation
of this concept using graph-theoretic language. Recall the notations I(G) and T (G) introduced
right above Theorem 1.2. For each v ∈ I(G), we call δ(v) the star centered at v and define
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its rank ρ(δ(v)) to be 1. For each U ⊆ T (G), we call E[U ] the odd set generated by U and
define its rank ρ(E[U ]) to be (|U | − 1)/2. For any collection Λ of stars and odd sets of G, let
ρ(Λ) =

∑

K∈Λ ρ(K) and let dΛ(e) denote the number of members of Λ that contain an edge e.
For each star or odd set K in G, let mΛ(K) stand for the multiplicity of K in Λ. Observe that
ρ(K) is counted mΛ(K) times in ρ(Λ), and K is counted mΛ(K) times in dΛ(e) if e ∈ K. An
equitable subpartition of Λ consists of two collections Λ1 and Λ2 of stars and odd sets (which are
not necessarily in Λ) such that

(i) ρ(Λ1) + ρ(Λ2) ≤ ρ(Λ);

(ii) dΛ1∪Λ2
(e) ≥ dΛ(e) for all e ∈ E; and

(iii) min{dΛ1
(e), dΛ2

(e)} ≥ ⌊dΛ(e)/2⌋ for all e ∈ E.

We call G equitably subpartitionable, abbreviated ESP, if every collection Λ of stars and odd sets
of G admits an equitable subpartition. We refer to the above (i), (ii), and (iii) as ESP property.

The following statement follows instantly from definitions.

Lemma 5.1. A graph G is ESP if and only if σ(G) is ESP.

Let G = (V,E) be a graph, and let Λ1 and Λ2 be two collections of stars and odd sets in G.
We say that Λ1 dominates Λ2 if ρ(Λ1) ≤ ρ(Λ2) while dΛ1

(e) ≥ dΛ2
(e) for all e ∈ E. Suppose G

is not ESP. We reserve the symbol Λ for a collection of stars and odd sets of G such that

(5a) Λ admits no equitable subpartition;

(5b) subject to (5a), ρ(Λ) is minimized;

(5c) subject to (5a-b), f(Λ) =
∑

e∈E dΛ(e) is maximized;

(5d) subject to (5a-c), g(Λ), the number of odd sets in Λ, is minimized.

Lemma 5.2. The collection Λ has the following properties:

(i) If Ω dominates Λ, then mΩ(K) = 1 for all K ∈ Ω.

(ii) If Ω dominates Λ, then ρ(Ω) = ρ(Λ), f(Ω) = f(Λ), and g(Ω) ≥ g(Λ).

(iii) If δ(v) ∈ Λ and no odd set in Λ contains any edge in δ(v), then v has two distinct neighbors
u1, u2 such that δ(ui) ∈ Λ for i = 1, 2.

Proof. (i) Assume the contrary: a star or an odd set K appears at least twice in Ω. Let
Ω′ = Ω − {K,K}. As ρ(Ω′) < ρ(Ω) ≤ ρ(Λ), from (5b) we deduce that Ω′ admits an equitable
subpartition (Ω′

1,Ω
′
2). Set Ωi = Ω′

i ∪ {K}. It is a routine matter to check that (Ω1,Ω2) is an
equitable subpartition of Ω and hence of Λ, a contradiction.

(ii) Since Ω dominates Λ, by definition ρ(Ω) ≤ ρ(Λ) and f(Ω) ≥ f(Λ). If one of the
inequalities ρ(Ω) < ρ(Λ), f(Ω) > f(Λ), and g(Ω) < g(Λ) holds, then (5a-d) would guarantee
the existence of an equitable subpartition (Ω1,Ω2) of Ω, which is also an equitable subpartition
of Λ, a contradiction.

(iii) Assume the contrary: there is at most one neighbor u of v such that δ(u) ∈ Λ. Let
Λ′ = Λ − {δ(v)}. Then ρ(Λ′) < ρ(Λ). So Λ′ admits an equitable subpartition (Λ′

1,Λ
′
2) by

(5b). Renaming subscripts if necessary, we assume that dΛ′
1
(uv) ≤ dΛ′

2
(uv) if u exists. Set

Λ1 = Λ′
1 ∪ {δ(v)} and Λ2 = Λ′

2. It is straightforward to verify that (Λ1,Λ2) is an equitable
subpartition of Λ, a contradiction.
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Lemma 5.3. Let v be a vertex of G with dG(v) = 2. If dΛ(e) is odd for an edge e ∈ δ(v), then
δ(v) 6∈ Λ.

Proof. Assume on the contrary that δ(v) ∈ Λ. Let Λ′ = Λ−{δ(v)}. Then ρ(Λ′) < ρ(Λ). So
Λ′ admits an equitable subpartition (Λ′

1,Λ
′
2) by (5b). Let f be the edge incident with v other

than e. Renaming subscripts if necessary, we assume that dΛ′
1
(f) ≤ dΛ′

2
(f). Set Λ1 = Λ′

1∪{δ(v)}
and Λ2 = Λ′

2. Clearly, (Λ1,Λ2) is an equitable subpartition of Λ, a contradiction.

For convenience, we introduce some notations which will be used throughout this section.
For each U ⊆ V , define δ(U) = {δ(v) : v ∈ U}. For each path P in G, define δ(P ) = δ(V (P )).

Lemma 5.4. Let E[S] and E[T ] be two distinct odd sets in G, such that G[A]\B is a path for
each permutation A, B of S, T with A\B 6= ∅. Then the following statements hold:

(i) If |S ∩ T | is even and S\T 6= ∅ 6= T\S, then {E[S], E[T ]} 6⊆ Λ.

(ii) If S ⊆ T and dG(v) = 2 and δ(v) ∈ Λ for all v ∈ T\S, then E[S] 6∈ Λ.

Proof. (i) Assume the contrary: {E[S], E[T ]} ⊆ Λ. Let P (resp. Q) denote the path G[T ]\S
(resp. G[S]\T ). Then both P and Q are of even length. Let (U1, U2) (resp. (U3, U4)) be the
bipartition of P (resp. Q) with |U1| > |U2| (resp. |U3| > |U4|), and let Λ′ be the collection
obtain from Λ by deleting {E[S], E[T ]} and adding δ(S ∩ T ) ∪ δ(U2 ∪ U4). Then ρ(Λ) = ρ(Λ′)
and dΛ(e) ≤ dΛ′(e) for all e ∈ E. So Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting Lemma
5.2(ii).

(ii) Assume the contrary: E[S] ∈ Λ. Let P denote the path G[T ]\S. Then P is of odd
length. Let (U1, U2) be the bipartition of P , and let Λ′ be the collection obtain from Λ by
deleting {E[S], δ(U2)} and adding E[T ]. Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting
Lemma 5.2(ii).

Lemma 5.5. Let H = (X,Y ;E) be a bipartite graph, let a and b be two distinct vertices in X,
and let Ω be a set of stars in H such that each ab-path contains a vertex v with δ(v) 6∈ Ω. Then
Ω can be partitioned into Ω1,Ω2 such that (Ω1,Ω2) is an equitable subpartition (and hence called
equitable partition) of Ω and that |Ωi ∩ {δ(a), δ(b)}| ≤ 1 for i = 1, 2.

Proof. Let us first consider the case when δ(a) or δ(b) is outside Ω. Set Ω1 = δ(X) ∩ Ω
and Ω2 = δ(Y ) ∩ Ω. Clearly, (Ω1,Ω2) is as desired. It remains to consider the case when
{δ(a), δ(b)} ⊆ Ω. Let Z be the set of all vertices v with δ(v) /∈ Ω. By hypothesis, a and b are
in different components of H\Z. Let H1 = (X1, Y1;E1) be the component of H\Z containing a
and let H2 = (X2, Y2;E2) be the union of the remaining components of H\Z, with a ∈ X1 and
b ∈ X2. Set Ω1 = δ(X1 ∪ Y2) and Ω2 = δ(X2 ∪ Y1). Obviously, {Ω1,Ω2} is a partition of Ω with
the desired properties.

We shall also need the following Lovász’ Open Ear Decomposition Theorem in our proof.

Theorem 5.6. (Lovász [13]) Let H be a 2-connected factor-critical graph. Then H can be
decomposed as P0 +P1 + · · ·+Pr, where P0 is an odd cycle and Pi+1 is an odd path having only
its two ends in common with P0 + P1 + · · ·+ Pi for any 0 ≤ i ≤ r − 1.
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Let us proceed to show that the ESP property is satisfied by all bipartite graphs and all
Gi’s.

Lemma 5.7. Every bipartite graph is ESP.

Proof. Suppose on the contrary some bipartite graph G0 = (V1, V2;E) is not ESP. Let
Λ be a collection of stars and odd sets in G0 as specified by (5a-d) (with G0 in place of G).
By Lemma 5.2(i), we have mΛ(K) = 1 for all K ∈ Λ. Observe that Λ contains no odd set,
for otherwise, let S = E[U ] be such a set. Renaming subscripts if necessary, we may assume
that |U ∩ V1| < |U ∩ V2|. Let Λ′ be obtained from Λ by replacing S with δ(U ∩ V1). Then Λ′

dominates Λ and g(Λ′) < g(Λ), contradicting Lemma 5.2(ii). Set Λi = δ(Vi) ∩ Λ for i = 1, 2.
Clearly, (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Lemma 5.8. The graph G1 = (V1, E1) (see Figure 10) is ESP.

Figure 10: The primitive graph G1

Proof. Suppose on the contrary that G1 is not ESP. Let Λ be a collection of stars and odd
sets in G1 as specified by (5a-d) (with G1 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. Let us make some observations about Λ.

(1) The total number of stars contained in Λ, denoted by h(Λ), is at most 2.
Otherwise, symmetry allows us to assume that δ(vi) ∈ Λ for i = 1, 2, 3. Let U = {v1, v2, v3}

and let Λ′ be the collection obtained from Λ by replacing δ(U) with {E[U ], E1}. Then Λ′

dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii). So (1) holds.
(2) If E(Ui) ∈ Λ with |Ui| = 3 for i = 1, 2, then |U1 ∩ U2| = 2.
Assume on the contrary that |U1 ∩ U2| = 1. Let Λ′ = (Λ− {E[U1], E[U2]}) ∪ {E1}. Then Λ′

dominates Λ and f(Λ′) > f(Λ); this contradiction to Lemma 5.2(ii) establishes (2).
(3) Λ contains at least one odd set.
Otherwise, we may assume that Λ consists of stars only and δ(v1) ∈ Λ. From (1), we see

that ({δ(v1)},Λ − {δ(v1)}) is an equitable subpartition of Λ. This proves (3).
(4) Λ contains precisely one odd set E[U ] with |U | = 3.
Assume the contrary. If Λ contains no odd set E[U ] with |U | = 3, then E1 is the only odd set

in Λ by (3). Hence ({E1},Λ−{E1}) is an equitable subpartition of Λ by (1), a contradiction. So Λ
contains at least two odd sets E[U1] and E[U2], with |Ui| = 3 for i = 1, 2. By symmetry and (2),
we may assume that U1 ∩U2 = {v1, v2}. Let Λ

′ be obtained from Λ by replacing {E[U1], E[U2]}
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with {δ(v1), δ(v2)}. Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii). So
(4) is justified.

In view of (4), we reserve E[U ] for the only odd set in Λ with |U | = 3 hereafter.
(5) v ∈ U if δ(v) ∈ Λ.
Otherwise, v 6∈ U . Let Λ′ = (Λ − {E[U ], δ(v)}) ∪ {E1}. Then Λ′ dominates Λ and f(Λ′) >

f(Λ), contradicting Lemma 5.2(ii). So (5) holds.
(6) E1 ∈ Λ.
Otherwise, ({E[U ]},Λ − {E[U ]}) would be an equitable subpartition of Λ by (1) and (5);

this contradiction implies (6).
Combining (4) and (6), we see that Λ contains precisely two odd sets E[U ] and E1. If

h(Λ) ≤ 1, then ({E1},Λ − {E1}) is an equitable subpartition of Λ, a contradiction. Hence, by
(1), we have h(Λ) = 2. By symmetry, we may assume that {δ(v1), δ(v2)} ⊆ Λ. By (5), we
further obtain {v1, v2} ⊆ U . Let Λ1 = {E[U ], E1} and Λ2 = {δ(v1), δ(v2)}. Clearly, (Λ1,Λ2) is
an equitable subpartition of Λ, contradicting (5a). Therefore G1 is ESP.

Lemma 5.9. The graph G2 = (V2, E2) (see Figure 11) is ESP.

Figure 11: The primitive graph G2

Proof. Suppose on the contrary that G2 is not ESP. Let Λ be a collection of stars and odd
sets in G2 as specified by (5a-d) (with G2 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. By Lemma 3.1, Lemma 3.8 and Lemma 5.8, G2 is not a subgraph of G1. So

(1) P1 ∪ P2 contains at least two vertices outside X = {v1, v2, v3, v4}.
Repeated application of Lemma 5.2(iii) yields

(2) for i = 1 and 2, if δ(v) ∈ Λ for some v ∈ V (Pi)\X, then δ(Pi) ⊆ Λ.
Let U1 = {v4} ∪ V (P1), U2 = {v3} ∪ V (P1), U3 = {v1} ∪ V (P2), and U4 = {v2} ∪ V (P2),

and let Si = E[Ui] for 1 ≤ i ≤ 4. Since both P1 and P2 are odd, each Si is an odd set in G2.
Furthermore, G2 contains no other odd sets. Using Lemma 5.4(i), we obtain

(3) Λ contains at most one odd set.
(4) Λ contains no odd set.
Otherwise, by (3) and symmetry, we may assume that S1 ∈ Λ. Let (U1, U2) be the bipartition

of P2 with v3 ∈ U1. Set Λ1 = {S1} ∪ {δ(v) ∈ Λ : v ∈ U1} and Λ2 = Λ − Λ1. Using (2) it is
routine to check that (Λ1,Λ2) is an equitable subpartition of Λ; this contradiction justifies (4).

In view of (4), each member of Λ is a star. If |Pi| > 1 for i = 1, 2 and δ(v) 6∈ Λ for all
v ∈ V2\X, then Λ = δ(X) by Lemma 5.2(iii). Let Λ1 = {δ(v1), δ(v2)} and Λ2 = {δ(v3), δ(v4)}.
Then (Λ1,Λ2) is an equitable subpartition of Λ, a contradiction. So
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(5) for i = 1 or 2, either |Pi| = 1 or δ(v) ∈ Λ for some v ∈ V (Pi)\X and hence δ(Pi) ⊆ Λ by
(2).

(6) For i = 1 or 2, there holds δ(Pi) ⊆ Λ.
Assume the contrary. By (5) and (1), we may assume that |P1| = 1 and |P2| ≥ 2. Further-

more, δ(v) 6∈ Λ for all v ∈ V (P2)\X. Since δ(vi) ∈ Λ for some 1 ≤ i ≤ 4, repeated application
of Lemma 5.2(iii) yields δ(vj) ∈ Λ for j = 1, 2. Thus δ(P1) ⊆ Λ and hence (6) is justified.

By (6) and symmetry, we may assume that δ(P1) ⊆ Λ. It follows from Lemma 5.2(iii) that
at least one of δ(v3) and δ(v4), say the former, belongs to Λ. Let (U1, U2) be the bipartition of
P2 with v3 ∈ U1. Set Λ1 = {S1} ∪ {δ(v) ∈ Λ : v ∈ U1} and Λ2 = {S2} ∪ {δ(v) ∈ Λ : v ∈ U2}. It
is easy to see that (Λ1,Λ2) is an equitable subpartition of Λ, a contradiction. Therefore G2 is
ESP.

Lemma 5.10. The graph G3 = (V3, E3) (see Figure 12) is ESP.

Figure 12: The primitive graph G3

Proof. Suppose on the contrary that G3 is not ESP. Let Λ be a collection of stars and odd
sets in G3 as specified by (5a-d) (with G3 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. Let U1 = {v5} ∪ V (P4) and U2 = {v6} ∪ V (P2). Then Si = E[Ui] is an odd set in
G3 for i = 1, 2. Throughout the proof, we reserve

• O for the family consisting of all odd sets in Λ;
• X for {v1, v2, v3, v4};
• (A1, A2) (resp. (A3, A4)) for the bipartition of P1 (resp. P3) with v2 ∈ A1 (resp. v3 ∈ A3);
• (B1, B2) (resp. (B3, B4)) for the bipartition of P2 (resp. P4) with v2 ∈ B1 (resp. v1 ∈ B3).
We break the proof into a series of simple observations. Repeated application of Lemma

5.2(iii) yields
(1) for 1 ≤ i ≤ 4, if no odd set in Λ contains Pi and δ(v) ∈ Λ for some v ∈ V (Pi)\X, then

δ(Pi) ⊆ Λ.
(2) If δ(P2) ⊆ Λ, then δ(v6) 6∈ Λ. Also, if δ(P4) ⊆ Λ, then δ(v5) 6∈ Λ.
Suppose the contrary: δ(P2)∪{δ(v6)} ⊆ Λ. Let Λ′ be obtained from Λ by replacing δ(B2\v3)∪

{δ(v6)} with S1. Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii). By
symmetry, the second half also holds. So (2) is justified.

