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Abstract

Let G = (V, E) be a graph. The matching polytope of G, denoted by P(G), is the convex
hull of the incidence vectors of all matchings in G. As proved by Edmonds in 1965, P(G) is
determined by the following linear system 7(G):

e z(e) >0 for each e € E;

e 2(6(v)) <1 for each v € V;

e z(E[U]) < [3]U]] for each U C V with |U] odd.

In 1978, Cunningham and Marsh strengthened this theorem by showing that 7(G) is always
totally dual integral. In 1984, Edmonds and Giles initiated the study of graphs G for which
7(G) is box-totally dual integral. In this paper we present a structural characterization of
all such graphs, and develop a general and powerful method for establishing box-total dual
integrality.

MSC 2000 subject classification. Primary: 90C10, 90C27, 90C57.
OR/MS subject classification. Primary: Programming/graphs.
Key words. Matching, polytope, linear system, box-total dual integrality, signed graph.

*Supported in part by NSF grant DMS-1500699.
fSupported in part by the Research Grants Council of Hong Kong.



1 Introduction

Let Az < b, > 0 be a rational linear system and let P denote the polyhedron {x : Ax <
b, ¢ > 0}. We call P integral if it is the convex hull of all integral vectors contained in P. As
shown by Edmonds and Giles [10], P is integral if and only if the maximum in the LP-duality
equation
max{wlx: Az < b, > 0} = min{y’b:yTA > w’, y >0}

has an integral optimal solution, for every integral vector w for which the optimum is finite.
If, instead, the minimum in the equation enjoys this property, then the system Ax < b, € > 0
is called totally dual integral (TDI). Furthermore, the system is called boz-totally dual integral
(box-TDI) if Az < b, l < & < u, > 0 is TDI for all rational vectors I and w; in the
literature there is an equivalent definition of box-TDI systems, where the coordinates of u are
also allowed to be 400 (see Schrijver [17], page 318). It is well known that many combinatorial
optimization problems can be naturally formulated as integer programs of the form max{w’z :
x € P, integral}; if P is integral, then such a problem reduces to its LP-relaxation, thereby is
solvable in polynomial time. Edmonds and Giles [10] proved that total dual integrality implies
primal integrality: if Az < b, & > 0 is TDI and b is integer-valued, then P is integral. So
the model of TDI systems plays a crucial role in combinatorial optimization; in particular, it
serves as a general framework for establishing various min-max theorems. The importance of
box-TDI systems can be seen from the fact that box constraints arise frequently in practice
and that box-total dual integrality strengthens total dual integrality. Therefore, these three
integrality properties have been subjects of extensive research; they are also the major concern
of polyhedral combinatorics (see Schrijver [17, 18] for comprehensive and in-depth accounts).
Since it is N P-hard in general to recognize linear systems with such integrality properties [14, 5],
we restrict our attention to Edmonds’ system for defining the matching polytope in this paper.

Let G = (V, E) be a graph. The matching polytope of G, denoted by P(G), is the convex hull
of the incidence vectors of all matchings in G. For each v € V', we use §(v) to denote the set of
all edges incident with v in G, and use d(v) (or dg(v) under some circumstances) to denote the
degree of v. For each U C V', we use G[U] to denote the subgraph of G induced by U, and use
E[U] to denote the edge set of G[U]. Consider the linear system 7(G) consisting of the following
inequalities:

(i) z(e) >0 for each e € F;
(ii)) z(0(v)) <1 for each v € V;
(ili) =(E[U)) < |3|U]] for each U C V with |U| odd,
where and throughout z(F) = 3" .cr x(e) for any F' C E. From a theorem of Birkhoff [1], it
follows that P(G) is determined by the inequalities (i) and (ii) if and only if G is bipartite. For a
general graph G, Edmonds [9] showed that adding (iii) is enough to give a description of P(G).

Theorem 1.1. (Edmonds [9]) For any graph G = (V, E), the matching polytope P(G) is deter-
mined by 7(G).

As remarked by Schrijver [18], the matching polytope forms the first class of polytopes whose
characterization does not simply follow just from total unimodularity, and its description was a
breakthrough in polyhedral combinatorics.



Pulleyblank and Edmonds [15] characterized which of the inequalities in 7(G) give a facet
of the matching polytope. Define

e I[(G)={veV:d) >3, ord(v) =2 and v is contained in no triangle, or d(v) = 1 and
the neighbor of v also has degree 1},
e T(G)={U CV: |U| >3, GU] is factor-critical and 2-connected}.
Recall that a graph H is factor-critical if H\v has a perfect matching for each vertex v of H
(see Lovasz and Plummer [13]).

Theorem 1.2. (Pulleyblank & Edmonds [15]) For any graph G = (V, E), each inequality in
m(QG) is a nonnegative integer combination of the following inequalities:

(i) z(e) >0 for each e € E;
(i1) x(d(v)) <1 for each v € I(G);
(iii) w(E[U]) < [3|U]) for each U C T(G).
So they also determine the matching polytope P(G).

Cunningham and Marsh [7] strengthened Edmonds’ matching polytope theorem (that is,
Theorem 1.1) by showing that 7(G) is actually TDI, which yields a min-max relation for the
maximum weight of a matching in G (see Theorem 25.2 in Schrijver [18]).

Theorem 1.3. (Cunningham & Marsh [7]) For any graph G = (V, E), the Edmonds system
m(G) is TDI.

Motivated by Theorems 1.1 and 1.3, Edmonds and Giles [11] initiated the study of graphs G
for which 7(G) is box-TDI, and discovered the following counterexmaple. The purpose of this
paper is to give a structural characterization of all such graphs.

Figure 1: A graph G for which 7(G) is not box-TDI

We define one term before presenting the main theorem. A graph K is called a fully odd
subdivision of a graph H if K is obtained from H by subdividing each edge of H into a path of
odd length (possibly the length is one).

Theorem 1.4. Let G = (V, E) be a graph. Then the Edmonds system mw(G) is box-TDI if and
only if G contains no fully odd subdivision of Fy, Fs, F3, or Fy (see Figure 2) as a subgraph.
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Figure 2: Forbidden subgraphs

A polyhedron is called box-TDI if it can be defined by a box-TDI system. Cook [6] ob-
served that box-total dual integrality essentially is a property of polyhedra (see Theorem 22.8
in Schrijver [17]).

Theorem 1.5. (Cook [6]) Let Q be a box-TDI polyhedron and let Cx < d be an arbitrary TDI
system such that Q = {x : Cx < d}. Then Cx < d is boz-TDI.

So Theorem 1.4 actually tells us when the matching polytope is box-TDI. To establish the
“if” part of this theorem, we need a structural description of all graphs under consideration.
Due to the strict parity restriction, fully odd subdivisions are much more difficult to manipulate
than subdivisions, minors, and odd minors (see, for instance, [2, 12, 16]); this drawback makes
our description rather delicate and sophisticated. The other difficulty with the proof lies in the
lack of a proper tool for establishing box-total dual integrality. To the best of our knowledge,
there are only two general-purpose methods presently available, which are described below.

Theorem 1.6. (Cook [6]) A rational system Ax < b, x > 0, with x € R", is boz-TDI if and
only if it is TDI and for any rational vector ¢ = (ci,ca,...,cn)’, there exists an integral vector
¢ = (61,8,...,6,)T such that |c;| < & < [¢;], for all 1 <i < n, and such that every optimal
solution of max {cTx : Ax < b, = > 0} is also an optimal solution of max {¢'x : Ax < b, x >

0}.

Nevertheless, this necessary and sufficient condition is very difficult to verify in practice. In
[18], Schrijver proved the following theorem (see Theorem 5.35), which implies that a number
of classical min-max theorems can be further strengthened with box-TDI properties.

Theorem 1.7. (Schrijver [18]) Let Az < b, > 0 be a rational system. Suppose that for any
rational vector ¢, the program max{c’x : Az < b, x > 0} has (if finite) an optimal dual solution

y such that the rows of A corresponding to positive components of y form a totally unimodular
submatriz of A. Then Ax < b, x > 0 is box-TDI.

Since the aforementioned Edmonds system does not necessarily meet the total unimodularity
requirement, Schrijver’s theorem can hardly be applied in our proof directly. In this paper we
shall develop a general and powerful method for establishing box-total dual integrality; our proof
of Theorem 1.4 will rely heavily on this new approach.



Let us introduce some notations and terminology before proceeding. As usual, let Q and
Z denote the sets of rationals and integers, respectively, and let Q;, and Z, denote the sets
of nonnegative numbers in the corresponding sets. Set Z/k = {x/k : x € Z} for each integer
k > 2. For any set  of numbers and any finite set K, we use Q¥ to denote the set of vectors
x = (z(k) : k € K) whose coordinates are members of Q. For each J C K, the |J|-dimensional
vector x|; = (x(j) : j € J) stands for the projection of x to Q7.

Throughout this paper, a collection is a synonym of a multiset in which elements may occur
more than once, while elements of a set or a subset (of a collection) are all distinct. So if
X = {z1,22,...,2y} is a collection, then possibly z; = z; for some distinct ¢, j. The size | X|
of X is defined to be m. If Y = {y1,y2,...,yn} is also a collection, then the union X UY of
X and Y is the collection {x1,22,...,Zm,Y1,Y2,---,Yn}- Thus the size of X UY is |X| + |Y],
which is different from what happens to the union of two sets. Similarly, we can define X NY
and X — Y of these two collections.

Let Az < b, > 0 be a rational system, where A = [a;;]mxn and b = (b1, bo, ... )T We
call A integral if all a;; are integers (not necessarily nonnegative). Let R be the set of indices
of all rows of A, and let S be the set of indices of all columns of A. For any collection A of
elements of R and any element s of S, set b(A) = >",cp by and da(s) = Y ,.cp ars. Notice that if
r appears k times in A, then b, is counted k times in b(A), and a,s is counted k times in dp(s).
An equitable subpartition of A consists of two collections A1 and Ag of elements of R (which are
not necessarily in A) such that

() b(A1) +b(Ag) < b(A);
(i) da,un,(s) > da(s) for all s € S; and
(iii) min{da,(s),dn,(s)} > |da(s)/2] for all s € S.

We call the system Ax < b, > 0 equitably subpartitionable, abbreviated ESP, if every collection
A of elements of R admits an equitable subpartition. We refer to the above (i), (ii), and (iii) as
ESP property.

Theorem 1.8. Every ESP system Ax < b, x > 0, with A integral, is box-TDI.

We point out that the ESP property was first introduced by Ding and Zang [8] for linear
systems of the form Ax > 1, * > 0, where A is a 0-1 matrix and 1 is an all-one vector,
which has proved to be very effective in dealing with various packing and covering problems (see
[8, 4]). The property defined above is clearly a natural extension of the original definition in the
most general setting. Although recognizing box-TDI systems is an optimization problem, as we
shall see, our approach based on the ESP property is of transparent combinatorial nature and
hence is fairly easy to work with. Recently we have successfully characterized several important
classes of box-perfect graphs (see, for instances, [3, 6]) using this approach; one of our theorems
asserts that every parity graph is box-perfect, which confirms a conjecture made by Cameron
and Edmonds [3] in 1982. We strongly believe that the ESP property is exactly the tool one
needs for the study of box-perfect graphs, and shall further explore its connection with other
optimization problems.

The remainder of this paper is organized as follows. In Section 2, we show that the ESP
property implies box-total dual integrality, thereby proving Theorem 1.8. In Section 3, we



demonstrate that every fully odd subdivision of F}, Fy, F3, and Fj is an obstruction to box-total
dual integrality, which establishes the “only if” part of Theorem 1.4. In Section 4, we present
a structural description of all internally 2-connected graphs with no fully odd subdivision of
Fy, Fs, F3, or Fy. In Section 5, we show that the restricted Edmonds system specified in Theorem
1.2 is ESP for all graphs considered in the preceding section. In Section 6, we derive the “if”
part of Theorem 1.4 (thus finish the proof) based on two summing operations.

2 ESP Property

The purpose of this section is to prove Theorem 1.8, which asserts that the ESP property
is sufficient for a linear system to be box-TDI. With a slight abuse of notation, we write
Min(A, b,l,u,w) for both the linear program min{a’b — 871 + vTu : oA — g7 + 4T >
w?, a, B,y > 0} and its optimal value. When integrality is imposed on its solutions, we write
Min(A, b,1,u,w;Z) for both the corresponding integer program and its optimal value. Similarly,
we can define Min(A, b,l,u,w;Z/2). Recall the notations introduced in the preceding section:
R is the set of indices of all rows of A, and S is the set of indices of all columns of A. Suppose
(a*, B%,~*) is an optimal solution to Min(A, b, 1, u, w;Z). Let A be the collection of elements in
R, such that each r € R appears precisely o*(r) times in A; we call A the row-index collection
of A corresponding to a*.
We propose to establish the following statement, which clearly implies Theorem 1.8.

Theorem 2.1. Let Ax < b, > 0 be a rational system, with A integral. Suppose that for any
l,u € QY and w € Z° with finite Min(A, b,1,w,w), there exists an optimal solution (a*, 3%,~*)
to Min(A, b, 1, u,2w;7Z), such that the row-index collection of A corresponding to o admits an
equitable subpartition. Then Ax < b, x > 0 is box-TDI.

The proof given below is an adaption of that of Theorem 1.2 in [4]. For completeness and
ease of reference, we include all details here.

Schrijver and Seymour [17] established that a rational system Az < b, l < x <wu, x >0
is TDI if and only if Min(A, b,l,w, w;Z/2) = Min(A, b,l,u,w;Z) for any integral vector w for
which Min(A, b, l, u, w) is finite (see Theorem 22.13 in Schrijver [17]), which amounts to saying
that Min(A,b,l,u,2w;Z) = 2 - Min(A, b,l,u, w;Z). By definition, the LHS is bounded above
by the RHS. So we get the following necessary and sufficient condition for total dual integrality.

Lemma 2.2. The rational system Ax < b, l < x < u, x > 0 is TDI if and only if
Min(A,b,1,u,2w;Z) > 2 - Min(A, b,l, u, w;7Z)
for any integral vector w for which Min(A, b,l, u,w) is finite.

Proof of Theorem 2.1. By Lemma 2.2, it suffices to show that for any I € Q°, u €
(QU {+00})®, and w € Z° with finite Min(A,b,1, u,w), we have Min(A,b,l, u,2w;Z) >
2-Min(A4, b,l,u, w;Z). According to the hypothesis, there exists an optimal solution (a*, 3*,~v*)
to Min(A, b, 1, u,2w;Z), such that the row-index collection A of A corresponding to a* admits
an equitable subpartition (A1,A3). Our objective is to find a feasible solution («,3,7y) to
Min(A, b, 1, u, w;Z) based on both (a*, 8*,7*) and (A1, Ay), with a”’b—BT14+~"Tu < [(a*)Tb—
(B%) U+ (v*) /2



Let us make some observations about 3* and ~*. For convenience, we may assume that

(1) B*(s)y*(s) =0 for all s € S.

Otherwise, 5*(s) # 0 # ~v*(s) for some column index s € S. Set 6 = Min{8*(s),v*(s)}.
Clearly § > 0. Let B be the vector obtained from B* by replacing B*(s) with £*(s) — 4,
and let 4/ be the vector obtained from ~4* by replacing v*(s) with v*(s) — . Observe that
(a*,3,7') is a feasible solution to Min(A, b,l, u,2w;Z), and that (a*)Tb — (8)71 + (v )Tu =
(@")7b— (8L + (v") " — (u(v) — 1(0)5 < ()76 — (8)1+ (") . So (a*, B,') is also
an optimal solution to Min(A, b, 1, u,2w;Z). Hence (1) holds because otherwise we can replace
(a*, B*,~*) with (a*,3,7') and repeat this process.

(2) B*(s) =0 for all s € S with I(s) < 0.

Otherwise, 5*(s) > 0 for some s € S with I(s) < 0. Let 3 be the vector obtained from 3*
by replacing 8*(s) with zero. Clearly, (a*,3,~*) is a feasible solution to Min(4, b, 1, u, 2w;Z),
whose objective value is smaller than that of (a*, 3%, v*); this contradiction justifies (2).

The inequality contained in (a*)T A—(8*)T +(v*)T > 2w’ corresponding to a column index
s reads dp(s) — B*(s) +v*(s) > 2w(s), which can be strengthened as follows.

(3) da(s) — B*(s) +7*(s) = 2w(s) for all s € S with 5*(s) +~*(s) > 0.

Assume the contrary: da(s) — 8*(s) +v*(s) > 2w(s) for some s € S with 8*(s) +~*(s) > 0.
Set 0 = dp(s) — 8*(s) +v*(s) — 2w(s). By assumption, 6 > 0. If 5*(s) > 0, then v*(s) = 0 and
I(s) > 0 by (1) and (2); in this case, let 3’ be the vector obtained from B* by replacing 3*(s)
with 5*(s) + 0 and let 4/ = v*. If 4*(s) > 0, then 8*(s) = 0 by (1); in this case, let 4’ be the
vector obtained from v* by replacing v*(s) with max{0,~v*(s)—d} and let 3’ = B*. Observe that
(a*,3,7') is a feasible solution to Min(A, b, 1, u,2w;Z), and that (a*)Tb — (8*)71 + (v*)Tu >
(@) 'b—(B8)T1+ (v")Tu. Hence (a*,3',~’) is also an optimal solution to Min(A4, b, 1, w, 2w; Z).
Let us replace (a*, 3*,4*) with (a*,3',~’) and repeat this process until we get stuck. Clearly,
the resulting solution satisfies (1), (2) and (3) simultaneously.

For ¢ = 1,2, define a vector a; € Zf, such that a;(r) is precisely the multiplicity of row
index r in A; for all » € R. By (i) of the ESP property, b(A1) + b(A2) < b(A). So

(4) afb+ alb < (a*)T.

Consider an arbitrary column index s € S. Suppose dp,(s) > da,(s), where {p,q} = {1,2}.
Since A is integral, da(s) and dp,(s) for i = p,q are all integers. By (ii) and (iii) of the ESP
property, we have

(5) da,(s) = [da(s)/2] and da,(s) = [da(s)/2].

Set

o 6y(5) = [8*(5)/2] and 7p(s) = |17(s)/2), and

® By(s) = [B*(s)/2] and 74(s) = [v*(s)/2].

Then

(6) By(5) + Ba(5) = B*(5) and 7(s) + 7(5) = 7*(5).
Let us show that

(7) da,(s) — Bi(s) + vi(s) > w(s) for i =1,2.

We distinguish between two cases according to the parity of d(s). If da(s) is even, then both
B3*(s) and 7*(s) are even by (1) and (3). Thus da,(s)—Bi(s) +7i(s) = (da(s)—B*(s)+7"(s))/2 =
w(s) for i = 1,2 by (5). It remains to consider the case when da(s) is odd. If 8*(s) = v*(s) =0,
then, by (5) for i = 1,2, we have dp,(s)—Bi(s)+7i(s) = da,(s) > (da(s)—1)/2 > (2w(s)—1)/2 =
w(s) — 4. Thus dy,(s) — Bi(s) +7i(s) > w(s) for i = 1,2 as the left-hand side is an integer. So we



assume that §*(s)+~*(s) > 0. It follows from (3) that d(s)—8*(s)+7*(s) = 2w(s). Since dx(s)
“(

)—
is odd, so is —*(s) + v*(s). Moreover, 5*(s)v*(s) =0 by (1). From the definition, we see that
—By(5)+p(5) = (=57(5) +7"(5) —1)/2 and —Fy(s) +74(s) = (—(s) +7"(5)+1)/2. Combining
them with (5), we conclude that da,(s) — Bi(s) + 7i(s) > (da(s) — B*(s) + v*(s))/2 = w(s) for
i = p,q, which establishes (7).

Fori=1,2,set B; = (Bi(s) : s € S) and v, = (7i(s) : s € S). By (7), we have o} A—3,+~,; >
w?, and thus (az,,@”%) is a feasible solution to Min(A,1,u,w;Z). From (6), it follows that
B1+ By =B and y; + 73 = v Hence Y71 (=B] 1 +~]u) = —(871 + (v*)"u. Using (4),
we obtain alb — BX1 +~Tu < [(a*)Tb — (8*)71 + (v*)Tu]/2 for i = 1 or 2; the corresponding
(ai, B;,7;) is a solution to Min(A, b,l, u,w;Z) as desired. 1

3 Forbidden Structures

Let G = (V, E) be a graph and let o(G) be the system consisting of all the inequalities exhibited
in Theorem 1.2, which we call the restricted Edmonds system. By Theorems 1.2 and 1.3, 0(G) is
also a TDI system (see (41) on page 322 in Schrijver [17]). Thus the following statement follows
instantly from Theorem 1.5.

Lemma 3.1. The system o(G) is box-TDI if and only if 7(G) is box-TDI.

By definition, o(G) is box-TDI if and only if, for any I € QF, u € (Q U {+00})¥, and
w € ZF the minimum in the LP-duality equation

Maximize Y .cpw(e )51)7( e)

Subject to Y cesw) w(e) < for each v € I(G)

Yecrp]T(e) < L |U||]  for each U C T(G)
lle) < ()Su() foreache € E
z(e) >0 for each e €

= Minimize  Y,er(6) 2(v) + Lver(o)5|Ua(U) = Yeerl(e)Ble) + Seep ule)y(e)
Subject to Y cesw) (V) + Yeepp@(U) — B(e) +y(e) > w(e) for each e € E
a(u) >0 for each u € I(G) U T (G)
B(e), v(e) >0 for each e € F

has an integral optimal solution, provided the optimum is finite. These two problems are referred
to as G—Max and G—Min, respectively.

In this section we aim to prove the following lemma, which establishes the “only if” part of
Theorem 1.4.

Lemma 3.2. Let G = (V,E) be a graph containing a fully odd subdivision of some F; (see
Figure 2), with 1 <i <4, as a subgraph. Then w(G) (equivalently o(G)) is not box-TDI.

We break the proof into a few lemmas.

Lemma 3.3. The system o(F;) is not box-TDI for 1 <i < 4.



F3 F,
Figure 3: A labeling of forbidden subgraphs

Proof. Let F; = (V;, E;) and set R; = I(F;) UT(F;) for 1 < i < 4. To establish the
statement, we need to find I € QF, u € Q¥, and w € Z such that F;—Min has no integral
optimal solution for each i. For this purpose, we label each F; as depicted in Figure 3, and
distinguish among four cases.

Case 1. i = 1. Set w(e) = 1, I(e) = 0, and u(e) = 1/2 for each e € E;. Define € Q1
acQf BecQf, and v € QF as follows:

e x(e) =1/4if e € {e1,e9,e3} and 1/2 otherwise;

o o(u) =1/2 if u € {v1,va,v3} and 0 otherwise;

e 3(e) =0 for each e € E;; and

e y(e) =1/2if e € {e4, e5,e6} and 0 otherwise.

It is straightforward to verify that « and (e, 3, 7) are feasible solutions to F; —Max and F;—Min,
respectively, and have the same objective value of 9/4. By the LP-duality theorem, x and
(e, B,7) are optimal solutions to F;—Max and F;—Min, respectively, with optimal value z* =
9/4. Since {l(e),u(e)} C Z/2 for all e € Ey while z* ¢ Z/2, it follows that Fy—Min has no
integral optimal solution.

Case 2. i = 2. Set w(e) =1 if e € Ey\eq and w(eq) = 2, and set l(e) = 0 and u(e) = 1/2
for each e € E,. Define x € QF2, a € Qf2, B € QF2, and v € Q2 as follows:

o x(e) =1/4if e € {e1,e9,e3,€5,e3} and 1/2 otherwise;

o o(u) =1/2 if u € {v1, v2,v3,v4,{v1,v4,v5}} and 0 otherwise;

e 3(e) =0 for each e € Ey; and

e y(e) =1/2if e € {e4, e6,e7} and 0 otherwise.

It is easy to see that @ and («, 3,4) are feasible solutions to F»—Max and F»—Min, respectively,
and have the same objective value of 13/4. Similar to Case 1, we can thus deduce that F»—Min
has no integral optimal solution.

Case 3. i = 3. Set w(e) = 1if e € {e1,e9,e3,e5} and 2 otherwise, set I(e) = 0 for each
e € F3, and set u(e) = 1 if e € {es5,e7,es} and 1/2 otherwise. Define x € QF, a € QF,
B € QP2 and v € QF3 as follows:

o x(e) =1/4if e € {e1,e3,€5,e3} and 1/2 otherwise;

o a(u) =1/2 if u € {v1, vq,v7, {v1,04,v5,v6,v7}, V3} and 0 otherwise;

e 3(e) =0 for each e € Ey; and



e y(e) =1/2if e € {ea, e4,e6} and 0 otherwise.
It is routine to check that = and («,3,7) are feasible solutions to F3—Max and F3—Min,
respectively, and have the same objective value of 19/4. Similar to Case 1, we can thus imply
that F3—Min has no integral optimal solution.