(3) O 6= ∅.
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Assume the contrary: O = ∅. Let Y = {v ∈ V3 : δ(v) ∈ Λ} and let H be the subgraph of G3

induced by Y . By (1) and (2), the maximum degree of H is at most two. Furthermore, H is an
odd cycle, for otherwise H would be a bipartite graph. Let (Y1, Y2) be a bipartition of H and
let Λi = δ(Yi) for i = 1, 2. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Observe that at least one of v5 and v6 is outside H, for otherwise, let Λ′ be obtained from Λ
by replacing {δ(v5), δ(v6)}∪δ(A2)∪δ(A4\v4) with E(H) (an odd set by (2)). Then Λ′ dominates
Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii). If neither v5 nor v6 is contained in H, set
Λ1 = E3 (the odd set induced by V3) and Λ2 = E(H); if exactly one of v5 and v6, say the latter,
is contained in H, set Λ1 = δ(A1 ∪A3)∪ {S1} and Λ2 = E(H). It is easy to see that (Λ1,Λ2) is
an equitable subpartition of Λ in either case, contradicting (5a). So (3) is established.

Depending on the parity of P1, we consider two cases.
Case 1. P1 is of odd length.
Let U3 = {v5}∪ V (P1 ∪P2 ∪P3), U4 = {v6} ∪ V (P1 ∪P3 ∪P4), U5 = V3\v6, and U6 = V3\v5.

Then Si = E[Ui] is an odd set in G3 for 3 ≤ i ≤ 6. Let us make some observations about O.
(4) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (3). Let O = {Si}. Symmetry allows us to distinguish

among the following subcases.
• i = 1. In this subcase, if δ(v6) ∈ Λ, then δ(v) 6∈ Λ for all v ∈ V (P2)\X by (1) and (2).

Repeated applications of Lemma 5.2(iii) also yields δ(P1)∪δ(P3) ⊆ Λ. Set Λ1 = {S1}∪δ(A1∪A3),
and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). So we
assume that δ(v6) 6∈ Λ. Observe that δ(v) ∈ Λ for some v on P1∪P2∪P3\{v1, v4}, for otherwise
(S1,Λ−{S1}) would be an equitable subpartition of Λ, contradicting (5a). From Lemma 5.2(iii),
we further deduce that δ(v) ∈ Λ for all v on P1 ∪P2 ∪P3. Since {S1, δ(v1)} ⊆ Λ, by Lemma 5.3,
we have δ(v5) /∈ Λ. Let Λ1 = {S5} and Λ2 = {S2} ∪ δ(A2 ∪A4) ∪ (δ(P4) ∩ Λ). Then (Λ1,Λ2) is
an equitable subpartition of Λ, contradicting (5a).

• i = 3 or 5. In this subcase, observe that if i = 3 (that is, O = {S3}), then δ(v) 6∈ Λ for
some and hence for all v ∈ V (P4)\X by Lemma 5.4(ii) and by (1). Let Λ1 = {Si, δ(v6)}∩Λ and
Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ; this contradiction to (5a) proves
(4).

(5) If {Si, Sj} ⊆ O with 1 ≤ i < j ≤ 6, then {i, j} is one of the following five pairs:

{1, 2}, {1, 5}, {2, 6}, {3, 5}, {4, 6}.

To justify this, note that
• {i, j} /∈ {{1, 4}, {2, 3}, {5, 6}} by Lemma 5.4(i).
• {i, j} 6= {3, 4}. Otherwise, let Λ′ be obtained from Λ by replacing {S3, S4} with δ(B1 ∪

B3\X) ∪ δ(P1) ∪ δ(P3). Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).
• {i, j} /∈ {{1, 3}, {2, 4}}. Otherwise, by symmetry we may assume that {i, j} = {1, 3}. Let

Λ′ = (Λ−{S1, S3})∪{S5, δ(v5)}. Then Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting Lemma
5.2(ii).

• {i, j} /∈ {{3, 6}, {4, 5}}. Otherwise, by symmetry we may assume that {i, j} = {3, 6}. Let
Λ′ be obtained from Λ by replacing {S3, S6} with δ(B4\v4)∪δ(P1∪P2∪P3). Then Λ′ dominates
Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

• {i, j} /∈ {{1, 6}, {2, 5}}. Otherwise, by symmetry we may assume that {i, j} = {1, 6}.
Let Λ′ be obtained from Λ by replacing {S1, S6} with {S2} ∪ δ(P4\X) ∪ δ(A2 ∪ A4). Then Λ′

dominates Λ and g(Λ′) < g(Λ), contradicting Lemma 5.2(ii).
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Combining the above observations, we see that (5) holds.
(6) O is {S1, S2}, {S1, S5}, {S2, S6}, {S3, S5}, or {S4, S6}.
To justify this, let H be the graph with vertex set {S1, S2, . . . , S6} and with five edges {Si, Sj}

as described in (5). Since H contains no triangle, |O| < 3 and hence |O| = 2 by (4). Thus the
statement follows instantly.

(7) If O = {Si, S5} for i = 1 or 3, then δ(v5) 6∈ Λ. Otherwise, let Λ′ be obtained from Λ
by replacing {S5, δ(v5)} with {S1, S3}. Then Λ′ dominates Λ and mΛ′(Si) ≥ 2, contradicting
Lemma 5.2(i).

By (6) and symmetry, we only need to consider the following three subcases.
• O = {S1, S2}. In this subcase, let Λ1 = {S1}∪ ((δ(A1 ∪A3)∪ δ(P2))∩Λ) and Λ2 = Λ−Λ1.

Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).
• O = {S1, S5}. In this subcase, δ(v5) 6∈ Λ by (7). Notice that if δ(v) ∈ Λ for some

v ∈ V (P4)\X, then δ(P4) ⊆ Λ by Lemma 5.3. Set Λ1 = {S1, S5, δ(v6)} ∩ Λ and Λ2 = Λ − Λ1

if δ(P4) ⊆ Λ, and set Λ1 = {S5, δ(v6)} ∩ Λ and Λ2 = Λ − Λ1 otherwise. Then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).

• O = {S3, S5}. In this subcase, δ(v5) 6∈ Λ by (7). Moreover, δ(v6) 6∈ Λ, for otherwise,
let Λ′ be obtained from Λ by replacing {S5, δ(v6)} with {S6, δ(v5)}. Then Λ′ satisfies (5a-d)
and contains {S3, S6}, contradicting (5). Notice that if δ(v) ∈ Λ for some v ∈ V (Pi)\X, then
δ(Pi) ⊆ Λ for i = 1, 2, 3 by Lemma 5.3. Let Λ1 = {S3, S5} and Λ2 = Λ−Λ1 if δ(P1∪P2∪P3) ⊆ Λ,
let Λ1 = {S5} ∪ (δ(Ai ∪ B2) ∩ Λ) and Λ2 = Λ − Λ1 if δ(v) ∈ Λ for all v ∈ V (Pj)\X, where
{i, j} = {1, 3}, and let Λ1 = {S5} ∪ (δ(A1 ∪ A3) ∩ Λ) and Λ2 = Λ − Λ1 if δ(v) ∈ Λ for all
v ∈ V (P2)\X. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Combining the above three subcases, we conclude that G3 is ESP if Case 1 occurs.
Case 2. P1 is of even length.
Let U7 = V3\{v5, v6}, U8 = {v5, v6} ∪ V (P1 ∪P3), U9 = V3, let Si = E[Ui] for i = 7, 8, 9, and

let S10 = E3\E(P2), S11 = E3\E(P4). Then Si is an odd set in G3 for 7 ≤ i ≤ 11. Let us make
some observations about O.

(8) If S1 ∈ O, then δ(v) 6∈ Λ for some v ∈ {v6} ∪ V (P1 ∪ P3). Otherwise, let Λ′ be
obtained from Λ by replacing {S1} ∪ {δ(v6)} ∪ δ(A2 ∪ A3\v3) with S10. Then Λ′ dominates Λ
and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

(9) If {S1, S9} or {S8, S10} or {S9, S11} ⊆ O, then δ(v5) 6∈ Λ. Moreover, if {S2, S9} or
{S8, S11} or {S9, S10} ⊆ O, then δ(v6) 6∈ Λ.

Suppose {S1, S9} ⊆ O while δ(v5) ∈ Λ. Let Λ′ = (Λ − {S9, δ(v5)}) ∪ {S1, S11}. Then
Λ′ dominates Λ and mΛ′(S1) ≥ 2, contradicting Lemma 5.2(i). Similarly, we can prove the
statement for the other cases.

(10) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (3). Let O = {Si}. Symmetry allows us to distinguish

among the following subcases.
• i = 1. In this subcase, at least one of δ(v2) and δ(v3) belongs to Λ, for otherwise δ(v) /∈ Λ

for any v ∈ V (P1∪P2∪P3)\X by (1). Thus ({S1},Λ−{S1}) would be an equitable subpartition
of Λ, contradicting (5a). Moreover, δ(v6) ∈ Λ, for otherwise δ(v) ∈ Λ for all v ∈ V (P1 ∪P2 ∪P3)
by Lemma 5.2(iii). Let Λ′ be obtained from Λ by replacing {S1}∪δ(A2∪B2∪A3) with S9. Then
Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii). So δ(v) 6∈ Λ for all v ∈ V (P2)\X
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(which is nonempty) by (1) and (2), which implies from (1) that δ(P1)∪δ(P3) ⊆ Λ, contradicting
(8).

• 7 ≤ i ≤ 11. In this subcase, observe that δ(v) /∈ Λ for each v on P2 ∪ P4 not covered by
Si, if any, using Lemma 5.4(ii). Let Λ1 = {S7} ∪ ({δ(v5), δ(v6)} ∩ Λ) and Λ2 = Λ− Λ1 if i = 7,
and let Λ1 = {Si} and Λ2 = Λ− Λ1 otherwise. Then (Λ1,Λ2) is an equitable subpartition of Λ,
contradicting (5a). This proves (10).

(11) If {Si, Sj} ⊆ O with i 6= j, then 7 /∈ {i, j} and {i, j} /∈ {{1, 8}, {2, 8}, {1, 11}, {2, 10}}.
To justify this, note that
• {i, j} /∈ {{1, 7}, {2, 7}} by Lemma 5.4(i).
• {i, j} 6= {7, j} for 8 ≤ j ≤ 11. Otherwise, if {i, j} = {7, 8}, letting Λ′ be obtained from Λ

by replacing {S7, S8} with δ(P1)∪δ(P3)∪δ(B1∪B3\X), then Λ′ dominates Λ and f(Λ′) > f(Λ),
contradicting Lemma 5.2(ii). Similarly, we can prove that {i, j} 6= {7, j} for 9 ≤ j ≤ 11.

• {i, j} /∈ {{1, 8}, {2, 8}, {1, 11}, {2, 10}}. Otherwise, if {i, j} = {1, 8}, letting Λ′ be ob-
tained from Λ by replacing {S1, S8} with {S10, δ(v5)}, then Λ′ dominates Λ and g(Λ′) < g(Λ),
contradicting Lemma 5.2(ii). Similarly, we can prove that {i, j} /∈ {{2, 8}, {1, 11}, {2, 10}}.

Combining the above observations, we see that (11) holds.
(12) If {Si, Sj , Sk} ⊆ O with i, j, k distinct, then {i, j, k} 6⊆ {8, 9, 10, 11}.
Suppose the contrary. Consider the case when {i, j, k} = {8, 9, 10}. Let Λ′ = (Λ−{S8, S9})−

{S10, S11}. Then Λ′ dominates Λ and mΛ′(S10) ≥ 2, contradicting Lemma 5.2(i). Similarly, we
can prove the statement for other cases.

(13) |O| ≥ 3.
Assume the contrary. Then |O| = 2 by (10). Let O = {Si, Sj}. In view of (11), we distinguish

among the following subcases.
• {i, j} = {1, 2}. In this subcase, δ(Pt) ⊆ Λ for t = 1, 3 if δ(v) ∈ Λ for some v ∈ V (Pt)\X

by (1). Observe that δ(v) /∈ Λ for some v ∈ V (P1 ∪ P3)\X, for otherwise, let Λ′ be obtained
from Λ by replacing {S1, S2} ∪ δ(A2 ∪A4\v4) with S9. Then Λ′ dominates Λ and f(Λ′) > f(Λ),
contradicting Lemma 5.2(ii). Let Λ1 = {S1, S2} ∪ (δ(A2) ∩ Λ) and Λ2 = Λ− Λ1 if δ(v) 6∈ Λ for
all v ∈ V (P3)\X, and let Λ1 = {S1} ∪ ((δ(P2) ∪ δ(A3)) ∩Λ) and Λ2 = Λ− Λ1 if δ(v) 6∈ Λ for all
v ∈ V (P1)\X. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{1, 9}, {2, 9}}. By symmetry, we may assume that {i, j} = {1, 9}. In this subcase,
δ(v5) 6∈ Λ by (9). Observe that δ(P4) ⊆ Λ if δ(v) ∈ Λ for some v ∈ V (P4)\X by Lemma 5.3. Let
Λ1 = O if δ(P4) ⊆ Λ and Λ1 = S9 otherwise, and let Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{1, 10}, {2, 11}}. By symmetry, we may assume that {i, j} = {1, 10}. In this
subcase, we can similarly obtain an equitable subpartition of Λ as in the preceding subgraph.

• {i, j} ∈ {{8, 9}, {10, 11}}. By symmetry, we may assume that {i, j} = {8, 9}. In this
subcase, set Λ′ = (Λ−{S8, S9})∪{S10, S11}. Clearly, Λ

′ satisfies (5a-d). Observe that δ(Pi) ⊆ Λ
if δ(v) ∈ Λ for some v ∈ V (Pi)\X for i = 1, 3 by Lemma 5.3. Let Λ1 = O and Λ2 = Λ − Λ1 if
δ(P1) ∪ δ(P3) ⊆ Λ, let Λ1 = ({δ(v5), S10} ∪ δ(P2) ∪ δ(A3)) ∩Λ′ and Λ2 = Λ′ − Λ1 if δ(v) 6∈ Λ for
all v ∈ V (P1)\X, and let Λ1 = ({δ(v5), δ(v6), S9} ∪ δ(A2)) ∩ Λ and Λ2 = Λ− Λ1 if δ(v) 6∈ Λ for
all v ∈ V (P3)\X. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{8, 10}, {8, 11}}. By symmetry, we may assume that {i, j} = {8, 10}. In this
subcase, δ(v5) 6∈ Λ by (9) and δ(v) 6∈ Λ for all v ∈ V (P2)\X by Lemma 5.4(ii) and (1). Observe
that δ(Pt) ⊆ Λ for t = 1, 3 if δ(v) ∈ Λ for some v ∈ V (Pt)\X by Lemma 5.3. If δ(v6) 6∈ Λ, letting
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Λ1 = {S10} ∪ (δ(A2 ∪ A3) ∩ Λ) and Λ2 = Λ − Λ1, then (Λ1,Λ2) is an equitable subpartition
of Λ, this contradiction to (5a) implies that δ(v6) ∈ Λ. Let Λ1 = O and Λ2 = Λ − Λ1 if
δ(P1) ∪ δ(P3) ⊆ Λ, let Λ1 = ({δ(v2), S10} ∪ δ(A3)) ∩ Λ and Λ2 = Λ − Λ1 if δ(v) 6∈ Λ for all
v ∈ V (P1)\X, and let Λ1 = ({δ(v6), S10} ∪ δ(A2)) ∩ Λ and Λ2 = Λ − Λ1 if δ(v) 6∈ Λ for all
v ∈ V (P3)\X. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{9, 10}, {9, 11}}. By symmetry, we may assume that {i, j} = {9, 10}. In this
subcase, δ(v6) 6∈ Λ by (9). Observe that δ(v5) ∈ Λ, for otherwise, let Λ1 = {S9} ∪ (δ(A2 ∪A4 ∪
B4)∩Λ) and Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, a contradiction. Let
Λ1 = O and Λ2 = Λ−Λ1 if δ(P1)∪δ(P3) ⊆ Λ, let Λ1 = ({δ(v1), S9}∪δ(A4))∩Λ and Λ2 = Λ−Λ1

if δ(v) 6∈ Λ for all v ∈ V (P1)\X, and let Λ1 = ({δ(v5), S9} ∪ δ(A2)) ∩ Λ and Λ2 = Λ − Λ1 if
δ(v) 6∈ Λ for all v ∈ V (P3)\X. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

Combining the above observations, we see that (13) holds.
Recall that {S8, S9, S10, S11} 6⊆ O (see (12)). We may further assume that
(14) {S10, S11} 6⊆ O. Otherwise, let Λ′ be obtained from Λ by replacing {S10, S11} with

{S8, S9}. Then Λ′ dominates Λ. Since every equitable subpartition of Λ′ is one for Λ, we may
consider Λ′ instead of Λ.

(15) O is {S1, S2, S9}, {S1, S9, S10}, or {S2, S9, S11}.
To justify this, let H be the graph with vertex set {S1, S2, S7, S8, . . . , S11} and with all edges

{Si, Sj} as described in (11) and (15). Note that H contains precisely ten edges, in which v7 is
an isolated vertex. Since H contains no K4, we have |O| < 4 and hence |O| = 3 by (13). The
triangles in H are {S1, S2, S9}, {S1, S9, S10}, {S2, S9, S11}, {S8, S9, S10}, and {S8, S9, S11}. In
view of (12), we obtain (15).

By (15) and symmetry, we only need to consider the following two subcases.
• O = {S1, S2, S9}. In this subcase, {δ(v5), δ(v6)} ∩ Λ = ∅ by (9). Observe that δ(Pi) ⊆ Λ

for i = 2, 4 if δ(v) ∈ Λ for some v ∈ V (Pi)\X by Lemma 5.3. Let Λ1 = O and Λ2 = Λ − Λ1 if
δ(P2) ∪ δ(P4) ⊆ Λ, let Λ1 = {S9} and Λ2 = Λ − Λ1 if δ(v) 6∈ Λ for all v ∈ V (P2 ∪ P4)\X, and
let Λ1 = {Si, S9} and Λ2 = Λ − Λ1 if δ(v) 6∈ Λ for some v ∈ V (P2i)\X and δ(Pj) ⊆ Λ, where
{i, j} ∈ {{1, 4}, {2, 2}}. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• O = {S1, S9, S10}. In this subcase, {δ(v5), δ(v6)} ∩ Λ = ∅ by (9). Observe that δ(Pi) ⊆ Λ
for i = 1, 3 if δ(v) ∈ Λ for some v ∈ V (Pi)\X by Lemma 5.3. Let Λ1 = {S9, S10} and Λ2 = Λ−Λ1

if δ(P1) ∪ δ(P3) ⊆ Λ, let Λ1 = {S1, S10} ∪ (δ(P2) ∪ δ(A3)) ∩ Λ and Λ2 = Λ − Λ1 if δ(v) 6∈ Λ for
all v ∈ V (P1)\X, and let Λ1 = {S1, S9} ∪ (δ(A2) ∩ Λ) and Λ2 = Λ − Λ1 if δ(v) 6∈ Λ for some
v ∈ V (P3)\X. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Combining the above two subcases, we conclude that G3 is also ESP if Case 2 occurs. This
completes the proof of the present lemma.

Lemma 5.11. The graph G4 = (V4, E4) (see Figure 13) is ESP.
Proof. Suppose on the contrary that G4 is not ESP. Let Λ be a collection of stars and odd

sets in G4 as specifies by (5a-d) (with G4 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. Let U1 = {v1, v2, v8}, U2 = {v1, v2, v3}, U3 = {v5, v6, v7}, and U4 = {v4, v5, v6}.
Then Si = E[Ui] is an odd set in G4 for i = 1, 2, 3, 4. Throughout this proof, we reserve

• O for the family consisting of all odd sets in Λ;
• X for {v1, v2, v5, v6};
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Figure 13: The primitive graph G4

• Y for {v3, v4, v7, v8}; and
• (A1, A2) (resp. (B1, B2)) for the bipartition of P1 (resp. P2) with v8 ∈ A1 (resp. v3 ∈ B1).
Repeated application of Lemma 5.2(iii) yields
(1) for i = 1, 2, if no odd set in Λ contains Pi and δ(v) ∈ Λ for some v ∈ V (Pi)\Y , then

δ(Pi) ⊆ Λ.
(2) |δ(X) ∩ Λ| ≥ 2 if O = ∅ (by Lemma 5.2(iii) and (1)).
(3) {Si, δ(v1), δ(v2)} 6⊆ Λ and {Sj, δ(v5), δ(v6)} 6⊆ Λ, for i = 1, 2 and j = 3, 4.
Suppose the contrary: {δ(v1), δ(v2), S1} ⊆ Λ. Let Λ′ = (Λ−{δ(v1), δ(v2)})∪ {S1, S2}. Then

Λ′ dominates Λ and mΛ′(S1) ≥ 2, contradicting Lemma 5.2(i). The statement for other cases
can be justified similarly. So (3) is established.

Depending on the parities of P1 and P2, we consider two cases.
Case 1. P1 and P2 have the same parity.
Let U5 = V4\v6, U6 = V4\v5, U7 = V4\v1 and U8 = V4\v2. Then Si = E[Ui] is an odd set in

G4 for i = 5, 6, 7, 8. Let us make some observations about O.
(4) If O = ∅, then δ(v) 6∈ Λ for some v ∈ V (P1 ∪ P2).
Otherwise, δ(P1) ∪ δ(P2) ⊆ Λ. If {δ(v1), δ(v2)} or {δ(v5), δ(v6)} ⊆ Λ, say the former, letting

Λ1 = {S5}∪({δ(v6)}∩Λ) and Λ2 = {S6}∪({δ(v5}∩Λ), then (Λ1,Λ2) is an equitable subpartition
of Λ, contradicting (5a). Thus, by (2) and symmetry, we may assume that {δ(v1), δ(v6)} ⊆ Λ
and {δ(v2), δ(v5)}∩Λ = ∅. Let C be the even cycle induced by V4\{v2, v5} in G4, let (R1, R2) be
the bipartition of C, and let Λi = δ(Ri) for i = 1, 2. Then (Λ1,Λ2) is an equitable subpartition
of Λ; this contradiction to (5a) justifies (4).

(5) O 6= ∅.
Assume the contrary: O = ∅. Then δ(X) 6⊆ Λ, for otherwise, let Λ1 = {S1, S4} ∪ (δ(A2 ∪

B1) ∩ Λ) if both P1 and P2 are odd and Λ1 = {S1, S3} ∪ (δ(A2 ∪ B1) ∩ Λ) otherwise, and let
Λ2 = (Λ−δ(X))∪(∪4

i=1{Si})−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

By symmetry, we may assume that δ(v6) 6∈ Λ. If δ(v5) 6∈ Λ, then {δ(v1), δ(v2)} ⊆ Λ by
(2) and {δ(v4), δ(v7)} ∩ Λ = ∅ by Lemma 5.2(iii). Hence Λ ⊆ {δ(v1), δ(v2), δ(v3), δ(v8)} by (1).
Let Λ1 = {S1} ∪ ({δ(v3)} ∩ Λ) and Λ2 = {S2} ∪ ({δ(v8)} ∩ Λ). Then (Λ1,Λ2) is an equitable
subpartition of Λ, this contradiction to (5a) implies that δ(v5) ∈ Λ. It follows from Lemma 5.2
(iii) and (1) that δ(P1) ∪ δ(P2) ⊆ Λ, contradicting (4). So (5) holds.

(6) |O| ≥ 2.
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Assume the contrary. Then |O| = 1 by (5). Let O = {Si}. Symmetry allows us to distinguish
among the following subcases:

• i = 3. In this subcase, by (3) and symmetry, we may assume that δ(v6) /∈ Λ. Observe that
{δ(v1), δ(v2)} 6⊆ Λ, for otherwise, let Λ1 = {S1} ∪ (({δ(v5)} ∪ δ(A2 ∪ B1)) ∩ Λ) if both P1 and
P2 are odd and Λ1 = {S1, S3} ∪ (δ(A2 ∪B1) ∩Λ) otherwise, and let Λ2 = (Λ− {δ(v1), δ(v2)}) ∪
{S1, S2} − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

If {δ(v1), δ(v2)}∩Λ = ∅, then ({S3},Λ−{S3}) would be an equitable subpartition by Lemma
5.2(iii) and (1). Thus symmetry allows us to assume that δ(v1) ∈ Λ and δ(v2) 6∈ Λ. It follows
from Lemma 5.2(iii) that δ(P1) ∪ δ(P2) ⊆ Λ. Moreover, at least one of δ(v5) and δ(v6) is in Λ.
By (3), we assume that δ(v6) ∈ Λ and δ(v5) /∈ Λ. Consequently, ({S3, S6}, {S8}) is an equitable
subpartition of Λ, contradicting (5a).

• i = 5. In this subcase, let Λ1 = {S5, δ(v6)} ∩ Λ and Λ2 = Λ − Λ2. Then (Λ1,Λ2) is an
equitable subpartition of Λ; this contradiction to (5a) proves (6).

Using Lemma 5.4(i), it is routine to obtain the following statement.
(7) If {Si, Sj} ⊆ O with 1 ≤ i < j ≤ 8, then {i, j} is one of the following pairs:

{1, 3}, {1, 4}, {2, 3}, {2, 4}, {s, t}

with s ∈ {1, 2, 3, 4} and t ∈ {5, 6, 7, 8}.
(8) |O| ≥ 3.
Assume the contrary. Then |O| = 2 by (6). Let O = {Si, Sj}. In view of (7), we distinguish

among the following subcases:
• {i, j} ∈ {{1, 3}, {2, 4}}. By symmetry, we may assume that {i, j} = {1, 3}. By (3), we

have δ(vi) /∈ Λ nor δ(vj) /∈ Λ for i = 1 or 2 and j = 5 or 6. Symmetry allows us to further
assume that {δ(v2), δ(v6)} ∩ Λ = ∅. Let Λ1 = {S3} ∪ (({δ(v1)} ∪ δ(A1 ∪ B2)) ∩ Λ) if both P1

and P2 are odd and Λ1 = {S1, S3} ∪ (δ(A2 ∪ B1) ∩ Λ) otherwise, and let Λ2 = Λ − Λ1. Then
(Λ1,Λ− Λ1) is an equitable subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{1, 4}, {2, 3}}. By symmetry, we may assume that {i, j} = {1, 4}. By (3), we
have δ(vi) /∈ Λ nor δ(vj) /∈ Λ for i = 1 or 2 and j = 5 or 6. Symmetry allows us to further
assume that {δ(v2), δ(v6)} ∩Λ = ∅. Let Λ1 = {S1, S4} ∪ (δ(A2 ∪B1) ∩ Λ) if both P1 and P2 are
of odd path and Λ1 = {S1} ∪ (δ(A2 ∪B1)) ∩ Λ) otherwise, and let Λ2 = Λ− Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{1, 5}, {1, 6}, {2, 5}, {2, 6}, {3, 7}, {3, 8}, {4, 7}, {4, 8}}. By symmetry, we may
assume that {i, j} = {1, 5}. By (3), we may further assume that δ(v2) 6∈ Λ. Let Λ1 =
{S1, S5, δ(v6)}∩Λ if {δ(v1), δ(v8)} ⊆ Λ and Λ1 = {S5, δ(v6)}∩Λ otherwise, and let Λ2 = Λ−Λ1.
Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{1, 7}, {1, 8}, {2, 7}, {2, 8}, {3, 5}, {3, 6}, {4, 5}, {4, 6}}. By symmetry, we may
assume that {i, j} = {1, 7}. By (3), we have δ(vt) 6∈ Λ for t = 1 or 2. Let Λ1 = O if δ(v2) ∈ Λ
and Λ1 = {S7, δ(v1)} ∩ Λ otherwise, and let Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

Combining above observations, we see that (8) holds.
(9) O is {Si, Sj, Sk} for some i ∈ {1, 2}, j ∈ {3, 4}, and k ∈ {5, 6, 7, 8}.
To justify this, let H be the graph with vertex set {S1, S2, . . . , S8} and with all edges {Si, Sj}

as described in (7). Since H contains no K4, we have |O| < 4 and hence |O| = 3 by (8). The
triangles in H are all displayed in (9), so the statement follows.
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By (9) and symmetry, we may assume that O = {S1, S3, S5}. By (3), we may further
assume that δ(v2) /∈ Λ. Let Λ1 = O if {δ(v1), δ(v5), δ(v8)} ⊆ Λ, let Λ1 = {S1, S5, δ(v6)} ∩ Λ
if {δ(v1), δ(v8)} ⊆ Λ and δ(v5) /∈ Λ, let Λ1 = {S3, S5} if {δ(v1), δ(v8)} 6⊆ Λ and δ(v5) ∈ Λ, let
Λ1 = {S5, δ(v6)}∩Λ otherwise, and let Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition
of Λ, contradicting (5a). Therefore G4 is ESP if Case 1 occurs.

Case 2. P1 and P2 have different parities.
By symmetry, we may assume that P1 is of odd length and P2 is of even length. Let

U9 = V4\{v1, v5}, U10 = V4\{v2, v6}, U11 = V4\{v1, v6}, U12 = V4\{v2, v5}, and U13 = V4. Then
Si = E[Ui] is an odd set in G4 for 9 ≤ i ≤ 13.

(10) If Si ∈ Λ for i = 1 or 3, then δ(v) 6∈ Λ for some v ∈ V (P1∪P2). Otherwise, δ(P1)∪δ(P2) ⊆
L. By symmetry, we may assume that S1 ∈ Λ. Let Λ′ = (Λ − ({S1} ∪ δ(A2 ∪ B1))) ∪ {S13}.
Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(i)

(11) If {δ(v1), δ(v2)} ⊆ Λ, then δ(v) 6∈ Λ for some v ∈ V (P1 ∪ P2). Otherwise, let Λ∗ =
(Λ−{δ(v1), δ(v2)})∪{S1, S2}. Then Λ∗ dominates Λ. By using the same proof employed in the
preceding paragraph (with Λ∗ in place of Λ), we reach a contradiction to Lemma 5.2(i).

(12) O 6= ∅.
Assume the contrary: O = ∅. Observe that δ(X) 6⊆ Λ, for otherwise, δ(v) 6∈ Λ for some

v ∈ V (P1 ∪ P2) by (11). So δ(v) 6∈ Λ for all v ∈ V (P1)\Y or for all v ∈ V (P2)\Y by (1).
Let Λ1 = {S2, S4} ∪ (({δ(v7), δ(v8)} ∪ δ(B2)) ∩ Λ) if δ(v) 6∈ Λ for all v ∈ V (P1)\Y and Λ1 =
{S2, S3}∪ (({δ(v4)}∪ δ(A1))∩Λ) otherwise, and let Λ2 = ((Λ− δ(X))∪ (∪4

i=1{Si}))−Λ1. Then
(Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

By symmetry, we may assume that δ(v6) 6∈ Λ. Then δ(v5) 6∈ Λ, for otherwise, δ(P1) ∪
δ(P2) ⊆ Λ by Lemma 5.2(iii), contradicting (11). Let Λ1 = {S1} ∪ ({δ(v3)} ∩ Λ) and Λ2 =
{S2} ∪ ({δ(v8)} ∩ Λ). Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). So
(12) is justified.

(13) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (12). Let O = {Si}. Symmetry allows us to

distinguish among following subcases:
• i = 3. In this subcase, δ(v5) or δ(v6) /∈ Λ by (3), say the latter. Moreover, δ(Pt) ⊆ Λ

for t = 1, 2 if δ(v) ∈ Λ for some v ∈ V (Pt)\Y by (1). Observe that {δ(v1), δ(v2)} ∩ Λ 6= ∅,
for otherwise, (S3,Λ − {S3}) would be an equitable subpartition of Λ by Lemma 5.2(iii),
a contradiction. By (10) and Lemma 5.2(iii), we further obtain {δ(v1), δ(v2)} ⊆ Λ. Let
Λ1 = {S2} ∪ (({δ(v5), δ(v7), δ(v8)} ∪ δ(B2)) ∩ Λ) if δ(v) 6∈ Λ for all v ∈ V (P1)\Y and Λ1 =
{S2, S3} ∪ (({δ(v4)} ∪ δ(A1)) ∩ Λ) if δ(v) 6∈ Λ for all v ∈ V (P2)\Y (see (11)), and let Λ2 =
((Λ − {δ(v1), δ(v2)}) ∪ {S1, S2}) − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contra-
dicting (5a).

• i = 4. In this subcase, {δ(v1), δ(v2)} ∩ Λ 6= ∅, for otherwise, ({S4},Λ− {S4}) would be an
equitable subpartition of Λ by Lemma 5.2(iii), a contradiction. Observe that {δ(v1), δ(v2)} ⊆ Λ,
for otherwise, we may assume that δ(v1) ∈ Λ and δ(v2) 6∈ Λ by symmetry. Thus δ(P1)∪δ(P2) ⊆ Λ
by Lemma 5.2(iii). Let Λ1 = {δ(v1), S4} ∪ δ(A2 ∪ B2) and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an
equitable subpartition of Λ, a contradiction. Let Λ1 = {S2, S4} ∪ (({δ(v7), δ(v8)} ∪ δ(B2)) ∩ Λ)
if δ(v) 6∈ Λ for all v ∈ V (P1)\Y and Λ1 = {S1, S4} ∪ (({δ(v3)} ∪ δ(A2)) ∩ Λ) if δ(v) 6∈ Λ for all
v ∈ V (P2)\Y (see (11)), and let Λ2 = (Λ− {δ(v1), δ(v2)}) ∪ {S1, S2} − Λ1. Then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).
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• i = 9. In this subcase, let Λ1 = {S9}∪ ({δ(v1), δ(v6)}∩Λ) and Λ2 = Λ−Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ, contradicting (5a).