Case 4. i = 4. Set w(e) = 1 if e € {es,e7,e5,e9} and 2 otherwise, set I(e) = 0 for each
e € By, and set u(e) = 2/3 if e € {e5,eg} and 1/3 otherwise. Define x € QF*, a € Qf4,
B € QP and v € QF* as follows:

o x(e)=1/61if e € {e1,e7,e9}, x(e5) = 1/2, x(eg) = 2/3, and 1/3 otherwise;

o a(u) =1/2 if u € {v1,v3, {v1,v2,v3,04,05}, V4 } and 0 otherwise;

e 3(e) =0 for each e € Ey; and

o y(e) =1/2if e € {ea, €3, €4, €6, €3} and 0 otherwise.
It is not difficult to verify that & and (a, 3,~) are feasible solutions to Fy—Max and F;—Min,
respectively, and have the same objective value of 9/2. Similar to Case 1, we can thus conclude
that Fy—Min has no integral optimal solution. |

The following simple observation can be found in Schrijver [17], on page 323.

Lemma 3.4. Let C' be obtained from a matriz C by deleting a column. If Cx < d, x > 0 is
box-TDI, then so is C'x < d, = > 0.

The following lemma essentially states that each face of a TDI system is TDI again (see
Theorem 22.2 in Schrijver [17]).

Lemma 3.5. Let Cx < d be a TDI system and let aTx < B be one of its inequalities. Then
the system Cx < d, —a’ax < —f is also TDI.

The lemma below follows immediately from the definition of box-TDI systems.

Lemma 3.6. Suppose a1 and ao are two rational vector with ay < o, and By and B2 are two
rational numbers with 81 > Ba. Then the system Cx < d, alx < B, alx < By, x > 0 is
boz-TDI if and only if Cx < d, alx < o, © > 0 is box-TDL

Lemma 3.7. Let Ax < b, x >0 and Az’ <b', ' > 0 be two rational systems such that

07 1 1 0] 1
o o 1 1 1
T
ZIT i of 0 -1 -1 i -1
A= |72 , A=lal 1 0 o0f, b= , and ¥/ =| 1 |,
A0 al 0 0 1 by 1
4y 1 A, 0 0 O b2 b,
4, 1 1 1] by +1

where ay > 0. If A'z' < b, 2’ > 0 is box-TDI, then so is Ax < b, > 0.

Proof. Let the rows and columns of A be indexed by disjoint sets R and S, respectively. We
partition R into {r1,r2}UR1 U Ry, where r; is the index of row ¢ and R; is the set of the indices of
all rows corresponding to A;, for ¢ = 1,2, and partition S into 7'U {q1 }, where ¢; is the index of
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the last column. Next, let the rows of A’ be indexed by the set R' = {p1,p2, p3,r1,72} U Ry U R2
and let the columns of A’ be indexed by the set S" = T'U {q1, g2, g3}, where p; is the index of
row i and ¢; is the index of the ¥ column succeeding T, for i = 1,2,3. Thus g3 is the index of
the last column of A’.

We aim to show that the system Ax < b, Il < x < u, x > 01is TDI for all I € Q° and
u € Q. To this end, let w be an arbitrary vector in Z° such that the optimal value of the
following LP-duality equation

A b b A
max{wlz|| I |z<|w |,z2>0% =min yT u yT 1| > wT,y >0 (3.1)
—I -1 -1 -1

is finite.
To verify that the minimum in (3.1) has an integral optimal solution, we define v’ € (Q U
{+00})%", I € Q%, and w' € Z%, such that
() Vs =1, w]s = w, w!ls = w, (I, ul,) = (max{0,1 — ug, },+00), (lhy,ly) = (I, ).
and wy, = wy, =0,

and consider the primal-dual pair

A v’ b’ A
max{wla' || I |2/ < | |, 27>0y=minyT | o ||y |I|>wT,y>0}.(32)
—1I - — —1I

In what follows, we refer to the four problems in (3.1) and (3.2) as (3.1)-Max, (3.1)-Min,
(3.2)-Max and (3.2)-Min, respectively. We first claim that

(2) The two problems (3.1)-Max and (3.2)-Max have the same optimal value.

To justify this, let & be an arbitrary feasible solution to (3.1)-Max, and let «’ € RS be
defined by «'|s = @, x}, = 1 — x4, and x;, = x4, It is easy to see that ' is a feasible solution
to (3.2)-Max. By (1), we have (w')Tz’ = wlz.

Conversely, for any feasible solution @’ to (3.2)-Max, set @ = x'|g. From the first three

inequalities contained in A’z < b’, we deduce that zj + ), < 1 and z, + z/, = 1. So
xy, < xy,. It follows that Az < b and hence z is a feasible solution to (3.1)-Max. Clearly,
w’x = (w')T2’. Combining the above two observations, we establish (2).

Since Az’ < b/, 2’ > 0 is a box-TDI system, the definition and (2) guarantee the existence
of an integral optimal solution gy’ to (3.2)-Min. Let

e 4, be the coordinate of g’ corresponding to constraint ¢ contained in A’x’ < b’ for each

te R,

e 7; be the coordinate of g’ corresponding to the constraint z} < uj for each t € S’ and

e i, be the coordinate of §’ corresponding to the constraint —z} < —I} for each ¢t € S’.
Observe that neither the box constraint z; < uj when u, = 400 nor —x} < —I; when [} = 0
appears in (3.2)-Max, so

(3) Uy, = 0. Moreover, g, = gy, = 0if ug =g = +oo, and ', = 0if ug, > 1 (as Iy, = 0).

Consider the constraints corresponding to the last three columns of A’ in (3.2)-Min, which
respectively, read

(4) @;,1 + @;1 + X ter, @é + ﬂ,/h B g/—th = wﬁll’
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(5) gé)l + g;)g - g;)g + ZtGRz gl/f - g/—qz 2 0 (See (3))7 and
(6) Ty = Upy + Upy + Ctera Ut + gy — Tgs = 0.
We may assume that (5) holds with equality; that is,

(7) Ypy =+ Upy = Upy + Xtery Ut = Vogo = 0-

Suppose the contrary: 7, + ¥p, — Ups T dotcRs Ui — J—qy» denoted by 4§, is nonzero. By (1)
and (3.2), we have 0 > 0. Let 3 be obtained from g’ by replacing ,, with ¢, +¢ and replacing
U, with 7, +0. Since az > 0, ¢ is a feasible solution to (3.2)-Min. Since y,., — ¥, = Ur, — Fps>
from the definition of b’ we see that y’ has the same objective value as §’. Hence %’ is also an
optimal solution to (3.2)-Min. Therefore (7) follows, otherwise we replace y’ with y'.

Let us proceed with the construction of an integral optimal solution g to (3.1)-Min. Set

ey =y,forte RUT,

oy =y ,forteT,

Ui = Ty + Uy + 7 gy a0

® Yogq = gl—th + g,—qs‘

By (3), we have y,, = 0 if uy, = 4+00. So ¥y is well defined. We propose to prove that

(8) g is a feasible solution to (3.1)-Min.

For this purpose, it suffices to show that gy satisfies the constraint corresponding to column
q1 in (3.1)-Min, because w|r = w'|7. Note that g, + Gr, + Yier, Ut + Ugr — J—ar = Upy + Ury +
Sters Up + (o, + Tog + T-gy) — Ty + 7-yy) =LHS of (4)+LHS of (6)—LHS of (5)>RHS of
(4)= wy, = wy,, where the last inequality follows from (7). Thus (8) is established.

9) @7, u”, —1")g = ()7, ()T, -y

To justify this, set yp = (yr : t € R;) for i = 1,2, and set gy = (3 : t € K) and
Y_g = (J—: t € K) for any K C S. Similarly, we can define gz , ¥ and gy’ j for any K C §".
By direct computation, we obtain

(bTv uT7 _lT),y
= Gyt rs T 01 UR, T 03U, +urlr — Y7 + g o — lgTq

Jry + Gra + 01 Yy + 2T, + 07Tr — 1T _1 + g, Ty — lgyT—g + LHS of (7)
= oy + Uy T U1 YR, + 02U, T w2 U — I+ gy (T, + Ty + T g) — s (T, + )

—Hj:;l + Zj;,2 - Zj;,s + Z g{f o gl—tm

tER2
= Tyt Ty~ Tpo + Uy T Try + 01T, + 2Tk, + D F) + (0¥ + gy (T, + )]
tER2
T_ _ _ _

_[lTy/—T + lth (y/—ql + y/—qg) + (1 - u“h)y/—qg]

= Ty T g~ Tp T 000 + Ty + 01T, + (b2 + 1), + (W) s — ()0

= (), W), ="y
In view of (3), the same statement holds as well if ug, = +00 or ug > 1. So (9) is true.

Combining (2), (8) and (9), we conclude that ¢ is an integral optimal solution to (3.1)-Min.
This proves the lemma. |

Lemma 3.8. Let H be a subgraph of a graph G. If ©(G) is box-TDI, then so is n(H).
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Proof. Let Az < b, x > 0 stand for the system n(G). Clearly, 7(H) arises from w(G) by
deleting the columns of A corresponding to edges outside H and then deleting some resulting
redundant inequalities as described in Lemma 3.6. It follows immediately from Lemma 3.4 and
Lemma 3.6 that 7(H) is box-TDI as well, completing the proof. [ |

Lemma 3.9. Let G be obtained from a graph H by subdividing one edge into a path of length
three. If o(G) is box-TDI, then so is o(H).

Proof. By hypothesis, G arises from H by subdividing one edge f = riry into a path
P = ryp1paora, where dg(r1) < dg(re). Let q1,q2, g3 denote the three edges rip1, pip2, pere on
P, respectively. Note that if E[U], with U € T(G), contains one of ¢1, g2, ¢3, then it contains
all of them. Let ¢/(G) be obtained from o(G) by adding two inequalities —x(g2) — z(g3) < —1
and z(q1) + z(g2) + z(g3) < 2 (redundant). Let ¢”(G) = ¢'(G) if dg(r1) > 2 and let ¢”(G)
be obtained from ¢/(G) by adding one more redundant inequality z(q;) < 1. Let Az’ < ¥,
' > 0 be the linear system corresponding to ¢”(G). Clearly, we can write A’ and b’ as speci-
fied in Lemma 3.7, where the last three columns of A’ correspond to ¢, g2, g3, respectively, the
first two rows of A’ correspond to pi,ps, respectively, the third row corresponds to inequality
—x(q2) — x(q3) < —1, the fourth and fifth rows correspond to 7,72, respectively, and the rows
intersecting As correspond to those U € T(G) such that E[U] contains all of ¢1, g2, g3, if any,
and the inequality z(q1) + z(q2) + x(g3) < 2. Let Az < b, > 0 be as described in Lemma
3.7, such that the first two rows of A correspond to vertices 1 and r9, respectively, and the last
column corresponds to edge 7173, and let Cx < d, * > 0 stand for o(H). Clearly, Cx < d is
a subsystem of Ax < b. If dgy(r1) = 1, then the inequality x(f) < 1 is contained in Az < b
but not in Cx < d (recall the definition of o(H) in Theorem 1.2). Moreover, if H contains a
triangle r17ar3 such that dg(r;) = 2 for some 1 < i < 3, then x(d(r;)) < 1 is included in the
system Ax < b but not in Cx < d. Nevertheless, such an inequality is implied by the constraint
z(E[U]) <1, with U = {r1, 72,73}, which appears in both Az < b and Cz < d. Thus Cx < d
can be obtained from Az < b by possibly deleting the redundant inequality x(f) < 1 and those
created by some degree-2 vertices contained in triangles in H. Since o(G) is box-TDI, so are
0/'(G) and ¢”(G) by Lemma 3.5 and Theorem 1.5. Hence Az < b, x > 0 is also box-TDI by
Lemma 3.7. From Lemma 3.6 we deduce that o(H) is box-TDI as well. 1

Proof of Lemma 3.2. Let H be a fully odd subdivision of F; contained in G for some
1 <i < 4. By Lemma 3.9, o(H) and hence w(H) by Lemma 3.1 is not a box-TDI system. It
follows immediately from Lemma 3.8 that 7(G) is not box-TDI either, completing the proof. 1

4 Structural Description

4.1 Preliminaries

We digress to introduce some other notations and terminology before proceeding. Let G be a
graph. We use V(G) and E(G) to denote the vertex and edge sets of G, respectively. For any
X CV(G)U E(G), we use G\ X to denote the graph arising from G by deleting all members of
X, and set G\z = G\X if X = {x}. For any subgraph K of G, a K-bridge of G is a subgraph
B of G induced by either (i) an edge in E(G)\E(K) with both ends in V(K) or (ii) the edges
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in a component 2 of G\V (K) together with edges of G between Q and K. We call B nontrivial
if it satisfies (ii). The vertices in V(B) NV (K) are called feet of B. Throughout, by a path we
mean a simple one, which contains no repeated vertices. A path with ends x and y is called an
xy-path. A path is called odd if it is of odd length and even otherwise. For any two vertices
u,v on a path P, we use P[u,v] to denote the subpath of P connecting u and v, and define
P(u,v] = Plu,v)]\u, Plu,v) = Plu,v]\v, and P(u,v) = Plu,v]\{u,v}. For any vertex u on a
cycle C, we use u~ (resp. u™) to denote the vertex preceding (resp. succeeding) u on C' in the
clockwise direction. For any two vertices u and v on C, we use C[u,v] to denote the segment of
C from u to v in the clockwise direction.