• i = 13. In this subcase, let Λ1 = {S13} and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

Combining above observations, we see that (13) holds.
(14) If {Si, Sj} ⊆ O with i 6= j, then {i, j} is one of the following pairs:

{1, 3}, {1, 4}, {2, 3}, {2, 4}, {s, 13}

with s ∈ {1, 2, 3, 4}.
To justify this, note that
• {i, j} 6∈ {{1, 2}, {3, 4}, {9, 11}, {9, 12}, {10, 11}, {10, 12}} ∪ {{s, t} : 1 ≤ s ≤ 4, 9 ≤ t ≤ 12}

by Lemma 5.2(iii).
• {i, j} 6∈ {{s, 13} : 9 ≤ s ≤ 12}. Otherwise, by symmetry we may assume that {i, j} =

{9, 13}. Let Λ′ = (Λ−{S9, S13})∪ δ(U9). Then Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting
Lemma 5.2(ii).

• {i, j} 6∈ {{9, 10}, {11, 12}}. Otherwise, by symmetry we may assume that {i, j} = {9, 10}.
Let Λ′ = (Λ − {S9, S10}) ∪ δ(P1 ∪ P2). Then Λ′ dominates Λ and ρ(Λ′) < ρ(Λ), contradicting
(5a).

Combining above observations, we see that (14) holds.
(15) |O| ≥ 3.
Assume the contrary. Then |O| = 2 by (13). Let O = {Si, Sj}. In view of (14), we distinguish

between the following subcases.
• {i, j} ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. In this subcase, by symmetry we may assume that

{i, j} = {1, 3} and that {δ(v2), δ(v6)} ∩ Λ = ∅ (see (3)). Observe that δ(P1) ⊆ Λ, for otherwise,
let Λ1 = {S1, S3} ∪ (δ(B1) ∩ Λ) and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable subpartition
of Λ, a contradiction. Hence, by (1) and (10), we obtain δ(v) 6∈ Λ for all v ∈ V (P2)\Y . Let
Λ1 = {S1} ∪ δ(A2) ∪ ({δ(v3), δ(v5)} ∩ Λ) and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{1, 13}, {2, 13}, {3, 13}, {4, 13}}. In this subcase, by symmetry we may assume
that {i, j} = {1, 13} and that δ(v2) 6∈ Λ (see (3)). Let Λ1 = O if {δ(v1), δ(v8)} ⊂ Λ and Λ1 = S13

otherwise, and let Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

Combining above observations, we see that (15) holds.
(16) O is {S1, S3, S13}, {S1, S4, S13}, {S2, S3, S13}, or {S2, S4, S13}.
To justify this, let H be the graph with vertex set {S1, S2, S3, S4, S9, . . . S13} and with all

edges {Si, Sj} as described in (14). Since H contains no K4, we have |O| < 4 and hence |O| = 3
by (15). The triangles in H are all displayed in (16), so the statement holds.

By (16) and symmetry, we may assume that O = {S1, S3, S13}. Symmetry and (3) allow us
to further assume that {δ(v2), δ(v5)} ∩ Λ = ∅. Let Λ1 = O if {δ(v1), δ(v6), δ(v7), δ(v8)} ⊆ Λ, let
Λ1 = {S1, S13} if {δ(v1), δ(v8)} ⊆ Λ and {δ(v6), δ(v7)} 6⊆ Λ, let Λ1 = {S3, S13} if {δ(v1), δ(v8)} 6⊆
Λ and {δ(v6), δ(v7)} ⊆ Λ, let Λ1 = {S13} otherwise, and let Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a). Therefore G4 is also ESP if Case 2 occurs. This
completes the proof of the present lemma.

Lemma 5.12. The graph G5 = (V5, E5) (see Figure 14) is ESP.
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Figure 14: The primitive graph G5

Proof. Suppose on the contrary that G5 is not ESP. Let Λ be a collection of stars and odd
sets in G5 as specified by (5a-d) (with G5 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. Let U1 = {v1, v2, v7}, U2 = {v1, v2, v3}, and U3 = {v5} ∪ V (P3). Then Si = E[Ui]
is an odd set in G5 for i = 1, 2, 3. Throughout this proof, we reserve

• O for the family consisting of all odd sets in Λ;
• X for {v3, v4, v6, v7};
• (A1, A2) (resp. (A3, A4)) for the bipartition of P1 (resp. P2) with v7 ∈ A1 (resp. v3 ∈ A3);
• (B1, B2) for the bipartition of P3 with v4 ∈ B1.
Repeated application of Lemma 5.2(iii) yields
(1) for i = 1, 2, 3, if no odd set in Λ contains Pi and δ(v) ∈ Λ for some v ∈ V (Pi)\X, then

δ(Pi) ⊆ Λ.
(2) If δ(P3) ⊆ Λ, then δ(v5) 6∈ Λ. Otherwise, let Λ′ be obtained from Λ by replacing

{δ(v5)} ∪ δ(B1\v4) with S3. Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma
5.2(ii).

(3) {Si, δ(v1), δ(v2)} 6⊆ Λ for i = 1, 2. Otherwise, by symmetry we may assume that
{δ(v1), δ(v2), S1} ⊆ Λ. Let Λ′ = (Λ − {δ(v1), δ(v2)}) ∪ {S1, S2}. Then Λ′ dominates Λ and
mΛ′(S1) ≥ 2, contradicting Lemma 5.2(i). So (3) is established.

Depending on the parities of P1 and P2, we consider two cases.
Case 1. P1 and P2 have the same parity.
Let U4 = V5, U5 = {v1, v2, v5} ∪ V (P1 ∪ P2), U6 = V5\{v1, v5}, U7 = V5\{v2, v5}. Then

Si = E[Ui] is an an odd set in G5 for 4 ≤ i ≤ 7. Note that S4 = S5 if |V (P3)| = 2. So we
implicitly assume that |V (P3)| ≥ 3 if S5 occurs in our proof.

(4) If S3 ∈ Λ and {δ(v1), δ(v2)} ∩ Λ 6= ∅, then δ(v) 6∈ Λ for some v ∈ V (P1 ∪ P2).
Otherwise, δ(P1) ∪ δ(P2) ⊆ Λ. By symmetry, we may assume that δ(v1) ∈ Λ. Let Λ′ = (Λ−

({S3}∪δ(A1∪A3)))∪{S4} if both P1 and P2 are odd and Λ′ = (Λ−({δ(v1), S3}∪δ(A2∪A4)))∪{S4}
otherwise. Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

(5) If {Si} ∪ δ(P1) ∪ δ(P2) ⊆ Λ for i = 1 or 2, then δ(v) 6∈ Λ for all v ∈ {v5} ∪ V (P3)\X.
Assume the contrary: δ(v) ∈ Λ for some v ∈ {v5} ∪ V (P3)\X. By symmetry, we may

assume that S1 ∈ Λ. Observe that v 6= v5, for otherwise, if both P1 and P2 are odd, letting
Λ′ = (Λ − {δ(v5), S1} ∪ δ(A3) ∪ δ(A2\v6)) ∪ {S5}, then Λ′ dominates Λ and f(Λ′) > f(Λ),
contradicting Lemma 5.2(ii). Similarly, we can reach a contradiction if both P1 and P2 are even.
It follows from (1) that δ(P3) ⊆ Λ. If both P1 and P2 are odd, letting Λ′ by obtained from Λ by
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replacing {S1}∪ δ(A2 ∪A3 ∪B2) with S4, then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting
Lemma 5.2(ii). Similarly, we can reach a contradiction if both P1 and P2 are even. So (5) holds.

(6) O 6= ∅.
Assume the contrary: O = ∅. By (1), (2) and Lemma 5.2(iii), we have {δ(v1), δ(v2)}∩Λ 6= ∅.

Furthermore, δ(P1)∪ δ(P2) ⊆ Λ if δ(v5) ∈ Λ. Observe that {δ(v1), δ(v2)} 6⊆ Λ, for otherwise, let
Λ′ = (Λ − {δ(v1), δ(v2)}) ∪ {S1, S2}. Then Λ′ dominates Λ. If δ(v5) ∈ Λ, then {S1} ∪ δ(P1) ∪
δ(P2) ⊆ Λ′, and thus we can reach a contradiction to Lemma 5.2(ii) by using the same argument
as employed in the proof of (5). If δ(v5) 6∈ Λ, then δ(v) 6∈ Λ for all v ∈ V (P1 ∪ P2 ∪ P3)\{v3, v7}
by (1), (5) and Lemma 5.2(iii). Let Λ1 = {S1} ∪ ({δ(v3)} ∩Λ) and Λ2 = Λ′ −Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ, contradicting (5a).

By symmetry, we may assume that δ(v1) ∈ Λ and δ(v2) 6∈ Λ. Then δ(P1) ∪ δ(P2) ⊆ Λ
by (1) and Lemma 5.2(iii). Consider the subcase when δ(v5) ∈ Λ. Now δ(v) 6∈ Λ for all
v ∈ V (P3)\X by (1) and (2). Let Λ1 = {δ(v1)} ∪ δ(A2 ∪ A4) if both P1 and P2 are odd and
Λ1 = {δ(v1), δ(v5)} ∪ δ(A2 ∪ A4) otherwise. Then (Λ1,Λ − Λ1) is an equitable subpartition of
Λ, a contradiction. It remains to consider the subcase when δ(v5) 6∈ Λ. Now δ(v) ∈ Λ for all
v ∈ V5\{v2, v5} by (1) and Lemma 5.2(iii). Thus ({S4}, {S7}) is an equitable subpartition of Λ,
a contradiction. Therefore (6) is established.

(7) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (6). Let O = {Si}. Symmetry allows us to distinguish

among the following subcases.
• i = 1. In this subcase, we may assume that δ(v2) 6∈ Λ by (3) and symmetry. If δ(v3) ∈ Λ,

then δ(P2) ⊆ Λ; furthermore, δ(P3) ⊆ Λ or δ(v5) ∈ Λ by Lemma 5.2(iii). It follows that
δ(P1) ⊆ Λ, contradicting (5). So δ(v3) 6∈ Λ, which implies that δ(v) 6∈ Λ for all v ∈ V5\{v1, v2, v7}
by (1) and Lemma 5.2(iii). Thus ({S1},Λ−{S1}) is an equitable subpartition of Λ, contradicting
(5a).

• i = 3. In this subcase, if {δ(v1), δ(v2)} ∩ Λ = ∅, then ({S3},Λ − {S3}) is an equitable
subpartition of Λ by (1) and Lemma 5.2(iii). So {δ(v1), δ(v2)} ∩ Λ 6= ∅. By (1), (4) and
symmetry, we may assume that δ(v) 6∈ Λ for all V (P1)\X, which implies {δ(v1), δ(v2)} ⊆ Λ by
Lemma 5.2(iii). Let Λ′ = (Λ− {δ(v1), δ(v2)}) ∪ {S1, S2}, and let Λ1 = {S1, S3} ∪ (δ(A3) ∩ Λ′) if
both P1 and P2 are odd and Λ1 = {S2, S3}∪(({δ(v7)}∪δ(A4))∩Λ

′) otherwise. Then (Λ1,Λ
′−Λ1)

is an equitable subpartition of Λ, contradicting (5a).
• i = 4 or 5. In this subcase, observe that if i = 5, then δ(v) 6∈ Λ for all v ∈ V (P3)\X

by (1) and Lemma 5.4(ii). Thus ({Si},Λ − {Si}) is an equitable subpartition of Λ for i = 4, 5,
contradicting (5a).

• i = 6. In this subcase, let Λ1 = {δ(v1), δ(v5), S6} ∩ Λ. Then (Λ1,Λ − Λ1) is an equitable
subpartition of Λ, contradicting (5a).

Combining above observations, we see that (7) holds.
(8) If {Si, Sj} ⊆ O with 1 ≤ i < j ≤ 7, then {i, j} is one of the following pairs:

{1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 5}, {2, 5}, {3, 4}, {4, 5}.

To justify this, note that
• {i, j} 6∈ {{1, 2}, {1, 6}, {1, 7}, {2, 6}, {2, 7}, {3, 6}, {3, 7}, {6, 7}} by Lemma 5.4(i).
• {i, j} 6= {3.5}. Otherwise, let Λ′ = (Λ− {S3, S5}) ∪ {S4, δ(v5)}. Then Λ′ dominates Λ and

g(Λ′) < g(Λ), contradicting Lemma 5.2(ii).
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• {i, j} 6∈ {{4, 6}, {4, 7}}. Otherwise, by symmetry we may assume that {i, j} = {4, 6}. Let
Λ′ be obtained from Λ by replacing {S4, S6} with δ(U6). Then Λ′ dominates Λ and g(Λ′) < g(Λ),
contradicting Lemma 5.2(ii).

• {i, j} 6∈ {{5, 6}, {5, 7}}. Otherwise, by symmetry we may assume that {i, j} = {5, 6}. Let
Λ′ be obtained from Λ by replacing {S5, S6} with δ(U5 ∩ U6) ∪ δ(B1\v4). Then Λ′ dominates Λ
and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

Combining above observations, we see that (8) holds.
(9) If {Si, S3} ⊆ Λ for i = 1 or 2, then δ(v) 6∈ Λ for some v ∈ V (P1 ∪ P2).
Assume the contrary: δ(P1) ∪ δ(P2) ⊆ Λ. By symmetry, we may assume that S1 ∈ Λ. Let

Λ′ = (Λ − ({S1, S3} ∪ δ(A3 ∪ A1\v7)) ∪ {S4} if both P1 and P2 are odd. Then Λ′ dominates Λ
and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii). Similarly, we can reach a contradiction if both
P1 and P2 are even. So (9) is justified.

(10) |O| ≥ 3.
Assume the contrary. Then |O| = 2 by (7). Let O = {Si, Sj}. In view of (8), we distinguish

among the following subcases.
• {i, j} ∈ {{1, 3}, {2, 3}}. By symmetry, we may assume that {i, j} = {1, 3}. By (9) and (1),

we have δ(v) 6∈ Λ for all v ∈ V (P1)\X or for all v ∈ V (P2)\X. Let Λ1 = {S1, S3} ∪ δ(A3) ∩ Λ if
δ(v) 6∈ Λ for all v ∈ V (P1)\X and Λ1 = ({δ(v3), δ(v5), S1}∪ δ(A2)∪ δ(P3))∩Λ if δ(v) 6∈ Λ for all
v ∈ V (P2)\X. Then (Λ1,Λ − Λ1) is an equitable subpartition of Λ if both P1 and P2 are odd.
Similarly, we can reach a contradiction to (5a) if both P1 and P2 are even.

• {i, j} ∈ {{1, 4}, {2, 4}, {1, 5}, {2, 5}}. By symmetry, we may assume that i = 1 and δ(v2) /∈
Λ (see (3)). Observe that if S5 ∈ Λ, then δ(v) 6∈ Λ for all v ∈ V (P3)\X by Lemma 5.4(ii) and
(1). Let Λ1 = O and Λ2 = Λ−Λ1 if {δ(v1), δ(v7)} ⊆ Λ, and let Λ1 = {Sj} and Λ2 = Λ− Λ1 for
j = 4, 5 otherwise. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• {i, j} = {3, 4}. Observe that if δ(P3) ⊆ Λ, letting Λ1 = O and Λ2 = Λ− Λ1, then (Λ1,Λ2)
is an equitable subpartition of Λ, contradicting (5a). Thus δ(v) 6∈ Λ for all v ∈ V (P3)\X by
Lemma 5.3. It follows that ({S4},Λ − {S4}) is an equitable subpartition of Λ, contradicting
(5a).

• {i, j} = {4, 5}. Observe that δ(Pi) ⊆ Λ for i = 1, 2 if δ(v) ∈ Λ for some v ∈ V (Pi)\X by
Lemma 5.3. If {δ(v1), δ(v2)} 6⊆ Λ, say δ(v2) 6∈ Λ, letting Λ1 = ({δ(v5), S4} ∪ δ(A1 ∪ A3)) ∩ Λ
if both P1 and P2 are odd and Λ1 = ({δ(v1), S4} ∪ δ(A2 ∪ A4)) ∩ Λ, then (Λ1,Λ − Λ1) is an
equitable subpartition of Λ, contradicting (5a). So {δ(v1), δ(v2)} ⊆ Λ. If δ(P1)∪δ(P2) ⊆ Λ, then
(O,Λ−O) is an equitable subpartition of Λ, a contradiction. Hence δ(v) 6∈ Λ for all v ∈ V (P1)\X
or all δ(v) 6∈ Λ for all v ∈ V (P2)\X by Lemma 5.3. Consider the subsubcase when both P1 and
P2 are odd. Let Λ1 = {S2, S4}∪(({δ(v5)}∪δ(A1))∩Λ) if δ(v) 6∈ Λ for all v ∈ V (P2)\X and Λ1 =
{S1, S4} ∪ (({δ(v5)} ∪ δ(A3))∩Λ) otherwise, and let Λ2 = ((Λ−{δ(v1), δ(v2)})∪ {S1, S2})−Λ1.
Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). Similarly, we can reach a
contradiction if both P1 and P2 are of even length.