A graph G is called good if it contains no fully odd subdivision of Fy, F, F3, or Fy (see Figure
2) as a subgraph, called internally 2-connected (i-2-c) if it is connected and, for any v € V, if G\v
is disconnected, then it has precisely two components with one of them being an isolated vertex,
and called fully subdivided if it is connected and bipartite, with bipartition (X,Y"), such that all
vertices in Y have degree at most two (we call X and Y the color 1 class and color 2 class of G,
respectively). For convenience, a single vertex is also viewed as a fully subdivided graph, which
has only color 1 class. Notice that if a fully subdivided graph G contains no pendant edges,
then it arises from a connected graph H by subdividing each edge exactly once.

Let C be a cycle with two distinguished edges ujuy and vive (not necessarily disjoint) such
that uq,v1,v9, us occur on C' in clockwise cyclic order, and let H be obtained from C' by adding
chords between C[uy,v1] and C|vg, us], such that each vertex on C' is incident with at least one
chord and such that if two chords x1y; and zoys cross, then {x1,y1,x2,y2} induces a 4-cycle.
(Possibly a chord is parallel to ujug or vive.) We call H a ladder with top ujug, bottom viva,
and outer cycle C. Let G be obtained from H by

e replacing each chord e with a complete bipartite graph L, = K> ,, for some n > 1, in which
one color class consists of the two ends of e only; and
e replacing each edge f in C\{ujvi,u2v2} with a fully subdivided graph Ly, in which both
ends of f belong to the color 1 class, where Ly = Ko, for some ¢t > 1 if f is contained in
a 4-cycle induced by two crossing chords.
We call G a plump ladder generated from H.

To establish the “if” part of Theorem 1.4, we need the following structural description of
good graphs.

Theorem 4.1. Let G = (V, E) be an i-2-c nonbipartite graph. Then G is good iff it is a subgraph
of one of the nine graphs depicted in Figure 4, where Gy is an arbitrary plump ladder, and the
words “odd” and “any” indicate the parities of the corresponding paths.

The remainder of this section is devoted to a proof of this theorem, in which we shall
repeatedly apply the following simple lemmas.

Lemma 4.2. Let G = (V, E) be an i-2-c graph, let U C V with |U| > 2, and let v € V\U. If
each vertez in U U {v} has degree at least two in G, then there exist two paths from v to U that
have only v in common.

Proof. Suppose the contrary. Then G has a vertex w separating v from U, with w # v,
by Menger’s theorem. Let €1 be the component of G\w that contains v, and let Q2 be the
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Figure 4: Primitive graphs

component of G\w that contains a vertex = in U\w. Since both v and x have degree at least
two in G, each of €7 and €2 contains at least two vertices, contradicting the hypothesis that G
is i-2-c. |

Lemma 4.3. Let x,y be two distinct vertices in a connected graph G. Then G contains an
xy-path P together with an edge wv, with w € V(P) while v ¢ V(P), unless the entire G is an
xy-path. |

Lemma 4.4. Let H = (X,Y; E) be a connected bipartite graph and let G = H + x1x9, with
{z1,22} C X. Suppose G is i-2-¢ and dg(yo) > 3 for some yo € Y. Then the following
statements hold:

(i) If dg(xo) > 3 for some xy € X, then G has a cycle C' that contains the edge x1x9 and
contains some v € X andy € Y, with dg(z) > 3 for z = z,y;

(i1) If dg(x1) > 2, then H contains an x1xo-path P and two disjoint edges x1y1 and yoxs, with
yo2 € V(P)NY while {y1,z3} NV (P) = 0.

Proof. (i) By Lemma 4.2 with U = {z1,z2} and v = yp, there exists a cycle C' in G that
contains both edge x1xs and vertex yyo. We may assume that C' contains no vertex x € X with
dg(x) > 3, otherwise we are done. Thus zg ¢ V(C). By Lemma 4.2 with U = V(C') and v = z,
there exists two paths P; and P, from zg to C that have only zg in common. For i = 1,2, let
g; be the end of P; in C. Then dg(g;) > 3, so ¢; € Y. Let @ denote the subpath of C\xjz,
between ¢; and ¢o, and let C’ be the cycle obtained from C U P; U P, by deleting all vertices on
Q(q1,92). Then C’ is as desired.
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(ii) By (i), G has a cycle that contains the edge z1z2 and some y € Y with dg(y) > 3; let C
be such a shortest cycle. Observe that C' is an induced cycle in G, for otherwise it would have
a chord ab. Thus dg(z) > 3 for z = a,b. Let @ be the subpath of C\zi29 between a and b,
and let C’ be obtained from C by deleting all vertices on Q(a,b) and adding edge ab. Then the
existence of C’ contradicts the choice of C. It follows that G contains two edges x1y; and yxs
such that {y1, 23} NV (C) = 0. Set P = C\z122 and yo = y; we are done. 1

Lemma 4.5. Let H = (X,Y;E) be a connected bipartite graph and let G = H + x1y1, with
x1 € X and y1 € Y. Suppose G is i-2-c. Then at least one of the following statements holds:

(1) H contains an x1yi-path P and an xay2-path Q, such that V(P) NV (Q) = {x2,y2} and
that both Plxa,y2] and Q are of odd length. (Possibly x1 = xo or y1 = y2.)

(ii) H contains an x1yi-path P and two disjoint edges yoxs and xays, with {xa,y2} C V(P)
while {x3,y3} N V(P) = 0 and with yo on Plxy,xs|, such that Plx1,ys], Plys,z2], and
Plxo,y1] are all of odd length.

(i1i) H contains an edge xoys such that H\xays has precisely two components Hy = (X1, Y1; E1)
and Hy = (X9, Y2; ), with {x1,22} C X1 and {y1,y2} C Y2, and that dg(v) < 2 for each
v €Y1 UXy. (Possibly x1 = x9 or y1 = y2.)

Proof. Assume on the contrary that none of (i)-(iii) holds for H and, subject to this, |V (H)|
is minimum. Let A be the set of all pendant vertices of H outside {z1,y1}. Then H\A is not
2-connected, for otherwise, there would be two internally disjoint x1y;-paths in H, which satisfy
(i), contradicting our assumption. Since G is i-2-¢, H\ A contains a block chain By, B, ..., By
connecting 1 and yp, with t > 2, 21 € V(By) and y; € V(By). Let z; be the common vertex of
B; and By for 1 <i<t—1, and set 29 = z1 and z; = y;.

(1) For each nontrivial block B;, the vertices z; and z; 11 belong to the same color class of
B;.

Otherwise, there would be two internal disjoint z;z;41-paths Ry and Ry in B;. Let S; (resp.
S3) be a zpz;-path (resp. zi11z-path) in H. Let P = S; U R; U Sy and Q = Re. Then they
satisfy (i), contradicting our assumption. So (1) is justified.

(2) Both B; and B, are trivial blocks.

Suppose the contrary: Bj, say, is nontrivial. Let B] be obtained from B; by adding all
pendant edges with one end in B; and the other end in A, and let (X7,Y7) be the bipartition
of BY, with {z9,21} C X{ (see (1)). Note that both zp and 21 have degree at least two in Bj. If
some vertex in Y] has degree at least three in Bj, then Lemma 4.3 guarantees the existence of a
2p2z1-path R and two disjoint edges z1a; and agbs, with as € V(P)NY{ while {a1,b} NV (R) = 0.
Let S be a z12z-path in H. Then RUS, z1a1 and agby satisfy (ii), contradicting our assumption.
It follows that each vertex in Y{ has degree at most two in Bj. Let H' be obtained from H
be deleting all vertices in Bj\z1. With {z1,y1} in place of {z1,y1}, we see that neither (i) nor
(i) holds H' (otherwise, the corresponding statement holds for H). Thus H' has the property
exhibited in (iii), and hence H = H' U B is also as described in (iii). This contradiction yields
(2).
By (2), we have By = 2921 and By = z;_12;. If 21 or z;_1 has degree two in H, say the former,
letting H' be obtained from H\{z, 21} by deleting vertices in A which are adjacent to zq or z1,
then at least one of (i), (ii) and (iii) holds for H’, with {z9,y1} in place of {z1,y1}. Clearly,
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the corresponding statement holds for H. This contradiction implies that both z; and z;_1 has
degree at least three in H. Let R be a shortest z1z;—1-path in H\{z1,y1}. Then H\{x1,y1}
contains edges z12] and z;_12,_,, with {z],2z,_;} N V(R) = (). Note that 2] # z,_, because they
belong to different color classes of H. Since z12], z;—12;_; and the path z121 Rz;_1y1 satisfy (ii),
we reach a contradiction to the assumption again. |

Lemma 4.6. Let G be obtained from two disjoint paths P = pop1...pm and Q = qoq1 - . - Gn by
adding three edges poqo, Poqi, P1qo and adding a pm—_1Gn_1-path R of odd length, whose internal
vertices are all outside PUQ, where m > 2 and n > 2. Then G contains a fully odd subdivision
of F1 if m + n is even and a fully odd subdivision of Fy otherwise.

Proof. We first consider the case when m + n is even. Set K = G\{poqo,poq1} if m is odd
and K = G\{p1qo, qoq1} otherwise. Then K is a fully odd subdivision of F.

It remains to consider the case when m + n is odd. By symmetry, we may assume that m is
odd and n is even. Consequently, G\pgq; is a fully odd subdivision of F5. |

Lemma 4.7. Let Gy (resp. Gs) be obtained from a cycle C by adding two paths Py, Py and
a pendant edge uzvy (resp. by adding three paths Py, Py, P3), as shown in Figure 5, where the
parity of each w;v;-path is indicated by even or odd, and possibly v; = w41 for 1 <i < 3 (with
ug = uy). Suppose Clvj,ujq1] in Gy is of odd length for at least one j with 1 < j < 3. Then
both G1 and G2 contain a fully odd subdivision of Fy or F.
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Figure 5: Two configurations with Fy or Fb

Proof. In both Gy and G, let u;u} and v;v} be the edges incident with u; and v; on P,
respectively, for each 1.

To prove the statement for Gy, we first consider the case when C is an odd cycle. If one
of Clva,us] and Clvs,uq] is odd, say the former, then either C' U {vavh, ugvg, uguj} or C' U
{vavhy, ugvyg, v1v] } is a fully odd subdivision of Fj. So we assume that both Clvg, ug] and Clvs, u1]
are of even length, and hence Cvy, ug] is of odd length by hypothesis. Thus CU{v1v], ugub, ugvs}
is a fully odd subdivision of Fj. It remains to consider the case when C' is an even cycle. Observe
that at least one of Cvg, ug] and C[vs,u1] is of odd length, for otherwise the parity of C' implies
that C[v1, ug] is also of even length, contradicting the hypothesis. By symmetry, we may assume
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that C[vg,us] is of odd length. Then either C'U Py U {v1v], usvs} or C' U Py U {uju), usva} is a
fully odd subdivision of F5.

Let us proceed to prove the statement for Gy. If Clvj,u;41] is of odd length for at least
one j with 1 < j < 3, say C[ve, us], then C' U P; U P> U {ugu4} contains a fully odd subdivision
of Fy or F, by the statement for Gi. So we assume that C[v;,u 1] is of even length for all j
with 1 < j < 3. Thus C is an odd cycle. It follows that C' U {ujul, ugub, usus} is a fully odd
subdivision of Fj. |

Lemma 4.8. Let G be obtained from a connected bipartite graph H = (X,Y; E) by adding two
x1x9-paths Py and Py of odd length, with {x1,x2} C X, such that H, Pi(x1,x2) and Pa(x1,x2)
are pairwise disjoint. If G is i-2-¢ and good, then X = {x1,x2}.

Proof. By symmetry, we may assume that |V (P)| < |V(P)|. So P, has length at least
three. Observe that H contains no xjxs-path of length at least four, for otherwise, the union
of such a path and P, U P, would yield a fully odd subdivision of F3 in (G, a contradiction. We
claim that H contains no vertex in X\{x1,z2} with degree at least two. Suppose the contrary:
dp(xz3) > 2 for some x3 in X\{z1,z2}. Since G is i-2-¢, Lemma 4.2 guarantees the existence of
two paths @1 and Q3 from z3 to {z1, 22} in H that have only x3 in common. Thus @ U Q2
would be a xq1x9-path with length at least four in H, contradicting our previous observation. So
the claim is justified.