Combining above observations, we see that (10) holds.
(11) O is {S1, S3, S4}, {S1, S4, S5}, {S2, S3, S4}, or {S2, S4, S5}.
To justify this, let H be the graph with vertex set {S1, S2 . . . , S7} and with all edges {Si, Sj}

as described in (8). Since H contains no K4, we have |O| < 4 and hence |O| = 3 by (10). The
triangles in H are all displayed in (11), so the statement holds.

By (11) and symmetry, we only need to consider the following subcases.
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• O = {S1, S3, S4}. In this subcase, observe that if δ(P3) 6⊆ Λ, then δ(v) 6∈ Λ for all
v ∈ V (P3)\X by Lemma 5.3. Let Λ1 = O if {δ(v1), δ(v7)} ∪ δ(P3) ⊆ Λ, let Λ1 = {S1, S4} if
{δ(v1), δ(v7)} ⊆ Λ and δ(v) 6∈ Λ for all v ∈ V (P3)\X, let Λ1 = {S3, S4} if {δ(v1), δ(v7)} 6⊆ Λ
and δ(P3) ⊆ Λ, let Λ1 = {S4} otherwise, and let Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

• O = {S1, S4, S5}. In this subcase, by (3) and symmetry we may assume that δ(v2) 6∈ Λ.
When both P1 and P2 are odd, let Λ1 = {S4, S5} if δ(P1) ∪ δ(P2) ⊆ Λ, let Λ1 = {S1, S4} ∪
(δ(A3) ∩ Λ) if δ(v) 6∈ Λ for all v ∈ V (P1)\X, let Λ1 = ({δ(v1), S4} ∪ δ(A1)) ∩ Λ if δ(v) 6∈ Λ
for all v ∈ V (P2)\X, and let Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ,
contradicting (5a). Similarly, we can reach a contradiction if both P1 and P2 are even.

Combining above subcases, we conclude that G5 is ESP if Case 1 occurs.
Case 2. P1 and P2 have different parities.
By symmetry, we may assume that P1 is odd and P2 is even. Let U8 = V5\v5, U9 = V5\v1,

U10 = V5\v2, U11 = {v2, v5} ∪ V (P1 ∪ P2), U12 = {v1, v5} ∪ V (P1 ∪ P2). Then Si = E[Ui] is an
odd set in G5 for 8 ≤ i ≤ 12. Note that S9 = S11 and S10 = S12 if |V (P3)| = 2. So we implicitly
assume that |V (P3)| ≥ 3 if S11 or S12 occurs in our proof.

(12) O 6= ∅.
Assume the contrary: O = ∅. Let us first consider the subcase when δ(v5) ∈ Λ. By (1)

and (2), we have δ(v) 6∈ Λ for all v ∈ V (P3)\X. From Lemma 5.2(iii), we further deduce that
δ(P1)∪δ(P2) ⊆ Λ and that {δ(v1), δ(v2)}∩Λ 6= ∅. When δ(v1) ∈ Λ, let Λ′ = (Λ−({δ(v1), δ(v5)}∪
δ(A1 ∪ A4))) ∪ {S1, S12}. Then Λ′ dominates Λ. Set Λ1 = {δ(v2), S12} ∩ Λ′ and Λ2 = Λ′ − Λ1.
When δ(v1) 6∈ Λ, let Λ′ = (Λ− ({δ(v2), δ(v5)} ∪ δ(A1 ∪A4))) ∪ {S1, S11}. Then Λ′ dominates Λ.
Set Λ1 = {S11} and Λ2 = Λ′−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

It remains to consider the subcase when δ(v5) 6∈ Λ. If δ(v) 6∈ Λ for some v ∈ V (P1∪P2∪P3),
then {δ(v1), δ(v2)} ⊆ Λ ⊆ {δ(v1), δ(v2), δ(v3), δ(v7)} by Lemma 5.2(iii). Let Λ1 = {S1} ∪
({δ(v3)} ∩ Λ) and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a). So δ(Pi) ⊆ Λ for i = 1, 2, 3, which implies {δ(v1), δ(v2)} ∩ Λ 6= ∅. By symmetry, we may
assume that δ(v1) ∈ Λ. Let Λ1 = {S8} and Λ2 = {S10, δ(v2)} ∩Λ. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a). This proves (12).

(13) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (12). Let O = {Si}. Symmetry allows us to

distinguish among the following subcases.
• i = 1. In this subcase, observe that if δ(v5) ∈ Λ, then δ(P1 ∪ P2) ⊆ Λ by (1) and δ(v) 6∈ Λ

for all v ∈ V (P3)\X by (2). Let Λ1 = {S1} ∪ δ(A2 ∪ A3) and Λ2 = Λ − Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ, contradicting (5a). Hence δ(v5) 6∈ Λ. If δ(v) 6∈ Λ for some
v ∈ V (P1 ∪ P2 ∪ P3), then ({S1},Λ− {S1}) is an equitable subpartition of Λ; this contradiction
implies that δ(Pi) ⊆ Λ for i = 1, 2, 3. Thus δ(vi) ∈ Λ for i = 1 or 2. Let Λ1 = {S8} and
Λ2 = {S1, S10} if i = 1 and let Λ1 = {S8} and Λ2 = {S1, S9} if i = 2. Then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).

• i = 3. In this subcase, observe that {δ(v1), δ(v2)} 6⊆ Λ, for otherwise, let Λ′ = (Λ −
{δ(v1), δ(v2)})∪{S1, S2}, and let Λ1 = {S2, S3}∪(δ(A1∪A4)∩Λ) and Λ2 = Λ′−Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ, a contradiction. If {δ(v1), δ(v2)}∩Λ = ∅, then ({S3},Λ−{S3})
is an equitable subpartition of Λ by Lemma 5.2(iii). Thus precisely one of δ(v1) and δ(v2)}
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belongs to Λ, which implies δ(P1) ∪ δ(P2) ⊆ Λ. Let Λ1 = {S10} and Λ2 = (Λ − ({δ(v1), S3} ∪
δ(A1∪A4)))∪{S1} if δ(v1) ∈ Λ, and let Λ1 = {S9} and Λ2 = (Λ−({δ(v2), S3}∪δ(A1∪A4)))∪{S1}
if δ(v2) ∈ Λ. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• i = 8. In this subcase, let Λ1 = {S8, δ(v5)} ∩ Λ and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).

• i = 9. In this subcase, let Λ1 = {S9, δ(v1)} ∩ Λ and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).

• i = 11. In this subcase, δ(v) 6∈ Λ for all v ∈ V (P3)\X by Lemma 5.4(ii) and (1). Let
Λ1 = {S11, δ(v1)} ∩ Λ and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ,
contradicting (5a).

Combining above subcases, we see that (13) holds.
(14) If {Si, Sj} ⊆ Λ, then {i, j} is one of the following pairs:

{1, 3}, {1, 8}, {1, 9}, {1, 10}, {2, 3}, {2, 8}, {2, 9}, {2, 10}, {3, 9}, {3, 10}, {9, 11}, {10, 12}.

To justify this, note that
• {i, j} 6∈ {{1, 2}, {1, 11}, {1, 12}, {2, 11}, {2, 12}, {9, 10}, {11, 12}} by Lemma 5.4(i).
• {i, j} 6= {3, 8}. Otherwise, let Λ′ be obtained from Λ by replacing {S3, S8} with {S1} ∪

δ(A2 ∪A3) ∪ δ(P3). Then Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting Lemma 5.2(ii).
• {i, j} 6∈ {{3, 11}, {3, 12}}. Otherwise, by symmetry we may assume that {i, j} = {3, 11}.

Let Λ′ = (Λ − {S3, S11}) ∪ {δ(v5), S9}. Then Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting
Lemma 5.2(ii).

• {i, j} 6∈ {{8, 11}, {8, 12}}. Otherwise, by symmetry we may assume that {i, j} = {8, 11}.
Let Λ′ be obtained from Λ by replacing {S8, S11} with δ(U11\v5)∪δ(B1\v4). Then Λ′ dominates
Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

• {i, j} 6∈ {{9, 12}, {10, 11}}. Otherwise, by symmetry we may assume that {i, j} = {9, 12}.
Let Λ′ be obtained from Λ by replacing {S9, S12} with δ(U12\v1)∪δ(B1\v4). Then Λ′ dominates
Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

• {i, j} 6∈ {{8, 9}, {8, 10}}. Otherwise, by symmetry we may assume that {i, j} = {8, 9}.
Let Λ′ be obtained from Λ by replacing {S8, S9} with δ(U8 ∩ U9). Then Λ′ dominates Λ and
f(Λ′) > f(Λ), contradicting Lemma 5.2(ii).

Combining above observations, we see that (14) holds.
(15) |O| ≥ 3.
Assume the contrary. Then |O| = 2 by (13). Let O = {Si, Sj}. In view of (14), we distinguish

among the following subcases.
• {i, j} = {1, 3}. Let Λ1 = {S1} ∪ (δ(A2 ∪A3)∪ δ(P3))∩Λ and Λ2 = Λ−Λ1. Then (Λ1,Λ2)

is an equitable subpartition of Λ, contradicting (5a).
• {i, j} = {2, 3}. Let Λ1 = {S2, S3} ∪ (δ(A1 ∪ A4) ∩ Λ) and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is

an equitable subpartition of Λ, contradicting (5a).
• {i, j} ∈ {{1, 8}, {2, 8}}. By symmetry, we may assume that {i, j} = {1, 8} and that

δ(v2) /∈ Λ (see (3)). Let Λ1 = {S1, S8, δ(v5)} ∩ Λ if {δ(v1), δ(v7)} ⊆ Λ and Λ1 = {S8, δ(v5)} ∩ Λ
otherwise, and let Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

• {i, j} ∈ {{1, 9}, {1, 10}, {2, 9}, {2, 10}}. By symmetry, we may assume that {i, j} = {1, 9}.
Let Λ1 = O if δ(v2) ∈ Λ and Λ1 = {S9, δ(v1)}∩Λ otherwise, and let Λ2 = Λ−Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ, contradicting (5a).
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• {i, j} ∈ {{3, 9}, {3, 10}}. By symmetry, we may assume that {i, j} = {3, 9}. From Lemma
5.3, we see that δ(v) 6∈ Λ for all v ∈ V (P3)\X if δ(P3) 6⊆ Λ. Let Λ1 = {δ(v1), S1, S9} ∩ Λ if
δ(P3) ⊆ Λ and Λ1 = {δ(v1), δ(v5), S9}, and let Λ2 = Λ − Λ2. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

• {i, j} ∈ {{9, 11}, {10, 12}}. By symmetry, we may assume that {i, j} = {9, 11}. Observe
that δ(v1) /∈ Λ, for otherwise, let Λ′ = (Λ − {δ(v1), S9}) ∪ {δ(v5), S8}. Then Λ′ dominates Λ
and satisfies (5a-d). Since {S8, S9} ⊆ Λ′, we reach a contradiction to (14). Let Λ1 = O if
δ(P1) ∪ δ(P2) ⊆ Λ, let Λ1 = ({S9, δ(v2), δ(v5)} ∪ δ(A4)) ∩ Λ if δ(v) 6∈ Λ for all v ∈ V (P1)\X, let
Λ1 = ({S9, δ(v3), δ(v5)}∪ δ(A1))∩Λ if δ(v) 6∈ Λ for all v ∈ V (P2)\X, and let Λ2 = Λ−Λ1. Then
(Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Combining above subcases, we see that (15) holds.
(16) O is {S1, S3, S9}, {S1, S3, S10}, {S2, S3, S9}, or {S2, S3, S10}.
To justify this, let H be the graph with vertex set {S1, S2, S3, S8, . . . , S12} and with all edges

{Si, Sj} as described in (14). Since H contains no K4, we have |O| < 4 and hence |O| = 3 by
(15). The triangles in H are all displayed in (16), so the statement holds.

By (16) and symmetry, we only need to consider the subcase when O = {S1, S3, S9}. Let
Λ1 = O if {δ(v2)} ∪ δ(P3) ⊆ Λ, let Λ1 = {S1, S9, δ(v5)} ∩Λ if δ(v2) ∈ Λ and δ(v) 6∈ Λ for all v ∈
V (P3)\X, and let Λ1 = {S3, S9, δ(v1)}∩Λ if δ(v2) 6∈ Λ and δ(P3) ⊆ Λ, let Λ1 = {S9, δ(v1), δ(v5)}
otherwise, and let Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a). Therefore G5 is also ESP if Case 2 occurs. This complete the proof of present lemma.

Lemma 5.13. The graph G6 = (V6, E6) (see Figure 15) is ESP.

Figure 15: The primitive graph G6

Proof. Suppose on the contrary that G6 is not ESP. Let Λ be a collection of stars and odd
sets in G6 as specified by (5a-d) (with G6 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. We use H to denote the fully subdivided graph in G6. Throughout this proof,
we reserve

• O for the family consisting of all odd sets in Λ;
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• P for the family consisting of all paths connecting v1 and v2 in H; and
• (X,Y ) for the bipartition of H with {v1, v2} ⊆ X.
Let UP = V (P ) for each P ∈ P. Then SP = E[UP ] is an odd set in G6. We break the proof

into a few observations.
(1) Each P ∈ P contains a vertex v ∈ Y with δ(v) 6∈ Λ. Otherwise, let Λ′ be obtained from

Λ by replacing δ(V (P ) ∩ Y ) with SP . Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting
Lemma 5.2(ii).

(2) O 6= ∅.
Assume the contrary: O = ∅. By (1) and Lemma 5.5, Λ contains an equitable partition

(Λ1,Λ2) of Λ with |Λi∩{δ(v1), δ(v2)}| ≤ 1 for i = 1, 2 (with Λ in place of Ω), contradicting (5a).
(3) |O| = 1.
Assume the contrary. Then |O| ≥ 2 by (2). Let {SP , SQ} ⊆ Λ with P,Q distinct in P, let

W1 = V (P ∪Q) ∩X and W2 = V (P ) ∩ V (Q) ∩ Y , and let Λ′ be obtained from Λ by replacing
{SP , SQ} with δ(W1 ∪ W2). Then Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting Lemma
5.2(ii).

By (3), we have O = {SP } for some P ∈ P. Let Λ1 = {SP } ∪ (δ(Y \V (P )) ∩ Λ) and
Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). Therefore G6

is ESP.

Lemma 5.14. The graph G7 = (V7, E7) (see Figure 16) is ESP.

Figure 16: The primitive graph G7

Proof. Suppose on the contrary that G7 is not ESP. Let Λ be a collection of stars and odd
sets in G7 as specified by (5a-d) (with G7 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. Let U1 = {v1, v2, v6} and U2 = {v1, v2, v3}. Then S1 = E[U1] and S2 = E[U2] are
two odd sets in G7. We use H to denote the fully subdivided subgraph in G7. Throughout this
proof, we reserve

• O for the family consisting of all odd sets in Λ;
• P for the family consisting of all paths connecting v4 and v5 in H;
• (X,Y ) for the bipartition of H with {v4, v5} ⊆ X;
• Z for {v3, v4, v5, v6};
• Ω for δ(X ∪ Y ) ∩ Λ; and
• (A1, A2) (resp. (A3, A4)) for the bipartition of P1 (resp. P2) with v6 ∈ A1 (resp. v3 ∈ A3).
Repeated application of Lemma 5.2(iii) yields
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(1) for i = 1, 2, if no odd set in Λ contains Pi and δ(v) ∈ Λ for some v ∈ V (Pi)\Z, then
δ(Pi) ⊆ Λ.

(2) {Si, δ(v1), δ(v2)} 6⊆ Λ for i = 1, 2. Otherwise, by symmetry we may assume that
{δ(v1), δ(v2), S1} ⊆ Λ. Let Λ′ = (Λ − {δ(v1), δ(v2)}) ∪ {S1, S2}. Then Λ′ dominates Λ and
mΛ′(S1) ≥ 2, contradicting Lemma 5.2(i).

Depending on the parities of P1 and P2, we distinguish between two cases.
Case 1. P1 and P2 have the same parity.
Let UP = V (P1 ∪ P2 ∪ P ) ∪ {v1, v2} for each P ∈ P. Then SP = E[UP ] is an odd set in G7.
(3) If {δ(v1), δ(v2)} ∩ Λ 6= ∅ and δ(Y ∩ V (P )) ⊆ Λ for some P ∈ P, then δ(v) 6∈ Λ for some

v ∈ V (P1 ∪ P2).
Assume the contrary: δ(P1) ∪ δ(P2) ⊆ Λ. By symmetry, we may assume that δ(v1) ∈ Λ.