Suppose x3 is a vertex in X\{x1,z2}. Then z3 has only one neighbor y in H by the above
claim. Since G is i-2-¢, from the claim we further deduce that y has no neighbor outside
{x1,29,23}. If y is adjacent to both zq and x9, letting z;2} be the edge on P» incident with z;
for i = 1,2, then Py U {21y, z2y, x3y, 127, x225} would yield a fully odd subdivision of F in G,
a contradiction. So y is adjacent to precisely one of x; and x9, say the former. Thus G\z; has
at least two components with two or more vertices, which contradicts the hypothesis that G is
i-2-c. |

4.2 Nearly Bipartite Graphs

A graph G is called nearly bipartite if G is nonbipartite but G\e is bipartite for some edge e of
G. In this subsection we determine nearly bipartite good graphs.

Lemma 4.9. Let H = (X,Y;E) be a connected bipartite graph and let G = H + x1xo, with
{z1,29} C X. If G is i-2-c and good, then G is one of the six graphs depicted in Figure 6, where
a € {odd, even}.

Proof. Suppose G # H; in Figure 6. Then G contains a vertex in X and a vertex in Y, both
with degree at least three. So G has a cycle C containing x1x2 such that at least one C-bridge
has a foot in X and at least one C-bridge has a foot in Y by Lemma 4.4(i). Since H is bipartite,
C' is an odd cycle.

In what follows, all bridges are C-bridges unless otherwise stated. For any vertex a on C,
we use N¢(a) to denote the set of all neighbors of a outside C. We proceed by considering two
cases.

Case 1. Each bridge has its feet only in X or only in Y.
From the hypothesis of this case, it is clear that
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Figure 6: Nearly bipartite good graphs

(1) all bridges are nontrivial.

We say that a bridge is of type X (resp. type Y) if it has feet only in X (resp. V'), and that a
type-X bridge By and a type-Y bridge By cross if there exist four vertices wuq,v1,us, v9 which
occur on C' in clockwise cyclic order, such that uy,us are two feet of By and vy, vy are two feet
of By. Observe that

(2) no type-X bridge crosses with a type-Y bridge.

Assume the contrary: some type-X bridge By and type-Y bridge B cross. Let {u1, ug,v1,v2}
be as specified in the above definition. Let P, be a ujuo-path in B; and let P, be a vve-path
in By. By (1), each of P and P, has length at least two. Renaming the subscripts if necessary,
we may assume that z1x9 is contained in Cfve,u1]. Then the graph obtained from C' U P} U Py
by deleting all vertices on C(ug,v2) would be a fully odd subdivision of F3, contradicting the
hypothesis that G is good.

By symmetry and (2), one of the following five subcases occurs, where {4, B} = {X,Y}.

Subcase 1.1. There exist four vertices uq, uo,v1, v2, such that x1,vq,uq, use, v9, Ty occur on
C' in clockwise cyclic order and that ui, us are two feet of a type-A block By and vy, v9 are two
feet of a type-B block By. (Possibly x; = v; for i =1 or 2.)

In this subcase, note that

(3) no type-B block has a foot outside {vy,v2}.

Assume the contrary: Bs is a type-B block with a foot v3 # v; for ¢ = 1,2. Then v3 is on
Cluy, z2] or on C[z1,us], say the former. Let uju) be an edge in By, viv] an edge in B, and
vavs an edge in Bs. Then C' U {uju}, v1v],v3v5} would be an odd subdivision of Fy in G; this
contradiction justifies (3).

(4) [Ne(v1) U Ne(ve)| = 1.

Otherwise, there exist two distinct vertices v] and v outside C, such that both vjv] and
vovh are edges of G. Let uju) be an edge in By. Then C U {uju,v1v],v9v5} would be an odd
subdivision of Fj in G, a contradiction. So (4) holds.

Let vg be the only vertex in Nc(v1) U Ng(vg). Then

(5) Bsg is the only type-B bridge in G, which is the path R = vyvgvs.

From (3) and (4), it follows instantly that By is the only type-B bridge in G and R = v1vgvs is
a path in By. If By contains an edge vgvs with vg ¢ {v1, v}, then Clvg, vl]URU{vlvf, vy V2, VU3 }
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would be an odd subdivision of F; in G, a contradiction. So (5) is established.

The same argument implies that

(6) no type-A bridge has a foot on C|vg, v1].

Let us, uq be two vertices on C, such that v, us, us,vo occur on C in clockwise cyclic order,
each of uz and uy is a foot of some type-A bridge, and no vertex in C(vy,us) U C(ug,v9) is a
foot of a type-A bridge. Then

(7) dg(uj) >3 for j = 3,4.

Set K = C(ug,u3) UR and L = G\V (K). By (5) and (6), the only edges between K and L are
uz uz and uquy . It follows from (7) that

(8) dr(uj) > 2 for j = 3,4.

As H is a bipartite graph, so is L. Let (S,T) be the bipartition of L, with {us,us} C S. If
dr(t) > 3 for some ¢t € T, then Lemma 4.4(ii) guarantees the existence of a ugus-path P and
two disjoint edges uqwy and wous in L, with wy € V(P)NT while {wy,us} NV(P) = . Thus
Clug, uz]UPU{v9vp, ugwi, waus } would be a fully odd subdivision of F} in G. This contradiction
implies that L is a fully subdivided graph in which both us and u4 belong to color 1 class. Hence
G = H» in Figure 6, because L U C(v1, us] U C(uq,v2) is also fully subdivided.

Subcase 1.2. There exist four vertices uq, uo, v1, V2, such that xq,uq,us, v1,v9, Ty occur on
C in clockwise cyclic order and that uy, us are two feet of a type-A bridge B and vy, v9 are two
feet of a type-B bridge By. (Possibly 21 = uy or xs = vs.)

In this subcase, note that no type-B bridge Bs has a foot v on C(uj,us2), for otherwise, let
ugub be an edge in By, v1v] an edge in By, and vzvh an edge in Bs. Then C U {vsv}, ugub, v1v]}
would be a fully odd subdivision of F}, a contradiction. The same argument implies the existence
of four vertices us, uy4, v3, v4, such that x1,us, ug, v, vs, 2 occur on C in clockwise cyclic order,
no type-A (resp. type-B) bridge has a root outside Cfus, u4] (resp. C|vs,v4]), and each of ug
and uy (resp. vz and vy) is a foot of some type-A (resp. type-B) bridge.

Let K denote the union of Clus,us] and all type-A bridges, and L denote the union of
C'vs, v4] and all type-B bridges. Since H is bipartite, so are K and L. Using the same argument
as employed in the paragraph right above the description of the present subcase, with an edge
v3vs in a type-B bridge in place of vavy over there, we deduce that K is a fully subdivided
graph in which both us and u4 belong to color 1 class. Similarly, we can prove that L is a fully
subdivided graph in which both v3 and vy4 belong to color 1 class. Renaming the subscripts of
21 and xzo if necessary, we may assume that A = X and B = Y. It follows that G = Hj3 in
Figure 6, because both K U Clx1,us] and L U Cluvs, z2) are fully subdivided as well.

Subcase 1.3. There exist three vertices ui,us,v, such that zi,u,v,us,zs occur on C' in
clockwise cyclic order and that w1, us are two feet of a type-A bridge B; and v is the only foot
of a type-B bridge Bs. (Possibly x; = u; for i =1 or 2.)

In this subcase, we may assume that each type-B bridge has only one foot, otherwise one of
the previous two subcases occurs. Since G is i-2-¢, we further obtain

(9) each type-B bridge is an edge.

Using the same argument as employed in Subcase 1.1, we deduce that

(10) By is only type-A bridge in G, which is either a path R = ujugus or a star R* arising
from R by adding an edge ugug. Moreover, no type-B bridge has a foot on C[ug, u1]. (Note that
if By # R, then By = R* because G is i-2-c.)
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When B; = R, let K be the union of C(uy,us) and all type-B bridges. Then K is a fully
subdivided graph in which both uf and u; belong to color 1 class. So G = H in Figure 5
by (9) and (10). When B; = R*, the length of Cfuy,usg] is two, for otherwise, Clug,u;] U R U
{ugus, uluf, us uz} would be a fully odd subdivision of Fi, a contradiction. Since G is i-2-c, Bs
is the only type B-bridge having v as the root. Thus G = Hy in Figure 6.

Subcase 1.4. There exist three vertices ui,us,v, such that x1,uq,us, v, z9 occur on C in
clockwise cyclic order and that uy,us are two feet of a type-A bridge By and v is the only foot
of a type-B bridge Bs. (Possibly x1 = u; or xo = v.)

Similar to Subcase 1.3, we may assume that each type-B bridge is an edge. The remainder
of the proof goes along the same line as that in Subcase 1.2. The same argument implies the
existence of four vertices wug,ug,v3,v4, such that xq,us, ug,v3,v4, 29 occur on C in clockwise
cyclic order, no type-A (resp. type-B) bridge has a foot outside Clus, u4] (resp. Clvs, v4]), and
each of ug and wuy (resp. vg and vyg) is a foot of some type-A (resp. type-B) bridge. Let K
denote the union of Clus, us] and all type-A bridges, and L denote the union of Cvs, v4] and all
type-B bridges. Since G contains no fully odd subdivision of Fj, from Lemma 4.4(ii) we deduce
that K is a fully subdivided graph in which both u3 and w4 belong to color 1 class. (The details
can be found in the paragraph right above Subcase 1.2.) Clearly, L is a fully subdivided graph
in which both both v3 and v4 belong to color 1 class. Renaming the subscripts of x1 and zo if
necessary, we see that G = Hj in Figure 6.

Subcase 1.5. There exist two vertices u, v, such that x1,u,v,z2 occur on C' in clockwise
cyclic order and that u is the only foot of a type-A bridge B; and v is the only foot of a type-B
bridge Bs. (Possibly z1 = u or x9 = v.)

In this subcase, we may assume that each bridge has only one foot in C, otherwise one of
the previous subcases occurs. It follows that each bridge is an edge because G is i-2-c. Using
the same argument as employed in Subcase 1.2, we obtain four vertices ug, u4, v3, v4, such that
X1, U3, Uq, V3,04, T2 occur on C' in clockwise cyclic order, no type-A (resp. type-B) bridge has a
foot outside C[us, us] (resp. Clvs, v4]), and each of uz and uy (resp. vs and vy) is a foot of some
type-A (resp. type-B) bridge. Renaming the subscripts of 21 and x9 if necessary, it is easy to
see that G = Hj in Figure 6.

Therefore, if G # Hy and Case 1 occurs, then G is H; for some 2 < i <4

Case 2. Some bridge has feet in both X and Y.

In this case, we may assume that

(11) the length of C is at least five.

Suppose the contrary: C'is a triangle z1x2y; (as C is an odd cycle). By hypothesis, some
bridge B has feet y; and z; for ¢ = 1 or 2, say the former. Let C’ be obtained from the path
x1272y1 by adding an x1y;-path in B. Since C’ contains the edge z1x9 and H is bipartite, this
new cycle C’ is again odd and of length at least five. Note that C’ has a bridge, x1y1, with feet
in both X and Y. So (11) holds, otherwise we replace C' by C".

Let B be an arbitrary bridge with a foot z3 € X and a foot y; € Y. Let us show that

(12) If x1, 23,91, 22 occur on C in clockwise cyclic order, then z3 = 27 and y; = z,. If
r1,Y1, 23,22 occur on C' in clockwise cyclic order, then z3 = x2 and y; = a:{r (So B has
precisely two feet in C'.)

To justify this, we only consider the situation when 1, x3,y1, 22 occur on C in clockwise
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cyclic order, as the other situation is simply a mirror image. If B has a foot z € X on C(z1, x9],
then B contains a path P connecting x and y;. Since H is bipartite, the length of P is odd.
Thus C U P would be a fully odd subdivision of F3 by (11), a contradiction. So x5 = 1. The
same argument implies that B has no foot y € Y on C(z1, 25 ) and hence y; = x5 . This proves
(12).

Symmetry allows us to assume hereafter that some bridge B has feet 1 and y; = z5.
Observe that z2 has no neighbor z outside C, for otherwise, let P be an x1y;-path in B. Then
the union of the odd cycle Pyiz2x1 and {ZE1$1|—, Y1 Y1, x22} would be a fully odd subdivision of
Fy, a contradiction. So

(13) every bridge having xo as a foot is the edge o (see (12)).

Similarly, we can prove that

(14) if 2] 29 is an edge of G, then every bridge having x; as a foot is the edge x1y;.
Let us distinguish between two subcases.

Subcase 2.1. 2]z is an edge of G.