Let Λ′ = (Λ − δ(A1 ∪ A3 ∪ (V (P ) ∩ Y ))) ∪ {SP } if both P1 and P2 are odd and Λ′ = (Λ −
({δ(v1)}∪ δ(A2 ∪A4∪ (V (P )∩Y ))))∪{SP } otherwise. Then Λ′ dominates Λ and f(Λ′) > f(Λ),
contradicting Lemma 5.2(ii).

(4) O 6= ∅.
Assume the contrary: O = ∅. Let us proceed by considering three subcases.
• {δ(v1), δ(v2)} ⊆ Λ. In this subcase, observe that δ(v) 6∈ Λ for some v ∈ V (P1 ∪ P2), for

otherwise, (3) and Lemma 5.5 would guarantee the existence of an equitable partition (Ω1,Ω2)
of Ω such that δ(v4) ∈ Ω1 and δ(v5) ∈ Ω2. Let Λ1 = {S1} ∪ δ((A2\v5) ∪ A3) ∪ Ω2 and Λ2 =
{S2}∪ δ(A1 ∪ (A4\v4))∪Ω1 if both P1 and P2 are odd, and let Λ1 = {S1}∪ δ(A2 ∪ (A3\v4))∪Ω1

and Λ2 = {S2} ∪ δ((A1\v5) ∪A4) ∪ Ω2 otherwise. Then (Λ1,Λ2) is an equitable subpartition of
Λ, contradicting (5a).

When both P1 and P2 are odd, set Λ1 = {S1} ∪ ((δ(Y ∪ A3)) ∩ Λ) if δ(v) 6∈ Λ for all
v ∈ V (P1)\Z and Λ1 = {S2} ∪ ((δ(Y ∪ A1)) ∩ Λ) if δ(v) 6∈ Λ for all v ∈ V (P2)\Z (see (1)).
When both P1 and P2 are even, set Λ1 = {S2} ∪ (({δ(v6)} ∪ δ(Y ∪A4)) ∩ Λ) if δ(v) 6∈ Λ for all
v ∈ V (P1)\Z and Λ1 = {S1} ∪ (({δ(v3)} ∪ δ(Y ∪A2)) ∩ Λ) if δ(v) 6∈ Λ for all v ∈ V (P2)\Z. Set
Λ2 = ((Λ − {δ(v1), δ(v2)}) ∪ {S1, S2}) − Λ1. It is routine to check that (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a).

• {δ(v1), δ(v2)}∩Λ = ∅. In this subcase, Λ ⊆ Ω by Lemma 5.2(iii) and (1). Let Λ1 = δ(X)∩Λ
and Λ2 = δ(Y ) ∩ L. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• |{δ(v1), δ(v2)} ∩ Λ| = 1. In this subcase, by symmetry we may assume that δ(v1) ∈ Λ and
δ(v2) 6∈ Λ. Let Λ1 = δ(Y ∪ A1 ∪ A3) ∩ Λ if both P1 and P2 are odd and Λ1 = {δ(v1)} ∪ δ(Y ∪
A2 ∪A4) ∩ Λ otherwise, and let Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ,
contradicting (5a).

Combining the above subcases, we see that (4) holds.
(5) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (4). Let O = {Si}. Symmetry allows us to distinguish

between the following two subcases.
• i = 1. In this subcase, observe that δ(v3) ∈ Λ, for otherwise, δ(v) 6∈ Λ for all v ∈ V (P2)\Z

by (1) and Lemma 5.2(iii). Let Λ1 = δ(Y ∪ A1) ∩ Λ if both P1 and P2 are odd and Λ1 =
({S1} ∪ δ(Y ∪A2))∩Λ, and let Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, a
contradiction. Thus, by symmetry and Lemma 5.2(iii), we may assume that δ(v1) ∈ Λ. It follows
that δ(v2) /∈ Λ (see (2)) and that δ(P2) ⊆ Λ (see (1) and Lemma 5.2(iii)). If each path in P
contains a vertex v with δ(v) 6∈ Λ, then Ω admits an equitable partition (Ω1,Ω2), with δ(v4) ∈ Ω1
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if δ(v4) ∈ Λ and with δ(v5) ∈ Ω2, by Lemma 5.5. Let Λ1 = ({S1} ∪ δ((A2\v5) ∪ A3) ∪ Ω2) ∩ Λ
and Λ2 = ({δ(v1)} ∪ δ(A1 ∪ (A4\v4)) ∪ Ω1) ∩ Λ if both P1 and P2 are odd, and let Λ1 =
({S1}∪ δ(A2∪ (A3\v4))∪Ω1)∩Λ and Λ2 = ({δ(v1)}∪ δ((A1\v5)∪A4)∪Ω2)∩Λ otherwise. Then
(Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). Hence there exists P ∈ P such that
δ(P ) ⊆ Λ. Therefore, by (3) and the fact δ(P2) ⊆ Λ, we obtain δ(v) 6∈ Λ for all v ∈ V (P1)\Z. Let
Λ1 = ({S1}∪ δ(Y ∪A3))∩Λ if both P1 and P2 are odd and Λ1 = ({δ(v1), δ(v6)}∪ δ(Y ∪A4))∩Λ
otherwise, and let Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

• i = P for some P ∈ P. In this subcase, let Λ1 = {SP }∪ (δ(Y \V (P ))∩Λ) and Λ2 = Λ−Λ1.
Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Combining the above subcases, we see that (5) holds.
(6) If SP ∈ Λ for some P ∈ P, then SQ 6∈ Λ for all Q ∈ P\P .
Assume the contrary: SQ ∈ Λ for some Q ∈ P\P . Let W1 = V (P ∪ Q) ∩ X, let W2 =

V (P ) ∩ V (Q) ∩ Y , and let Λ′ be obtained from Λ by replacing {SP , SQ} with {δ(v1), δ(v2)} ∪
δ(P1\v5)∪δ(P2\v4)∪δ(W1∪W2). Then Λ′ dominates Λ and g(Λ′) < g(Λ), contradicting Lemma
5.2(ii).

(7) If {Si, Sj} ⊆ Λ, then i ∈ {1, 2} and j ∈ P.
To justify this, note that
• {i, j} 6= {1, 2} by Lemma 5.4(i).
• {i, j} 6= {P,Q} for any distinct P and Q in P by (6).
Combining these two observations, we see that (7) holds.
(8) O is {S1, SP } or {S2, SP } for some P ∈ P.
Let K be the graph with vertex set {S1, S2} ∪ {SP : P ∈ P} and with edges {Si, Sj} as

described in (7). Since K contains no triangle, we have |O| < 3 and hence |O| = 2 by (5). Thus
the statement follows instantly.

By (8) and symmetry, we only need to consider the subcase when O = {S1, SP } for some P ∈
P. Symmetry and (2) allows us to assume that δ(v2) 6∈ Λ. Let Λ1 = {S1, SP }∪ (δ(Y \V (P ))∩Λ)
if {δ(v1), δ(v6)} ⊆ Λ and Λ1 = {SP } ∪ (δ(Y \V (P )) ∩ Λ) and let Λ2 = Λ− Λ1. Then (Λ1,Λ2) is
an equitable subpartition of Λ, contradicting (5a). Therefore G7 is ESP if Case 1 occurs.

Case 2. P1 and P2 have different parities.
By symmetry, we may assume that P1 is an odd path and P2 is an even path. For each

P ∈ P, let UP = {v2} ∪ V (P1 ∪ P2 ∪ P ) and U ′
P = {v1} ∪ V (P1 ∪ P2 ∪ P ), and let TP = E[U ′

P ]
and T ′

P = E[U ′
P ]. Then TP and T ′

P are odd sets in G7.
(9) O 6= ∅.
Assume the contrary: O = ∅. Let us proceed by considering three subcases.
• {δ(v1), δ(v2)} ⊆ Λ. In this subcase, let Λ1 = {S2} ∪ (δ(Y ∪A1 ∪A4) ∩ Λ) and Λ2 = ((Λ−

{δ(v1), δ(v2)}) ∪ {S1, S2}) − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a)

• {δ(v1), δ(v2)} ∩ Λ = ∅. In this subcase, Λ ⊆ δ(X) ∪ δ(Y ) by Lemma 5.2(iii) and (1). Let
Λ1 = δ(X)∩Λ and Λ2 = δ(Y )∩Λ. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

• |{δ(v1), δ(v2)} ∩ Λ| = 1. In this subcase, δ(P1) ∪ δ(P2) ⊆ Λ by Lemma 5.2(iii). By
symmetry, we may assume that δ(v1) ∈ Λ. Observe that δ(P ) 6⊆ Λ for any P ∈ P, for otherwise,
let Λ1 = {T ′

P }∪(δ(Y \V (P ))∩Λ) and Λ2 = ((Λ−{δ(v1)}∪δ(A1∪A4∪(Y ∩V (P )))∪{S1, T
′
P })−Λ1.
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Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). Thus Lemma 5.5 guarantees
the existence of an equitable partition (Ω1,Ω2) of Ω with δ(v4) ∈ Ω1 and δ(v5) ∈ Ω2. Let
Λ1 = {δ(v1)} ∪ δ((A2\v5) ∪A4) ∪ Ω2 and Λ2 = δ(A1 ∪ (A3\v4)) ∪ Ω1. Then then (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).

Combining the above observations, we see that (9) holds.
(10) |O| = 1.
To justify this, observe that
• Λ contains none of the following pairs

{S1, S2}, {S1, TP }, {S1, T
′
P }, {S2, TP }, {S2, T

′
P }, {TP , T

′
P }

for any P ∈ P by Lemma 5.4(i).
• Λ contains neither {TP , TQ} nor {T ′

P , T
′
Q} for any distinct P,Q in P. Otherwise, let

W1 = V (P ∪Q) ∩X and W2 = V (P ) ∩ V (Q) ∩ Y , and let Λ′ be obtained from Λ by replacing
{TP , TQ} with {δ(v2)}∪δ(P1\v5)∪δ(P2\v4)∪δ(W1∪W2). Then Λ′ dominates Λ and f(Λ′) > f(Λ),
contradicting Lemma 5.2(ii).

• Λ contains no {TP , T
′
Q} for any distinct P,Q in P. Otherwise, let W1 = V (P ∪Q)∩X and

W2 = V (P ) ∩ V (Q) ∩ Y , and let Λ′ be obtained from Λ by replacing {TP , T
′
Q} with δ(P1\v5) ∪

δ(P2\v4) ∪ δ(W1 ∪W2). Then Λ′ dominates Λ and ρ(Λ′) < ρ(Λ), contradicting Lemma 5.2(ii).
Let K be the graph with vertex set {S1, S2}∪ (∪P∈P {TP , T

′
P }) and with all edges which are

not excluded above. Then the degree of each vertex in K is zero, which implies that |O| < 2, so
(10) is established.

By symmetry and (10), we only need to consider the following subcases
• O = {S1}. In this subcase, let Λ1 = {δ(vi)}∪ (δ(Y ∪A1 ∪A4)∩Λ) if δ(vi) ∈ Λ for i = 1 or

2 (see (2)), and let Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting
(5a).

• O = {S2}. In this subcase, let Λ1 = {S2} ∪ (δ(Y ∪A1 ∪A4) ∩ Λ) and Λ2 = Λ− Λ1. Then
(Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

• O = {TP } for some P ∈ P. In this subcase, let Λ1 = {δ(v1), TP } ∪ (δ(Y \V (P )) ∩ Λ) and
Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Combining the above subcases, we conclude that G7 is also ESP if Case 2 occurs. This
completes the proof of the present lemma.

Lemma 5.15. The graph G8 (see Figure 17) is ESP.

Figure 17: The primitive graph G8
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Proof. Suppose on the contrary that G8 is not ESP. Let Λ be a collection of stars and odd
sets in G8 as specified by (5a-d) (with G8 in place of G). By Lemma 5.2(i), we have mΛ(K) = 1
for all K ∈ Λ. Let H denote the fully subdivided subgraph in G8. Throughout this proof, we
reserve

• O for the family consisting of all odd sets in Λ;
• (X,Y ) for the bipartition of H with {v4, v5} ⊆ X;
• P for the family consisting of all path in H connecting v4 and v5;
• Ω for δ(X ∪ Y ) ∩ Λ; and
• (A1, A2) for the bipartition of Q with v1 ∈ A1.
Let U1 = {v2}∪V (Q) and UP = V (P∪Q) for each P ∈ P. Then S1 = E[U1] and SP = E[UP ]

are odd sets in G8. We break the proof into a series of observations.
(1) If δ(Q) ⊆ Λ, then δ(v2) 6∈ Λ. Otherwise, let Λ′ be obtained from Λ by replacing

{δ(v2)} ∪ δ(A1\v1) with S1. Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma
5.2(ii).

(2) If no odd set contains Q and δ(v) ∈ Λ for some v ∈ V (Q), then δ(Q) ⊆ Λ by Lemma
5.2(iii).

(3) O 6= ∅.
Assume the contrary: O = ∅. Observe that if δ(v2) ∈ Λ, then δ(v) 6∈ Λ for all v ∈

V (Q)\{v1, v3} by (1) and (2). Let Λ1 = (δ(Y )∪{δ(v1), δ(v3)})∩Λ and Λ2 = Λ−Λ1. Then (Λ1,Λ2)
is an equitable subpartition of Λ; this contradiction implies that δ(v2) 6∈ Λ. If {δ(v1), δ(v3)}∩Λ =
∅, letting Λ1 = δ(X)∩Λ and Λ2 = δ(Y )∩Λ, then (Λ1,Λ2) would be an equitable subpartition of
Λ, a contradiction again. So Λ contains δ(v1) or δ(v3). From Lemma 5.2(iii) and (2), it follows
that {δ(v4), δ(v5)} ∪ δ(Q) ⊆ Λ. We claim that δ(V (P ) ∩ Y ) 6⊆ Λ for any P ∈ P, for otherwise,
let Λ′ = (Λ − (δ(Y ∩ V (P )) ∪ δ(Q))) ∪ {S1, SP }, let Λ1 = {SP } ∪ (δ(Y \V (P )) ∩ Λ), and let
Λ2 = Λ′ − Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a). Our claim
and Lemma 5.5 guarantee the existence of an equitable partition (Ω1,Ω2) of Ω with δ(v4) ∈ Ω1

and δ(v5) ∈ Ω2. Let Λ1 = δ(A1) ∪ Ω1 and Λ2 = δ(A2) ∪ Ω2. Then (Λ1,Λ2) is an equitable
subpartition of Λ, contradicting (5a). So (3) holds.

(4) |O| = 1.
To justify this, observe that
• {S1, SP} 6⊆ Λ for any P ∈ P by Lemma 5.4(i).
• {SP1

, SP2
} 6⊆ Λ for any distinct P1, P2 in P. Otherwise, let W1 = (V (P1 ∪ P2)) ∩ X

and W2 = V (P1) ∩ V (P2) ∩ Y , and let Λ′ be obtained from Λ by replacing {SP1
, SP2

} with
δ(Q) ∪ δ(W1 ∪W2). Then Λ′ dominates Λ and f(Λ′) > f(Λ), contradicting Lemma 5.2(iii).

Let K be the graph with vertex set {S1} ∪ {SP : P ∈ P} and with all edges that are not
excluded above. Then the degree of each vertex in K is zero, so |O| < 2 and hence |O| = 1 by
(3).

By (1) and symmetry, we only need to consider the following two subcases.
• O = {S1}. In this subcase, let Λ1 = {S1} ∪ (δ(X) ∩Λ) and Λ2 = Λ−Λ1. Then (Λ1,Λ2) is

an equitable subpartition, contradicting (5a).
• O = {SP } for some P ∈ P. In this subcase, let Λ1 = {SP } ∪ (({δ(v2)} ∪ δ(Y \V (P )) ∩ Λ)

and Λ2 = Λ− Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).
Combining the above observations, we conclude that G8 is ESP.
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Lemma 5.16. The graph G9 = (V9, E9) (see Figure 18) is ESP.

Figure 18: The primitive graph G9

Proof. Suppose on the contrary that G9 is not ESP. Let Λ be a collection of stars and odd
sets in G9 as specified by (5a-d) (with G9 in place of G). By Lemma 5.2(i), mΛ(K) = 1 for all
K ∈ Λ. Recall the definitions of ladder and plump ladder in Subsection 4.1,

(1) G9 is obtained from a ladder H with top u1u2, bottom v1v2, and outer cycle C by

• replacing each chord e of C in H with a complete bipartite graph Le = K2,n for some
n ≥ 1, in which one color class consists of the two ends of e only; and

• replacing each edge f in C\{u1v1, u2v2} with a fully subdivided graph Lf , in which both
ends of f belong to the color 1 class, where Lf = K2,t for some t ≥ 1 if f is contained in
a 4-cycle induced by two crossing chords.