In this subcase, let u and v be two vertices on C[z],v1], such that {u,v} is a subset of
X or of Y, dg(a) > 3 for a = w or v (say the former), and dg(b) = 2 for any vertex b in
C(x7,u) U C(v,y1), if any. Let K be the union of C[u,v] and all bridges with a foot in C[u,v],
and let (S,T) be the bipartition of K, with {u,v} C S. If dg(t) > 3 for some t € T, then
Lemma 4.4(ii) guarantees the existence of a uv-path P and two disjoint edges ww; and wows in
K, with we € V(P)NT while {wy,ws} NV (P) =0. Set L = C[v,u] U P U {x] 2o, uwy, wows} if
C[z{,u] is of odd length and L = C[v,u] U P U {x1y1, uwy, wows} otherwise. Then L is a fully
odd subdivision of F,. This contradiction implies that K is a fully subdivided graph in which
both u and v belong to color 1 class. Thus G = Hs in Figure 6 by (13) and (14).

Subcase 2.2. xf:pz is not an edge of G.

In this subcase, dg(z2) = 2 by (13). Let G; be the graph arising from G by deleting all
vertices in B\{x1,y1}, and let Gy be obtained from B by adding the path xzjx9y;. Then G; and
G5 have only path xix9y; in common. For i = 1,2, let C; be an induced cycle containing the
path z1z9y1 in G;. Note that C; is an odd cycle.

(15) Every C;-bridge in G; has its feet only in X or only in Y for i = 1, 2.

Suppose the contrary: some Cj-bridge K in G; has a foot x € X and a foot y € Y. Let P
be an zy-path in K. Notice that P is of odd length. If {z,y} = {z1,y1}, then C; UC; U P is a
full odd subdivision of Fy. If {x,y} # {x1,y1}, then C; U P is a fully odd subdivision of F3. So
we reach a contradiction in either situation, and hence (15) holds.

It follows from (15) and the structural description in Case 1 that

(16) G; is isomorphic to H; in Figure 5 for some 1 < i < 4.

We may assume that

(17) the fully subdivided graph involved in Hs is not a path, otherwise such an Hy can be
drawn as an Hj.

Let us now prove that

(18) Neither G; nor Gy is Hs.

Suppose the contrary: (7 is Hs, say. Let K denote the fully subdivided graph involved in Hs
(see Figure 5). Let P; = Pi[x1,u;] and Py = Ps[xa, us] be the two paths marked with « in Hs in
Figure 5, and let ug be the common neighbor of u; and wugy, which is of degree two. By (17) and
Lemma 4.3, we can find an edge ab in K and a ujug-path @, such that Q(uq,usg) is fully contained
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in K, a € V(Q) while b ¢ V(Q), and both Q[u1, a] and Q[a, uz] have odd length. Let 12} and
Y1y} be two disjoint edges in Go, with xo ¢ {2,y }. Set L = PLUP,UQU{ab, ujug, z1x},x122} if
a =odd and L = PLUP,UQU{ab, usug, 119}, x122} otherwise. Then L is a fully odd subdivision
of Fy. Thus (18) follows.

The same argument implies that

(19) Neither Gy nor G is Hy.

From (16), (18) and (19), we see that G; is isomorphic to either H; or Hs in Figure 5 for
i =1,2. Let Gy = Hp and G = H, where both p and ¢ belong to {1,3}. It is a routine matter
to check for all possible combinations of p and ¢, the resulting graph G can always be drawn as
an Hg in Figure 6.

Therefore, if G # H; and Case 2 occurs, then G is either Hs or Hg in Figure 5.

Combining the observations in both Case 1 and Case 2, we conclude that G is one of the six
graphs as depicted in Figure 6. |

4.3 D-subgraphs

A diamond is obtained from Ky (the complete graph with four vertices) by deleting an edge. A
diamond K with vertices s,t,u,v in a graph G = (V, E) is called a D-subgraph of G if uv ¢ E,
da(s) = dg(t) = 3, and G\{s,t} is connected. In this subsection we determine good graphs
with D-subgraphs.

Lemma 4.10. Let G = (V,E) be an i-2-¢ and good graph with a D-subgraph. Then G is
one of the three graphs depicted in Figure 7, where odd and any stand for the parities of the
corresponding paths.

“any ~ ~any "~ \\ Tany ~

olid

_any _ _any _ / Ay
J] J2 J3

JA& fully subdivided graph

Figure 7: Good graphs with D-subgraphs

Proof. By hypothesis, G contains a diamond K with vertices s,t,u,v such that uwv ¢ E,
da(s) = dg(t) = 3, and G\{s,t} is connected. Depending on the structure of G\{s,t}, we
distinguish among three cases.

Case 1. G\{s,t} is bipartite, in which u and v are in the same color class.

In this case, set H = G\{s,t} and G’ = H + wv. From Lemma 4.9 with (x1,z2) = (u,v), we
see that G’ is H; in Figure 5 for some 1 < i < 6. So G is obtained from H; by replacing the
edge x1xo with the diamond K.

Subcase 1.1. i = 1. In this subcase, clearly G = J; in Figure 7.

Subcase 1.2. ¢ = 2. In this subcase, we may assume that the fully subdivided graph L
involved in Hy in Figure 5 is not a path, otherwise Hy can be drawn as Hi, so the current
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subcase is the same as the previous one. Let P = Pj[z1,y1] and P» = P[z2,y2] be the two
paths marked with o in Hy in Figure 5, and let yg be the common neighbor of y; and y2, which
is of degree two. By Lemma 4.3, we can find an edge ab in L and a y;ys-path @, such that
Q(y1,y2) is fully contained in L, a € V(Q) while b ¢ V(Q), and both Q[y1,a] and Qla, y2| have
odd length. By Lemma 4.6, K U P; U P, UQ U {y1y0,ab} contains a fully odd subdivision of F
in GG, a contradiction.

Subcase 1.3. ¢ = 3. In this subcase, we may assume that neither of the fully subdivided
graphs L; (with x1 € V(L)) and Ly involved in Hs in Figure 5 is a path, otherwise Subcase
1.1 occurs. By Lemma 4.3, we can find an edge ab in L1, an edge cd in Lo, and an xjxs-path
Q in H3\x1z9, such that {a,c} € V(Q) while {b,d} NV (Q) = 0, and Q[z1,a] is of even length
while Q|c, 2] is of odd length. Note that @ is of even length. By Lemma 4.6, K U Q U {ab, cd}
contains a fully odd subdivision of F, in G, a contradiction.

Subcase 1.4. i = 4 and 5. In this subcase, Lemma 4.6 guarantees the existence of a fully
odd subdivision of F5 in G, a contradiction.

Subcase 1.5. i = 6. In this subcase, let x122y1 be the path of length two contained in Hg.
From its structure, we see that Hg contains two odd cycles Cy and C5 which have only the path
r1T9y1 in common. Let L be obtained from C7 U Cs by replacing the edge x1x2 with the path
ustv in K. Then L is a fully odd subdivision of F3 in G, a contradiction again.

Therefore, if Case 1 occurs, then G = Jp in Figure 7.

Case 2. G\{s,t} is bipartite, in which u and v are in different color classes.

In this case, set G’ = G\t and H = G'\us. From Lemma 4.9 with (z1,z2) = (u,s), we see
that G’ is H; in Figure 5 for some 1 <4 < 6 and i # 5 (because dg,(x2) = 3 while dg/(s) = 2).
So (G is obtained from H; by adding vertex t and three edges tx,txe,ty;, where y; is the only
neighbor of xo other than z; in H;. Note that y; corresponds to v in K.

Subcase 2.1. i = 1. In this subcase, clearly G = J; in Figure 7.

Subcase 2.2. ¢ = 2. In this subcase, once again we may assume that the fully subdivided
graph L involved in Hs in Figure 5 is not a path. Let P, = Pj[x1,21] and Py = Ps[zo, 22] be
the two paths marked with « in Hy in Figure 5, and let zg be the common neighbor of z; and
zo, which is of degree two. By Lemma 4.3, we can find an edge ab in L and a z1z9-path @), such
that Q(z1, 2z2) is fully contained in L, a € V(Q) while b ¢ V(Q), and both Q[z1,a] and Q|a, 23]
have odd length. By Lemma 4.6, K U P; U P, U Q U {2129, ab} contains a fully odd subdivision
of Fy in G, a contradiction.

Subcase 2.3. i = 3. In this subcase, once again we may assume that neither of the fully
subdivided graphs Ly (with z; € V(L)) and Ly involved in Hs in Figure 5 is a path. By Lemma
4.3, we can find an edge ab in Li, an edge cd in Ly, and an xjz9-path @ in Hs\zix, such that
{a,c} € V(Q) while {b,d} NV(Q) = 0, and Q[z1,a] is of even length while Q[c, z2] is of odd
length. Note that @ is of even length. By Lemma 4.6, K U Q U {ab,cd} contains a fully odd
subdivision of F} in G, a contradiction.

Subcase 2.4. i = 4. In this subcase, Lemma 4.6 guarantees the existence of a fully odd
subdivision of F} in G, a contradiction.

Subcase 2.5. ¢ = 6. In this subcase, let x1x2y; be the path of length two contained in Hg.
From its structure, we see that Hg contains two odd cycles C; and Cy which have only the path
r12oy1 in common. Since G is simple, at least one of C; and Cs has length at least five, say
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(4. Let e, f be the two edges incident with z1,y; in C}\ze, respectively. Then Cy U {e, f, zot}
would be a fully odd subdivision of F} in GG, a contradiction again.
Therefore, if Case 2 occurs, then G = Jp in Figure 7 as well.

Case 3. G\{s,t} is nonbipartite.

By hypothesis of the present case, G\{s,t} contains an induced odd cycle C'. By Lemma 4.2,
G contains two disjoint paths from s to C' which have only s in common, and these two paths
yield two induced disjoint paths Py = Pj[u,z] and P» = Py[v,y], where x,y are two vertices on
C. Let Q1 (resp. (Q2) be the xy-segment of C' with odd (resp. even) length. Observe that the
length of )5 is two, for otherwise, let R be an xy-path of odd length contained in K U P, U Ps.
Then R U C would be a fully odd subdivision of F3, a contradiction. We reserve the symbol z
for the internal vertex of )2 hereafter, and consider two subcases.

Subsase 3.1. dg(z) = 2.

Let L =KUP,UP,UC. In view of the degrees of s, t and z, no edge of G outside L is
incident with any one in {s,t,z}. Recall that P and P, are induced paths in G, and C' is an
induced cycle. If G # L, then G contains an edge e outside L, which is between P; and P5,
or has precisely one end in P, U P, U @1 (and the other end outside L), or is between @1 and
P U Py; in each situation, it is a routine matter to check, using Lemma 4.6, that LU{e} contains
a fully odd subdivision of F; or F5. This contradiction implies that G = L and hence G = J5 in
Figure 7.

Subsase 3.2. dg(z) > 3.

In this subcase, let 2’ be the vertex adjacent to x on the path suP;, and let 3/ be the vertex
adjacent to y on the path tvP,. Let us show that

(1) dg(z) = 3 and Ng(z), the neighborhood of z in G, is either {z,y,2'} or {z,y,y'}.

To justify this, note that z has no neighbor w outside {z,2’,y,y'}, for otherwise, C' U
{zw,z2’,yy'} would be a fully odd subdivision of Fj, a contradiction. Assume on the con-
trary that z is adjacent to both 2’ and y'. Then 2’ # s because Ng(s) = {t,u,v}. Let a be the
vertex adjacent to x on @1, and let b be the neighbor of 2’ on suP; other than x. Then the
union of the triangle za’z and {xa, 2'b, zy'} would be a fully odd subdivision of F} in G. This
contradiction yields (1).

Symmetry allows us to assume that

(2) NG(Z) = {x,y,x’}.

Notice that

(3) Q1 =zy.

Otherwise, let a and b be as defined in the proof of (1). Then a # y. So the union of the
triangle za'z and {za, 2’'b, zy} would be a fully odd subdivision of F} in G. This contradiction
justifies (3).

With z in place of z, the same argument implies that

(1) Na(@) = {a',y, 2}.

Let L = KUP UP,U{a’z}. In view of (2), (4) and the degrees of s and ¢, no edge of G
outside L is incident with any one in {s,¢,z,z}. Recall that P; and P, are induced paths in G.
If G # L, then G contains an edge e outside L, which either is between Pj[u, 2] and P, or has
precisely one end in P;[u, 2’| U Py; in either situation LU {e} contains a fully odd subdivision of
Fy or F5 by Lemma 4.6. This contradiction implies that G = L and hence G = J3 in Figure 7.
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Therefore, if Case 3 occurs, then G = J; or J3 in Figure 7.
Combining the above three cases, we conclude that G is one of the three graphs depicted in
Figure 7. |

4.4 Reductions and Extensions

A signed graph is a triple G = (V, E,X), where (V| E) is an undirected graph and ¥ C E.
Throughout this section,

G may have parallel edges, but neither ¥ nor E\X contains multiple members. (4.1)

An edge e of G is called odd if e € 3 and even otherwise. The realization G* of G is the ordinary
graph arising from G by subdividing each even edge exactly once. A path or a cycle in G is
called odd (resp. even) if it contains an odd (resp. even) number of odd edges. Naturally, G is
called bipartite if it contains no odd cycles. It is easy to see that GG is bipartite if and only if G*
is bipartite if and only if V' can be partitioned into (X,Y") such that edges between X and Y
are precisely odd edges of G (as usual, X and Y are called two color classes of G). We also call
G good if G* is good, and call G i-2-¢ if G* is i-2-c.