For convenience, we assume that u1, v1, v2, u2 occur on C in clockwise cyclic order, and view
V (C) as a vertex subset of G9; that is, V (C) ⊆ V9. As introduced in Section 4, for each vertex
u on C, we use u− (resp. u+) to denote the vertex preceding (resp. succeeding) u on C in the
clockwise direction. Let Ze be the color class of Le disjoint from V (C) for each chord e of C in
H, let Z be the set of all these Ze, and let φ(C) = |δ(Z) ∩ Λ|.

Suppose a1b1 and a2b2 are two crossing chords of C in H, with both a1 and a2 on C[u1, v1].
Then, by the definition of ladder, a1a2 and b1b2 are two edges of C. Let C ′ be obtained from
C by replacing {a1a2, b1b2} with {a1b1, a2b2}. Observe that H is also a ladder with top u1u2,
bottom v1v2, and outer cycle C ′. We call the operation of replacing C by C ′ a switching with
respect to a1b1 and a2b2, and assume that

(2) C is an outer cycle of H with the minimum φ(C) under switching operations with respect
to crossing chords.

Throughout the proof, for each edge f in C\{u1u2, v1v2}, we reserve
• (Xf , Yf ) for the bipartition of Lf , with two ends of f contained in Xf ;
• Ωf for δ(Xf ∪ Yf ) ∩ Λ;
• Cf (resp. C ′

f ) for the longest cycle in H containing the edge u1u2 (resp. v1v2), precisely
one end of f , and precisely one chord of C; and

• Θf (resp. Θ′
f ) for the set of all chords of C with two ends on Cf (resp. C ′

f ).
Moreover, we reserve

• X1 (resp. Y1) for ∪f∈C[u1,v1]Xf (resp. ∪f∈C[u1,v1] Yf );
• X2 (resp. Y2) for ∪f∈C[v2,u2]Xf (resp. ∪f∈C[v2,u2] Yf );
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• X for X1 ∪X2 and Y for Y1 ∪ Y2 (so Z = V9\(X ∪ Y )); and
• O for the family consisting of all odd sets in Λ.
Since G9\{u1u2, v1v2} is a bipartite graph, the following statement follows instantly from

Theorem 5.6.
(3) Every odd set S = E[U ] in G9 contains at least one of u1u2 and v1v2. Furthermore, if S

contains precisely one of these two edges, then G[U ] = P0 is an odd cycle. If S contains both of
them, then G[U ] = P0 + P1, where P0 is an odd cycle containing u1u2, and P1 is an odd path
containing v1v2 and having only its two ends in common with P0.

Let S = E[U ] be an odd set in G9. We say that S is of Type 1 if it contains precisely one
of u1u2 and v1v2 and is of Type 2 otherwise. We also say that S passes through an edge e in
H\{u1u2, v1v2} if |U ∩ (V (Le)\X)| ≥ 1. By (3), each odd set in G9 is either of Type 1 or of
Type 2.

For each odd set S = E[U ] in G9 of Type 1 with u1u2 ∈ S (resp. v1v2 ∈ S), there exist
vertices a on C[u1, v1] and b on C[v2, u2] such that no vertex in C(a, b) (resp. C(b, a)) is contained
in U . From (3) and the definition of ladder, we see that ab is a chord of C in H and S passes
through ab. We call ab the representing chord of C for S. Moreover, the following statement
holds.

(4) Let S = E[U ] be an odd set in G9 of Type 1, with representing chord ab and with a on
C[u1, v1]. If u1u2 ∈ S (resp. v1v2 ∈ S), then all vertices on C[b, a] (resp. C[a, b]) are contained
in U . Moreover, if S passes through one of two crossing chords of C other than ab, then it also
passes through the other.

By (3) and (4), we get the following structural property.
(5) Let S = E[U ] be an odd set in G9 of Type 2, let P0 and P1 be as defined in (3), and let

ab be the representing chord of P0. Then the ends of P1 are {a, b} or {a−, a} or {b, b+}, and
V (C) ⊆ U .

(6) If Λ contains two distinct odd sets E[U1] and E[U2] with |U1 ∩U2| ≥ 2 and U1\U2 6= ∅ 6=
U2\U1, then both E[U1] and E[U2] are of Type 1. Furthermore, u1u2 ∈ E[Ui] and v1v2 ∈ E[U3−i]
for i = 1 or 2.

Suppose the contrary. Let Λ′ be obtained from Λ by replacing {E[U1], E[U2]} with δ((U1 ∪
U2) ∩X) ∪ δ(U1 ∩ U2 ∩ (Y ∪ Z)). Using (1) and (3)-(5), it is a routine matter to check that Λ′

dominates Λ. Since g(Λ′) < g(Λ), we reach a contradiction to Lemma 5.2(ii) and hence establish
(6).

(7) If Λ contains two distinct odd sets E[U1] and E[U2], then |U1 ∩ U2| ≤ 1 or U1 ⊆ U2 or
U2 ⊆ U1.

Assume the contrary: |U1 ∩U2| ≥ 2 and U1\U2 6= ∅ 6= U2\U1. By (6), both E[U1] and E[U2]
are of Type 1. Furthermore, u1u2 ∈ E[Ui] and v1v2 ∈ E[U3−i] for i = 1 or 2, say the former. By
(3), Uj induces an odd cycle Cj in G9 for j = 1, 2. Let e1 = a1b1 be the representing chord of C
for E[U1] with a1 on C[u1, v1]. Let c and d be two vertices in V (C1) ∩ V (C2) such that C2[c, d]
contains v1v2 and C2(c, d) has no vertex in common with C1. From the definition of ladderH, we
see that {c, d} is {a1, b1} or {a−1 , a1} or {b1, b

+
1 }. Set A = U1 ∪ V (C2(c, d)) and B = V (C2[d, c]).

Let Λ′ be obtained from Λ by replacing {E[U1], E[U2]} with {E[A]} ∪ δ(B ∩ (Y ∪ Z)). Then Λ′

dominates Λ and g(Λ′) < g(Λ), contradicting Lemma 5.2(ii). So (7) is established.
For each edge f in H\{u1u2, v1v2}, let Pf be the set of all paths in Lf connecting the ends

of f in H hereafter. We call f saturated if there exists P ∈ Pf with δ(V (P )\X) ⊆ Λ, and
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unsaturated otherwise. Furthermore, we call an edge f in C\{u1u2, v1v2} strongly unsaturated
with respect to u1u1 (resp. v1v2) if f and chords of C in Θf (resp. Θ′

f ) are all unsaturated.
(8) Let e = ab be a chord of C in H with a ∈ C[u1, v1]. If all edges in C[b, a]\u1u2 or all

edges in C[a, b]\v1v2 are saturated, then e is unsaturated. (In particular, e is unsaturated if it
is parallel to u1u2 or v1v2.)

Assume the contrary: δ(t) ∈ Λ for some t in V (Le)\X. By symmetry, we may assume that
all edges f in C[b, a]\u1u2 are saturated. Let Pf be a path in Pf with δ(V (Pf )\X) ⊆ Λ for
each such edge f , let U be the union of V (Pf ) for all these f , and let Λ′ be obtained from
Λ by replacing δ(U ∩ Y ) ∪ {δ(t)} with E[U ∪ {t}]. Then Λ′ dominates Λ and f(Λ′) > f(Λ),
contradicting Lemma 5.2(ii). So (8) is justified.

A saturated chord e = ab of C in H, with a ∈ C[u1, v1], is called u1u2-minimal (resp. v1v2-
minimal) if there is no saturated chord e′ = a′b′ of C in H, with a′ ∈ C[u1, v1], such that C[b′, a′]
(resp. C[a′, b′]) is a proper subpath of C[b, a] (resp. of C[a, b]).

(9) Let e = ab be a saturated chord of C in H that is u1u2-minimal (resp. v1v2-minimal),
with a ∈ C[u1, v1]. Then C[b, a] (resp. C[a, b]) contains a strongly unsaturated edge with respect
to u1u2 (resp. v1v2).

Assume the contrary: C[b, a], say, contains no strongly unsaturated edge with respect to u1u2.
By (8), there exists an unsaturated edge on C[b, a]\u1u2. Let f be an arbitrary unsaturated
edge on C[u1, a], if any. Since f is not strongly unsaturated, there exists a saturated chord g in
Θf . From the minimality assumption on e, we deduce that e and g are crossing chords of C. By
the definition of ladder H, we thus obtain f = a−a and g = a−b−. Similarly, if there exists an
unsaturated edge f ′ in C[b, u2], then f ′ = bb+ and g′ = a+b+ is a saturated chord of C. From
the definition of ladder H, we see that g and g′ cannot exist simultaneously (because they are
crossing and do not form a 4-cycle). Hence C[b, a]\u1u2 contains precisely one unsaturated edge
by (8). If g exists, then b−b is an unsaturated edge, using (8) with respect to C[b−, a−]. Let C ′

be obtained from C by switching with respect to crossing chords e and g. Then φ(C ′) > φ(C),
contradicting (2). Similarly, we can reach a contradiction if g′ exists. This proves (9).

(10) Let e = ab be a chord of C in H, with a ∈ C[u1, v1], such that C[b, a] (resp. C[a, b])
contains an unsaturated edge. Then C[b, a] (resp. C[a, b]) contains a strongly unsaturated edge
with respect to u1u2 (resp. v1v2).

Assume the contrary: no unsaturated edge in C[b, a]\u1u2, say, is strongly unsaturated with
respect to u1u2. Symmetry allows us to assume that C[u1, a] contains unsaturated edges; let f
be such an arbitrary edge. Since f is not strongly unsaturated, there exists a saturated chord
g = cd in Θf that is u1u2-minimal, with c on C[u1, a). By (9), C[d, c] contains a strongly
unsaturated edge h. By assumption, h is outside C[b, a]. It follows that e and g are crossing
chords of C in H, and hence f = a−a, g = a−b− and h = bb− by the definition of ladder H. Let
C ′ be obtained from C by switching with respect to crossing chords e and g. Then φ(C ′) > φ(C),
contradicting (2). So (10) holds.

(11) Let e = ab be a saturated chord of C in H, with a ∈ C[u1, v1]. Then C[b, a] contains a
strongly unsaturated edge f with respect to u1u2, and C[a, b] contains a strongly unsaturated
edge g with respect to v1v2, such that g /∈ Cf and f /∈ C ′

g.
To justify this, note that C[b, a] (resp. C[a, b]) contains a strongly unsaturated edge f (resp.

g) with respect to u1u2 (resp. v1v2) by (8) and (10). Suppose on the contrary that g ∈ Cf or
f ∈ C ′

g, say the former. By symmetry, we may assume that f is on C[u1, a] and g is on C[v2, b].
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Let h be the unique chord of C contained in Cf . Then e and h are crossing chords of C in
H. By the definition of ladder H, we thus obtain f = a−a, g = bb− and h = a−b−. Let C ′

be obtained from C by switching with respect to crossing chords e and h. Then φ(C ′) > φ(C),
contradicting (2). So (11) is established.

For each odd set S = E[U ] in G9 of Type 1, define S
∗ = {f ∈ C\{u1u2, v1v2} : |V (Lf )∩U | ≤

1}. Then S∗ 6= ∅, because G[U ] is an odd cycle containing precisely one of the edges u1u2 and
v1v2 by (1) and (3). Note that S∗ is actually the edge set of C[a, b] (resp. C[b, a]) if u1u2 ∈ S
(resp. v1v2 ∈ S), where ab is the representing chord of C for S with a ∈ C[u1, v1].

(12) S∗ contains an unsaturated edge for each odd set S = E[U ] of Type 1 in Λ.
Otherwise, for each f ∈ S∗, there exists Pf ∈ Pf such that δ(V (Pf )\X) ⊆ Λ. Let K =

∪f∈S∗ V (Pf ) and let Λ′ be obtained from Λ by replacing {E[U ]} ∪ δ(K ∩ Y ) with E[U ∪ K].
Then Λ′ dominates Λ and f(Λ′) > f(Λ); this contradiction to Lemma 5.2(ii) justifies (12).

In view of (10) and (12), we get
(13) S∗ contains a strongly unsaturated edge with respect to v1v2 (resp. u1u2) for each odd

set S = E[U ] of Type 1 in Λ if u1u2 ∈ S (resp. v1v2 ∈ S).
(14) If O = ∅, then δ(Z) ∩ Λ 6= ∅.
Otherwise, let (A,B) be the bipartition of G[X∪Y ]. Then (δ(A)∩Λ, δ(B)∩Λ) is an equitable

subpartition of Λ, contradicting (5a). So (14) is true.
(15) O 6= ∅.
Assume the contrary: O = ∅. By (14), we have δ(Z)∩Λ 6= ∅; let e = ab be a saturated chord

of C in H, with a ∈ C[u1, v1]. By (11), C[b, a] contains a strongly unsaturated edge f = rr+

with respect to u1u2, and C[a, b] contains a strongly unsaturated edge g = ss+ with respect
to v1v2, such that g /∈ Cf and f /∈ C ′

g. By symmetry, we may assume that f is on C[u1, a].
By Lemma 5.5, Ωf (resp. Ωg) admits an equitable partition (Ω1

f ,Ω
2
f ) (resp. (Ω1

g,Ω
2
g)), with

δ(r) ∈ Ω1
f , δ(r

+) ∈ Ω2
f , δ(s) ∈ Ω1

g and δ(s+) ∈ Ω2
g, if the corresponding star exists in Λ.

Observe that g is on C[v2, b], for otherwise, let Π1 be the union of δ(Xh) for all edges
h ∈ C[u1, r] ∪ C[s+, v1], let Π2 be the union of δ(Yh) for all h ∈ C[r+, s] ∪ C[v2, u2], let Λ1 =
(Π1 ∪Π2 ∪Ω1

f ∪Ω2
g ∪ δ(Z))∩Λ, and let Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition

of Λ, contradicting (5a).
Let Π3 be the union of δ(Xh) for all edges h ∈ C[u1, r] ∪ C[v2, s], let Π4 be the union of

δ(Yh) for all edges h ∈ C[r+, v1] ∪ C[s+, u2], let Λ1 = (Π3 ∪ Π4 ∪ Ω1
f ∪ Ω1

g ∪ δ(Z)) ∩ Λ, and let
Λ2 = Λ−Λ1. Then (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a) again. So (15)
is established.

(16) |O| ≥ 2.
Assume the contrary. Then |O| = 1 by (15). Let S = E[U ] be the unique odd set in O.

Depending on the type of S, we consider two cases.
• S is of Type 1. In this case, symmetry allows us to assume that u1u2 ∈ E[U ]. Let ab be the

representing chord of C for S with a on C[u1, v1]. By (13), C[a, b] contains a strongly unsaturated
edge g = ss+ with respect to v1v2. By symmetry, we may assume that g is on C[a, v1]. By
Lemma 5.5, Ω admits an equitable partition (Ω1

g,Ω
2
g) of Ωg with δ(s) ∈ Ω1

g and δ(s+) ∈ Ω2
g, if

the corresponding star exists in Λ. Let Π1 be the union of δ(Xh) for all edges h ∈ C[s+, v1], let
Π2 be the union of δ(Yh) for all edges h ∈ C[a, s] ∪C[v2, b], and let Π3 be the union of δ(Yh\U)
for all edges h ∈ C[u1, a] ∪ C[b, u2]. Set Λ1 = ({S} ∪ Π1 ∪ Π2 ∪ Π3 ∪ Ω2

g ∪ δ(Z\U)) ∩ Λ and
Λ2 = Λ− Λ1. Clearly, (Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).
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• S is of Type 2. In this case, let Λ1 = ({S} ∪ δ((Y ∪ Z)\U)) ∩ Λ and Λ2 = Λ − Λ1. Then
(Λ1,Λ2) is an equitable subpartition of Λ, contradicting (5a).

Combining the above cases, we see that (16) holds.
The following statement follows instantly from (3)-(5) and (7).
(17) Let S1 = E[U1] and S2 = E[U2] be two odd sets in O. Then one of the following two

cases occurs:
• S1 and S2 are both of Type 1 and |U1 ∩ U2| ≤ 1;
• Si is of Type 1, S3−i is of Type 2, and Ui ⊆ U3−i for i = 1 or 2.
(18) |O| = 2.
Assume the contrary: |O| ≥ 3. Let Si = E[Ui] for i = 1, 2, 3 be three odd sets in O. By

(17), we may assume that S1 and S2 are of Type 1, with u1u2 ∈ S1 and v1v2 ∈ S2, while S3

is of Type 2. In view of (3) (with S2 in place of S), S3 = P0 + P1, where P0 is an odd cycle
containing u1u2, and P1 is an odd path containing v1v2 and having only its two ends c and d
in common with P0. Let Q stand for the cd-subpath of P0\u1u2. From (3) and (17), we obtain
G[U1] = P0 and G[U2] = Q ∪ P1. Thus V (Q) ⊆ U1 ∩ U2 and hence |U1 ∩ U2| ≥ 2, contradicting
(17). So (18) is justified.