In this subsection we explore properties of signed graphs that are determined by their real-
izations. So we may simply think of a signed graph G as a (compact) representation of G*.

Let G1 = (V4,E1) and Gy = (Va, E2) be two subgraphs of a signed graph G = (V, E, Y),
such that

e Iy and FEs form a partition of E;

o ViNVy ={z,y}; and

e both G; and G are connected, G is bipartite, and |Es| > 2.
We define bipartite reduction (or simply B-reduction) as follows. When x, y are in different color
classes of Gy and zy is not an odd edge in G1, the operation of reducing G to G| = G1 + xy,
where xy is defined to be odd in G, is called a Bj-reduction; when z,y are in the same color
class of Go and zy is not an even edge in Gy, the operation of reducing G to G} = G1+zy, where
xy is defined to be even in G, is called a Ba-reduction. Correspondingly, we say that G is a
Bi-extension of G by using xy for i = 1 or 2, and call both Bj- and Bs-extensions B-extensions.

Notice that (4.1) is preserved on G under either reduction operation. So a reduction of a
signed graph results in a signed graph again. Let us make some other trivial observations about
signed graphs, which will be used implicitly in our discussion.

e A reduction of a nonbipartite signed graph is again nonbipartite;

e A reduction of an i-2-c signed graph is again i-2-c;

e A reduction of a good signed graph is again good; and

e A reduction of a signed graph has fewer edges than the original graph.

The following simple observation reveals that the B-extensions enjoy some transitivity prop-
erty.

Lemma 4.11. If G’ is a B-extension of G” obtained by replacing an edge e with a bipartite
graph H,, and G is a B-extension of G' using an edge in H,, then G is also a B-extension of
G" using e. |
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A diamond K with vertices s, t,u,v in a signed graph G = (V, E, X)) is called a D-subgraph
of G if all five edges of K are odd, uwv ¢ X, dg(s) = dg(t) = 3, and G\{s,t} is connected. For
simplicity, G is called D-free if it contains no D-subgraph.

Lemma 4.12. Let G = (V,E,X) be an i-2-¢ and good signed graph, and let G' = (V' E', %)
be obtained from G by a series of B-reductions. Suppose G is D-free, while G' contains a
D-subgraph K with vertices s,t,u,v such that uv ¢ ¥'. Then the following statements hold:
(i) There exists an i-2-c and good signed graph G which also contains K as a D-subgraph,
such that G is obtained from G" by performing precisely one B-extension using edge st;

(ii) If all edges of G are odd, then G is the graph shown in Figure 8.

e REN
Y \

\
od ofd
\ 7
\N //

Figure 8: Good graphs containing D-subgraphs in reductions

Proof. Since L = G'\{s,t} is connected and uv ¢ X', there exists a uv-path @ of length at
least two in the realization L* of L. Let uu’ and vv’ be the two edges of @ incident with u and
v, respectively. Our proof is based on the following two observations about B-reductions.

(1) If the edge su in K is created to replace a bipartite graph Hyg, in a B-reduction, then
H, consists of precisely two edges incident with u, including su;

To justify this, note that Hg, contains no edge sw with w # u, for otherwise, the union of
the triangle stv and three edges sw,tu,vv’ would yield a fully odd subdivision of Fj in G*, a
contradiction. So u is cutvertex of Hy,. As G’ is also i-2-c, Hy, contains precisely two edges,
including su. Thus (1) is established.

(2) If the edge st in K is created to replace a bipartite graph Hg in a B-reduction, then Hg
is an odd st-path of length at least three, each uv-path in L is odd, and none of four edges in
K\st arises from B-reductions.

Assume the contrary: Hg; is not an odd st-path. Then, by Lemma 4.3, H,; contains an odd
st-path P (as st € ¥') and an edge ab with a € V(P) while b ¢ V(P). By symmetry, we may
assume that P[a,t] is odd. Thus the union of the odd cycle sPtvs and three edges ab, tu, vv’
would yield a fully odd subdivision of F} in G*. This contradiction implies that Hg; is an odd
path with at least three edges.

If L contains an even uv-path R, then RU{su, sv, tv}UH would yield a fully odd subdivision
of F3 in G*, a contradiction again. In particular, it follows that the path @ is of odd length.

If one of the remaining four edges in K, say su (by symmetry), is created to replace a
bipartite graph Hg, in a B-reduction. By (1), Hg, contains precisely two edges us and uz. Let
ss’ be the edge on Hg incident with s. Then Q U usv U {ux, ss’, vt} would yield a fully odd
subdivision of F} in G*. This contradiction establishes (2).

Now we are ready to present a proof of (i) and (ii). Since G contains no D-subgraph and all
edges in K\st are symmetric, from (1) we deduce that st in K is created to replace a bipartite
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graph Hg in a B-reduction. Hence none of the four edges in K\st arises from B-reductions by
(2). In view of Lemma 4.11, we may assume the existence of a subset Q of E, such that G is
obtained from G’ by performing B-extensions using all edges e in €, with each e replaced by a
bipartite graph H.. Let G” be obtained from G’ by replacing each e € Q\st with H,. Clearly,
G is a B-extension of G” using st. As G” is an i-2-¢ and good signed graph and contains K as
a D-subgraph, (i) is established.

Without loss of generality, we assume that G’ = G”. Recall (2), Hg is an odd st-path of
length at least three. Imitating the proof of this statement, we deduce that L is an odd uv-path
as well. Therefore, G is as depicted in Figure 8. This proves (ii). |

4.5 Irreducible Graphs

Let G = (V, E, %) be an i-2-c good signed graph with all edges odd. By virtue of Lemma 4.10, we
may assume that G is D-free, otherwise a structural description of G is already available. If G
can be reduced by a series of B-reductions to a signed graph G’ that contains a D-subgraph, then
G is as depicted in Figure 8 by Lemma 4.12. So we may further assume that G can be reduced
by a series of B-reductions to an i-2-c, good, D-free signed graph, to which no B-reduction is
applicable. This class of signed graphs is exactly the subject of our study in this subsection.
For convenience, we call a signed graph irreducible if it is i-2-c, good, D-free, nonbipartite, and
admits no B-reductions.

Lemma 4.13. The list of all irreducible signed graphs is as given in Figure 9, where Tig is an
arbitrary ladder in which only the top and bottom are odd edges.

VOXK KK K
0] O WX

10

odd

even

Figure 9: Irreducible signed graphs

Let us exhibit some properties satisfied by an irreducible signed graph G = (V, E,X) and
analyze a few cases before presenting a proof of this lemma. Note that if |V| = 2, then G is T}
in Figure 9 (for G is nonbipartite), which is called a 2-gon.

Lemma 4.14. Let G = (V, E,X) be an irreducible signed graph with |V | > 3. Then the following
statements hold:

(1) dg(v) >3 for allv € V, so both G and G* are 2-connected; and
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(i) |%| > 2.

Proof. (i) Let us first show that dg(v) # 1 for any v € V. Otherwise, let u be neighbor of
v, let uw be an edge in G with w # v, and let H be the bipartite graph consisting of uv and
uw only. Then we can perform a B-reduction on G by replacing H with vw (having the same
parity as before), which contradicts the hypothesis that G is irreducible.

Let us turn to proving that dg(v) # 2 for any v € V. Otherwise, let u and w be the neighbors
of v, and let H be the graph consisting of edges uv, uw, and the edge vw with the same parity as
the path R = uwvw, if any. (Possibly G contains both odd and even vw.) Then H is a bipartite
graph, and hence we can perform a B-reduction on G by replacing H with an edge vw (having
the same parity as R), a contradiction again.

Combining the above two observations, we see that dg(v) > 3 for all v € V. Since G is i-2-c,
it follows instantly that G and G* are both 2-connected.

(ii) Suppose on the contrary that || = 1. Let ¥ = {uv} and H = G\uv. Then we can
perform a B-reduction on G by replacing H with an even edge uv, contradicting the hypothesis
that G is irreducible. |

Lemma 4.15. Let G = (V,E,X) be an irreducible signed graph that contains a triangle with
three odd edges. Then G is T; in Figure 9 for some i with 2 <i < 7.

Proof. We shall first give a structural description of G* (the realization of G), and then
transform it into information about G. Depending on presence or absence of K4 (the complete
graph with four vertices) in G*, we consider two cases.

Case 1. G* contains a K.

In this case, let U = {uy,us,us, us} be the vertex set of a K4 in G*. Observe that

(1) G* contains no two edges u;us and u;jug with 1 <7 # j <4 and {us,us} NU = 0.

Suppose the contrary. Symmetry allows us to assume that ¢ = 1 and j = 2. Then the union
of the triangle ujuoug and three edges uqus, usug, ugus would be an Fy in G*. This contradiction
justifies (1).

Throughout N4 (v) stands for the set of all neighbors of a vertex v outside a vertex subset
Ain G*.

(2) [Ny(uw;)| <1 forall1<i<d4.

Otherwise, | Ny (u1)| > 2, say. Then Ny (u;) = () for i = 2,3,4 by (1). Thus u; is a cutvertex
of G*, a contradiction.

From (1) and (2), we deduce that G* contains at most one vertex outside U. If U is the
whole vertex set of G*, then G* and hence G = K, which is exactly Ty in Figure 9. It remains to
consider the situation when G* contains a fifth vertex us. By Lemma 4.14(i), G* is 2-connected,
so us has at least two neighbors in U, which implies that G is T3,7Tg or 17 in Figure 9.

Case 2. G* contains no K.

In this case, let A = {u1,u2,u3} be the vertex set of a triangle in G* (see the hypothesis).
By Lemma 4.14(i), we have dg(u;) > 3, so Na(u;) # 0 for i = 1,2,3. If these three sets are
pairwise disjoint, then G* would contain an Fj, a contradiction. Thus, by symmetry, we may
assume that u; and us have a common neighbor uy # us. So U = {uq,us2,us,us} induces a
diamond K in G* by the hypothesis of the present case. Notice that

(3) if Ny(u;) #0 # Ny(u;) for i =1 or 2 and j = 3 or 4, then [Ny (u;) U Ny(uj)| = 1.
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Suppose the contrary: |Ny(u;) U Ny(uj)| > 2, say i =1 and j = 3. Then G* contains two
edges uju) and usus with {u},u5} N U = (). Thus the union of the triangle ujuous and three
edges ujul, ugug, uguly would be an Fy in G*. This contradiction establishes (3).

If both usz and u4 have degree two in G*, then there would be two even edges between uy
and wug in G, contradicting (4.1). So we may assume, by symmetry, that

(4) Nos(u) # 0.

(5) Ny (u;) # 0 for i =1 or 2.

Assume the contrary: Ny (u;) = () for i = 1,2. If Ny(uy) # 0, then G\{uy,us} is connected
(for otherwise each of ug and uy would be a cutvertex of G*). Thus K is a D-subgraph of G,
contradicting the hypothesis that G is irreducible. If Ny (u4) = 0, then us would be a cutvertex
of G*. This contradiction proves (5).

By (5) and symmetry, we may assume that us is a vertex in Ny (up). By (3) and (4), us
is adjacent to us in G*. Furthermore, us is the only vertex outside U that is adjacent to U.

As G*\uj is connected, the whole vertex set of G* is {u1,ug,...,us}. From the hypothesis of
the present case, we see that us is nonadjacent to us. Thus G is either Ty or T5 in Figure 9,
depending on whether us is adjacent to uy. |

Lemma 4.16. Let G = (V,E,X) be an irreducible signed graph such that G\{uivi,usva} is
disconnected for some two odd edges uyvy and ugve. If one component of G\{uiv1,ugve} contains
a 2-gon on {uy,us}, then G is Ty in Figure 9.

Proof. By Lemma 4.14(i), G is 2-connected. So ujv; and ugve are disjoint, and G\ {ujv1, ugvs }
has precisely two components G and Gy, with {uy,us} C V(G1). According to the hypothesis,
{u1,u9} induces a 2-gon in Gi; let P = ujugus be the path corresponding to the even ujus in
G7. We claim that

(1) G5 contains a vve-path of odd length.