Let O = {E[U1], E[U2]}. By (17) and symmetry, we may assume that E[U1] is of Type
1 and contains u1u2. If E[U2] is of Type 1, then v1v2 is contained in E[U2] by (17). Let
Λ1 = {E[U1], E[U2]} ∪ (δ((Y ∪ Z)\(U1 ∪ U2)) ∩ Λ) and Λ2 = Λ − Λ1. Then (Λ1,Λ2) is an
equitable subpartition of Λ; this contradiction to (5a) implies that E[U2] is of Type 2. Hence
U1 ⊆ U2 by (17).

(19) δ(y) 6∈ Λ for some y ∈ U1 ∩ Y . Otherwise, δ(N(y)) ⊆ Λ for all y ∈ U1 ∩ Y by Lemma
5.3 as U1 ⊆ U2. Let Λ1 = {E[U1], E[U2]}∪ (δ((Y ∪Z)\U2)∩Λ) and Λ2 = Λ−Λ1. Then (Λ1,Λ2)
an equitable subpartition of Λ, contradicting (5a).

(20) Let f be an edge on C\{u1u2, v1v2} such that δ(y) 6∈ Λ for some y ∈ U1 ∩ Yf . Then f
is unsaturated.

Assume the contrary: δ(V (P )\X) ⊆ Λ for some P ∈ Pf . Let Q be the path in Pf with
V (Q) ⊆ U1. Then P 6= Q. Let U ′

1 = (U1\V (Q)) ∪ V (P ), and let Λ′ be obtained from Λ by
replacing {E[U1]}∪δ(V (P )∩Y ) with {E[U ′

1]}∪δ(V (Q)∩Y ). Then Λ′ dominates Λ and satisfies
(5a-d). Since E[U ′

1] is of Type 1 and U ′
1 6⊆ U2, we reach a contradiction to (17) (with Λ′ in place

with Λ). So (20) is true.
Let ab be the representing chord of C for E[U1] with a on C[u1, v1]. By (19) and (20), C[b, a]

contains an unsaturated edge, and hence contains a strongly unsaturated edge g = ss+ with
respect to u1u2 by (10).

By Lemma 5.5, Ωg admits an equitable partition (Ω1,Ω2) with δ(s) ∈ Ω1 and δ(s+) ∈ Ω2,
if the corresponding star exists in Λ. By symmetry, we may assume that g is on C[u1, a]. Let
Π1 be the union of δ(Xh) for all edges h ∈ C[u1, s], let Π2 be the union of δ(Yh) for all edges
h ∈ C[s+, a] ∪ C[b, u2], and let Π3 be the union of δ(Yh\U2) for all edges h ∈ C[a, v1] ∪ C[v2, b].
Set Λ1 = {E[U2]} ∪ ((Π1 ∪Π2 ∪ Π3 ∪ Ω1 ∪ δ(Z)) ∩ Λ) and Λ2 = Λ− Λ1. Clearly, (Λ1,Λ2) is an
equitable subpartition of Λ, contradicting (5a).

Combining the above subcases, we conclude that G9 is ESP.
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6 Proof of Theorem 1.4

In Section 3 we have established the “if” part of Theorem 1.4 (see Lemma 3.2); the objective of
this section is to establish its “only if” part. For this purpose, we need two summing operations
on graphs.

Let H1 and H2 be two graphs. As usual, the 0-sum of H1 and H2 is their disjoint union.
The 1-sum of H1 and H2 is obtained by first choosing an edge aibi of Hi for i = 1, 2 such that
bi has degree one in Hi, then deleting bi from Hi, and finally identifying a1 and a2 (let a be the
resulting vertex); see Figure 19 for an illustration.

Figure 19: The 1-sum of two graphs

Lemma 6.1. Let H be the 0-sum of H1 and H2. If both σ(H1) and σ(H2) are box-TDI, then
so is σ(H).

Proof. Write the linear system σ(Hi) as Aix ≤ bi, x ≥ 0 for i = 1, 2, and write σ(H) as
Ax ≤ b, x ≥ 0. Since H is the 0-sum of H1 and H2, by definition U ⊆ T (H) if and only if
U ⊆ T (Hi) for i = 1 or 2. Thus

A =

ñ

A1 0
0 A2

ô

and b =

ñ

b1
b2

ô

.

Therefore the statement holds trivially.

Lemma 6.2. Let H be the 1-sum of H1 and H2. If both σ(H1) and σ(H2) are box-TDI, then
so is σ(H).

Proof. Recall the definition: H = (V,E) is obtained from H1 = (V1, E1) and H2 = (V2, E2)
by first choosing an edge aibi of Hi for i = 1, 2 such that bi has degree one in Hi, then deleting
bi from Hi, and finally identifying a1 and a2 (let a be the resulting vertex). Write the linear
system σ(H) as Ax ≤ b, x ≥ 0. Assume on the contrary that σ(H) is not box-TDI. Then there
exist l ∈ QE

+ and u ∈ (Q+ ∪ {+∞})E with l ≤ u, such that Ax ≤ b, l ≤ x ≤ u, x ≥ 0 is not a
TDI-system; subject to this, we assume that

(1) L(a) =
∑

e∈δ(a) l(e) is maximized.
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With a slight abuse of notation, we write Max(A, b, l,u,w) for both the linear program
max{wTx : Ax ≤ b, l ≤ x ≤ u, x ≥ 0} and its optimal value, and write Min(A, b, l,u,w) for
both the linear program min{αTb − βT l + γTu : αTA − βT + γT ≥ wT , α,β,γ ≥ 0} and its
optimal value. For a detailed description of this primal-dual pair, refer to the paragraph below
Lemma 3.1. By the definition of TDI systems, there exists w ∈ ZE such that Min(A, b, l,u,w)
has finite optimum, but has no integral optimal solution. Observe that

(2) for any optimal solution x to Max(A, b, l,u,w), we have x(e) = l(e) for all e ∈ δ(a).
Suppose the contrary: there exists an optimal solution x to Max(A, b, l,u,w) such that

x(f) > l(f) for some f ∈ δ(a). Let θ = (x(f)− l(f))/2. Then θ > 0. Let l̄ be obtained from l

by replacing l(f) with l(f)+ θ. Then x remains to be an optimal solution to Max(A, b, l̄,u,w),
because the feasible region of Max(A, b, l̄,u,w) is a subset of that of Max(A, b, l,u,w). So
Max(A, b, l,u,w) = Max(A, b, l̄,u,w). Since L̄(a) =

∑

e∈δ(a) l̄(e) > L(a), there exists an inte-
gral optimal solution (α,β,γ) to Min(A, b, l̄,u,w) by (1) and assumption. Note that (α,β,γ)
is also feasible to Min(A, b, l,u,w). Furthermore, β(f) = 0 by complementary slackness as
x(f) > l̄(f). Thus αTb − βT l + γTu = αTb − βT l̄ + γTu, which implies that (α,β,γ) is an
integral optimal solution to Min(A, b, l,u,w); this contradiction justifies (2).

Set εi =
∑

e∈δ(a)∩Ei
l(e) for i = 1, 2. Then

(3) ε1 + ε2 ≤ 1.
To justify this, let x be an optimal solution to Max(A, b, l,u,w). From the restricted

Edmonds system, we see that
∑

e∈δ(a) x(e) ≤ 1. By (2), we obtain
∑

e∈δ(a) x(e) = ε1 + ε2. Thus
(3) follows.

Let H ′ = (V ′, E′) be the 0-sum of H1 and H2. By Lemma 6.1, σ(H ′) is box-TDI. Write
σ(H ′) as Ax′ ≤ b′,x′ ≥ 0 and define

(4) l′ ∈ QE′

+ , u′ ∈ (Q+ ∪ {+∞})E
′
, and w′ ∈ ZE′

such that
• l′(e) = l(e), u′(e) = u(e), w(e) = w(e) for all e ∈ E′\{a1b1, a2b2},
• l′(a1b1) = ε2, l

′(a2b2) = ε1, u
′(a1b1) = u′(a2b2) = +∞, and w′(a1b1) = w′(a2b2) = 0.

Since no constraint x′(e) < +∞ appears in Max(A′, b′, l′,u′,w′), neither γ′(a1b1) nor γ′(a2b2)
is introduced in Min(A′, b′, l′,u′,w′) by (4).

(5) Max(A, b, l,u,w) = Max(A′, b′, l′,u′,w′).
To justify this, let x be an optimal solution to Max(A, b, l,u,w), and let x′ ∈ RE′

be
defined by x′(e) = x(e) for all e ∈ E′\{a1b1, a2b2}, x′(a1b1) = ε2, and x′(a2b2) = ε1. In
view of (2) and (4), x′ is a feasible solution to Max(A′, b′, l′,u′,w′) with (w′)Tx′ = wTx. So
Max(A, b, l,u,w) ≤ Max(A′, b′, l′,u′,w′).

Assume on the contrary that Max(A, b, l,u,w) < Max(A′, b′, l′,u′,w′). Let x and x′ be
optimal solutions to Max(A, b, l,u,w) and Max(A′, b′, l′,u′,w′), respectively. By (4), we have
∑

e∈Ei\{aibi} w
′(e)x′(e) >

∑

e∈Ei\{aibi}w(e)x(e) for i = 1 or 2, say the former. Let x̄ ∈ RE be
defined by x̄(e) = x′(e) for all e ∈ E1\{a1b1} and x̄(e) = x(e) for all e ∈ E2\{a2b2}. Note
that

∑

e∈δ(a) x̄(e) =
∑

e∈E1\{a1b1} x
′(e) +

∑

e∈E2\{a2b2} x(e) ≤ 1− x′(a1b1) +
∑

e∈E2\{a2b2} x(e) ≤
1− ε2 + ε2 = 1, where the last inequality follows from (2) and (4). So x̄ is a feasible solution to
Max(A, b, l,u,w), with wT x̄ > wTx; this contradiction establishes (5).

Since σ(H ′) is box-TDI, Min(A′, b′, l′,u′,w′) has an integral optimal solution (α′,β′,γ ′).
For this solution the constraints corresponding to edges in δ(a1) ∪ δ(a2) read, respectively,

(6)
∑

e∈δ(v) α
′(v)+

∑

e∈E[U ] α
′(U)−β′(e)+γ′(e) ≥ w′(e) for all e ∈ δ(a1)∪δ(a2)\{a1b1, a2b2};

(7) α′(ai)− β′(aibi) ≥ 0 for i = 1, 2.
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We may assume that both equalities in (7) hold with equalities; that is,
(8) α′(ai)− β′(aibi) = 0 for i = 1, 2.
Otherwise, let θi = α′(ai) − β′(aibi). Then at least one of θ1 and θ2 is positive. Let

β′′ be obtained from β′ by replacing β′(a1b1) with β′(a1b1) + θ1 and replacing β′(a2b2) with
β′(a2b2) + θ2. It is easy to see that (α′,β′′,γ ′) is a feasible solution to Min(A′, b′, l′,u′,w′),
with (α′)Tb′− (β′′)T l′+(γ′)Tu′ ≤ (α′)T b′− (β′)T l′+(γ′)Tu′. So (α′,β′′,γ ′) is also an optimal
solution to Min(A′, b′, l′,u′,w′). Hence we may assume (8), otherwise replace (α′,β′,γ ′) with
(α′,β′′,γ ′).

(9) ε1 + ε2 = 1.
Otherwise, ε1 + ε2 < 1 by (3). Let x be an optimal solution to Max(A, b, l,u,w). By

(2), we have
∑

e∈δ(a) x(e) = ε1 + ε2 < 1. Let x′ ∈ RE′
be defined by x′(e) = x(e) for all

e ∈ E′\{a1b1, a2b2}, x
′(a1b1) = ε2, and x′(a2b2) = ε1. In view of (2) and (3), x′ is a feasible

solution to Max(A′, b′, l′,u′,w′). Note that wTx = (w′)Tx′ by (4), so x′ is an optimal solution
to Max(A′, b′, l′,u′,w′) by (5). Since

∑

e∈δ(ai) x
′(e) =

∑

e∈Ei\{aibi} x(e) + ε3−i = ε1 + ε2 < 1, we
deduce from complementary slackness that α′(a1) = α′(a2) = 0. Hence β′(a1b1) = β′(a2b2) = 0
by (8). Let (α,β,γ) be defined by α(u) = α′(u) for all u ∈ I (H) ∪ T (H)\{a}, α(a) = 0,
β(e) = β′(e), γ(e) = γ′(e) for all e ∈ E. It is routine to check check that (α,β,γ) is a feasible
solution to Min(A, b, l,u,w), with (α′)Tb′ − (β′)T l′ + (γ ′)Tu′ = αTb − βT l + γTu. By (5),
(α,β,γ) is an integral optimal solution to Min(A, b, l,u,w), contradicting our assumption. So
(9) is justified.

We may further assume that
(10) α′(a1) = α′(a2). So β′(a1b1) = β′(a2b2) by (8).
Otherwise, symmetry allows us to assume that α′(a1) > α′(a2). Set θ = α′(a1)−α′(a2). Let

α′′ be obtained from α′ by replacing α′(a2) with α′(a2) + θ, and let β′′ be obtained from β′ by
replacing β′(e) with β′(e) + θ for all e ∈ δ(a2). It is easy to see that (α′′,β′′,γ ′) satisfies the
constraints corresponding to (6) and (7), which implies that (α′′,β′′,γ′) is a feasible solution
to Min(A′, b′, l′,u′,w′). By (4) and (9), we obtain (α′′)Tb′ − (β′′)T l′ + (γ ′)Tu′ = [(α′)Tb′ +
θ] − [(β′)T l′ + θ

∑

e∈δ(a2) l
′(e)] + (γ ′)Tu′ = (α′)Tb′ − (β′)T l′ + (γ ′)Tu′ + [θ − θ(ε1 + ε2)] =

(α′)Tb′ − (β′)T l′ + (γ ′)Tu′. So (α′′,β′′,γ ′) is also an optimal solution to Min(A′, b, l′,u′,w′).
Hence we may assume (10), otherwise replace (α′,β′,γ ′) with (α′′,β′′,γ ′).

Let us now construct an integral optimal solution (α,β,γ) to Min(A, b, l,u,w) by setting
• α(u) = α′(u) for u ∈ (I (H) ∪ T (H))\a;
• α(a) = α′(a1);
• β(e) = β′(e) and γ(e) = γ′(e) for all e ∈ E,

From (10) it is easy to see that (α,β,γ) is feasible to Min(A, b, l,u,w).
(11) αTb− βT l+ γTu = (α′)Tb′ − (β′)T l′ + (γ ′)Tu′.
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Indeed, by direct computation we obtain

αTb− βT l + γTu

=
∑

v∈I (H)

α(v) +
∑

U∈T (H)

⌊
1

2
|U |⌋α(U) −

∑

e∈E

l(e)β(e) +
∑

e∈E

u(e)γ(e)

=
∑

v∈I (H)

α(v) +
∑

U∈T (H)

⌊
1

2
|U |⌋α(U) −

∑

e∈E

l(e)β(e) +
∑

e∈E

u(e)γ(e) + (α′(a2)− β′(a2b2))

= α′(a1) + α′(a2)− ε2β
′(a1b1)− ε1β

′(a2b2) +
∑

v∈I (H′)\{a1,a2}

α′(v) +
∑

U∈T (H′)

⌊
1

2
|U |⌋α′(U)

−
∑

e∈E′\{a1b1,a2b2}

l′(e)β′(e) +
∑

e∈E′\{a1b1,a2b2}

u′(e)γ′(e)

= α′(a1) + α′(a2) +
∑

v∈I (H′)\{a1,a2}

α′(v) +
∑

U∈T (H′)

⌊
1

2
|U |⌋α′(U)−

∑

e∈E′

l′(e)β′(e)

+
∑

e∈E′

u′(e)γ′(e)

= (α′)T b′ − (β′)T l′ + (γ ′)Tu′,

where the second and third equalities follow from (8)-(10). So (11) holds.
Combining (5) and (11), we conclude that (α,β,γ) is an integral optimal solution to

Min(A, b, l,u,w), contradicting our assumption. Therefore σ(H) is box-TDI.

We are eventually ready to establish the main result of this paper.
Proof of Theorem 1.4. The “if” part follows from Lemma 3.2. It remains to derive the

“only if” part. We apply induction on |V (G)|. The case |V (G)| = 1 is trivial, so we proceed to
the induction step. By Lemmas 3.1, 6.1 and 6.2, we may assume that G cannot be represented
as the k-sum (k = 0, 1) of two smaller graphs (otherwise we are done). Thus G is i-2-c. From
Theorem 4.1, we deduce that G is a bipartite graph or is a subgraph of one of the nine graphs
G1, G2, . . . , G9 (see Figure 4). By Lemmas 5.7-5.16 and Lemma 5.1, σ(K) is ESP and hence
box-TDI, by Theorem 1.8, if K is a bipartite graph or one of G1, G2, . . . , G9. In view of Lemma
3.1, π(K) is also box-TDI. From Lemma 3.8, we thus conclude that π(G) is a box-TDI system.

This completes the proof of our theorem.
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