Suppose the contrary: there is no vjve-path of odd length in G3. Since G* is 2-connected,
G35 contains no odd cycle by Menger’s theorem, and hence is a bipartite graph in which v; and
v2 belong to the same color class. By Lemma 4.14(i), dg(v;) > 3 for i = 1,2, so Gy contains at
least two edges. Hence we can perform a Bs-reduction on G by replacing the whole G with an
even edge v1vy, contradicting the hypothesis that G is irreducible. Therefore (1) holds.

(2) Let Q be a vjve-path of odd length in G5, and let Ng(v) be the set of all neighbors of a
vertex v in G3 outside Q. If Ng(v;) # 0 for i = 1,2, then |Ng(v1) U Ng(va)| = 1.

Otherwise, let v1v] and vovh be two disjoint edges in G5, with {v],v5} N V(Q) = 0. Then
P U Q U viujugvy U {v1v], vov5} would be a fully odd subdivision of F5 in G*, a contradiction.

(3) G5 contains an edge vjvs.

To justify this, let @ be a vjve-path of odd length in G% (see (1)); subject to this, @ is
as short as possible. Suppose for a contradiction that the length of () is at least three. Write
Q = agaqas . ..as, where t is odd and at least three.

(4) If G contains an edge a;a;, with j > i+ 2, then j =i+ 2

Suppose the contrary: j —i > 3. Let Q" be the path arising from @ by replacing Q[a;, a;]
with edge a;aj. If j — ¢ is odd, then @’ is also a vive-path of odd length, which is shorter
than @. Thus the existence of Q' contradicts the choice of (). So we assume that j — 7 is even.
Consequently, j—i > 4. Since @ is of odd length, either Q[ao, a;] or Qa;, a;] is of odd length, say
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the former. Thus the union of the odd cycle Q' U vauguivy and three edges a;a;41, aj_1aj,Uuous
would be a fully odd subdivision of Fi, a contradiction.

(5) If G contains two edges a;a;2 and ajajio, with j > i+ 1, then j =i+ 1.

Otherwise, let Q' be the path arising from @ by replacing Q[a;, a; 2] with edge a;a;12 and
replacing Qla;, a;j12] with edge aja;to. Then Q' is also a vjva-path of odd length, which is
shorter than ), a contradiction.

(6) If G% contains an edge a;a;+2, then a;y; has no neighbor in G5 outside Q.

Otherwise, let a;,; be such a neighbor of a;41. Then the triangle a;a;11a;4+2 together with
three edges a;_1a;, ai+1a§+1, Gi+20a;+3, with a_; = uy and a;+1 = ug, would be an F; in G5. This
contradiction justifies (6).

If G% contains only one edge of the form a;a;;2, then a;+1 has degree two in G5 by (4) and
(6), contradicting Lemma 4.14(i). If G5 contains two edges of the form a;a;+2 and a;+1a;43,
then both a;4+1 and a;1o have degree three in G* by (4), (5) and (6). Thus the diamond
on {a;,ajt+1,ai4+2,a;+3} would be a D-subgraph of G, contradicting the hypothesis that G is
irreducible. From (4) and (5), we thus deduce that @ is an induced path in G*. So, by
Lemma 4.14(i), each vertex a; has at least one neighbor in G% outside ). In view of (2),
there exists a vertex b in G} such that Ng(ag) U Ng(at) = {b}. The same proof of (2) yields
Ng(ap) UNg(a1) = {b}. Thus the triangle aga;b together with three edges agus, ajas, ba; would
be an F} in G*. This contradiction completes the proof of (3).

Let @ stand for the odd edge v1ve. By (2), we have Ng(v1) U Ng(v2) = {v3} for some vertex
vz in G5. Since G5\vs is connected, {v1,v2,v3} is the whole vertex set of G5, and hence Go
is a 2-gon on {v1, vy}, which in turn implies that G is also a 2-gon on {uj,us} by symmetry.
Therefore G is Ty in Figure 9. |

Lemma 4.17. Let G = (V, E,X) be an irreducible signed graph that contains an odd cycle with
at least three odd edges. Suppose G contains no triangle with three odd edges and contains no
cut with two odd edges as described in Lemma 4.16. Then G is Ty in Figure 9.

Proof. An odd cycle in G is called a long cycle if it contains at least three odd edges. In our
proof we reserve the symbol C' for a long cycle in G such that |V(C')| is minimum and, subject
to this, |E(C) N Y| is maximum. As usual, an edge outside C'is called a chord of C' if it has two
ends on C. Each component of C'\X is called a gap of C. Note that if a gap contains at least
two vertices, then it consists of even edges only. For convenience, a chord e of C' is also called a
chord of a gap R if e is between two vertices of R.

(1) Each chord of a gap is an odd edge.

Assume the contrary: some chord uv of a gap R is even. Let C’ be obtained from C by
replacing R[u,v] with this chord wv. Then C’ is an odd cycle and contains all odd edges in C.
Since C’ is shorter than C, the existence of C’ contradicts the choice of C. So (1) is established.

(2) Each gap has at most one chord.

Suppose for a contradiction that some gap R has two chords ujv; and ugve. By (1), both
ujvy and uguy are odd edges. If R[ug,ve] C Rluy,v1], then R[uq,v1] corresponds to a path of
length at least four in G*, and hence C'U{ujv;} would yield a fully odd subdivision of F3 in G*,
a contradiction. So, renaming subscripts of vertices if necessary, we assume that both v; and
ug are on Rluj,vs]. Let C’ be the cycle obtained from C by replacing R[uj, vs] with the path
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u1v1 R[v1, ug)ugve. Then C” is an odd cycle and contains two more odd edges than C. Since C’
is not longer than C, the existence of C’ contradicts the choice of C. So we obtain (2).

An edge e outside C' is called a leaving edge of a gap R if e has precisely one end in R.

(3) Each gap has at least one leaving edge.

To justify this, let R be an arbitrary gap, and let u and v be its two ends such that ™« and
vuT are two odd edges on C. By Lemma 4.14(i), dg(z) > 3 for all vertices x. So the statement
holds trivially if « = v. It remains to consider the case when u # v. Suppose on the contrary
that R has no leaving edge. In view of (2) and the degrees of vertices on R, we deduce that
{u,v} induces a 2-gon in G and {u~u,vv"} is a cut as described in Lemma 4.16, contradicting
the hypothesis of our lemma. So (3) holds.

A path P is called C-external if all internal vertices of P are outside C.

(4) Let P be a C-external uv-path between two different gaps. If C[u,v] is even and corre-
sponds to a path in G* of length at least four, then P is even.

Otherwise, CUP would correspond to a fully odd subdivision of F3 in G*. This contradiction
justifies (4).

(5) Each chord between two different gaps is an even edge.

To justify this, let uv be such a chord. Renaming the vertices if necessary, we may assume
that Clu,v] is even. Since Clu,v] U {uv} is not a triangle with three odd edges by hypothesis,
C'u,v] corresponds to a path of length at least four in G*. Thus (5) follows instantly from (4).

(6) Let Py, P, be two disjoint even C-external paths. If u;, v; are the ends of P; for i = 1,2
such that wuy,us,v1,v3 occur on C in clockwise cyclic order, then precisely one of Cluy,us],
Clug,v1], Clvy,v2], and Clvg,u;] is odd.

Suppose the contrary: at least two of Cluy,ug], Clug,v1], Clvi,ve], and Clve,u] are odd,
so exactly three of them are odd as C is odd. By symmetry, we may assume that Cluq,us],
Clug,v1], and Clv,vs] are odd. Let Q1 = Clvg,ui1] U P; and Q2 = Py U Clug,v1]. Then @
corresponds to an even path of length at least four in G*, and Q2 corresponds to an odd path.
Thus Q1 UQ2UC vy, v9] would correspond to a fully odd subdivision of F3 in G*, a contradiction.
So (6) is proved.

The following statements (7)-(9) are concerned with three leaving edges e; = u,;v; for i =
1,2, 3 of three different gaps of C, such that uy, us,us occur on C in clockwise cyclic order and
that Cluy,us], Clug, us] and Clus,u;] are all odd.

(7) At most one of ej,eq,e3 is even, and at least two of them have vertices in common
(possible are identical).

Assume that contrary: at least two of e, es, e3 are even, or they are pairwise disjoint. For
i =1,2,3, let u;w;v; be the path corresponding to e; in G* if ¢; is even, and let w; = v; if e; is
odd. Note that e; is even if v; € V(C) by (5). It is then a routine matter to check that the union
of C* (realization of C') and three edges u;w; for i = 1,2,3 would yield a fully odd subdivision
of F} in G*, no matter what the locations of the vertices v; are. This contradiction justifies (7).

(8) The vertices v1,va,v3 are not all identical.

Otherwise, v1 = vy = v3. By (5) and (7), this vertex is outside C'. Observe that at least one
of e1,e9,e3 is even, for otherwise, let C! be the cycle Clu;, ujt1] Uujviuipq for i = 1,2, 3, where
ug = uy if = 3. From the choice of C, we see that C! is not shorter than C. So C'is a triangle
with three odd edges, which contradicts the hypothesis of the present lemma. It follows from
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(7) that precisely one of e, eq, e3 is even, say es. Since ujviug is not a triangle with three odd
edges, C[us,us] corresponds to a path of length at least four. From (4) with (u,v) = (us,us2),
we conclude that P = ugvius is even, a contradiction.

(9) If v1 = vs, then it is outside C'. Furthermore, both e; and e are odd edges.

Suppose the contrary: vy is on C. Then both e; and e are even by (5), contradicting (7).
In view of (8), we have vy # v1. Also, es is even if v9 € V(C'). Thus, if one of e; and e3 is even,
then C' U {ey, eq,e3} corresponds to a subgraph of G* which contains a fully odd subdivision of
Fy. This contradiction implies that both e; and eg are odd. So (9) holds.

Let Ry, Ro,..., R, be all the gaps of C' that occur on C in clockwise cyclic order, and let
e; = u;v; be a leaving edge of R;, with u; € V(R;) for 1 <i < k.

(10) If K > 5 and e ¢ {e1,e3}, then vg is outside C' and vy = v; for i = 1 or 3. Furthermore,
both es and e; are odd edges.

Suppose the contrary: vy # v; for i = 1,3. From (7) and (9), we deduce that v; = v3 and is
outside C'. Furthermore, both e; and es are odd. Applying (7), (8) and (9) to edges es, €3, €4,
we see that either es = e4q or v9 = vq # v1, and vy is outside C'. Moreover, both e, and ey are
odd. Let P, = ujviuz and let Py, = ey if e5 = e4 and Py = ugvouy otherwise. Then the existence
of these two paths contradicts (6). Thus vy = v; for ¢ = 1 or 3, which is outside C by (5) and
(7). So (10) is established.

(11) k = 3.

Suppose on the contrary that x # 3. Then k > 5 because it equals the total number of odd
edges on C. By (10) and symmetry, we may assume that G contains a ujug-path P;, which
is either e; = ey or ujviug. Using the edges ez, e3,e4 and (10), we see that G also contains a
usug-path Py, which is either e3 = e4 or ugvsuys. By (8), Pi, P» and e are pairwise disjoint.
It thus follows from Lemma 4.7 that G* contains a fully odd subdivision of F; or F5;. This
contradiction yields (11).

Symmetry and (11) allow us to assume hereafter that e; = eg or v; = v3. Let uqus be the
odd edge contained in Cus,u;] such that us, uy, us,u; occur on C' in clockwise cyclic order. We
claim that

(12) us = ugq, us = uy, and e; = e3.

Assume that contrary: us # ug4, say. If R3 has a chord e4 incident with u4, then e4 is odd
by (1). Thus C U{ey4,e1, ez} would yield a fully odd subdivision of F, in G*. This contradiction
implies that w4 is not adjacent to any vertex on R3 except u, . Next, we show that R3 has no
leaving edge incident with u4. Otherwise, let e5 = uqvyq be such a leaving edge. Using the edges
e1, ez, e5 and using (5), (7) and (10), we conclude that either vy = v; or ve and e5 is odd, or
es = e5 and is even. Observe that if vy = vy, then ujviusClug, ui]uy would be an odd cycle
that contradicts the choice of C. In the remaining two cases, the existence of the two paths
with edge sets {e1,e3} and {ea,e5}, respectively, would contradict (6). Combining the above
two observations, we conclude that dg(us) = 2, contradicting Lemma 4.14(i). Hence ug = uy
and us = u;. Since G contains no triangle with three odd edges, we further have e; = e3. So
(12) is justified.

Let ugury and ugug be two odd edges in C\ugqus, such that ug,us,...,ug occur on C in
clockwise cyclic order.

(13) Ry or R3 has at least one leaving edge outside {e1, uqus}.
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Otherwise, neither R; nor Rs has a leaving edge outside {ej,usus}. By Lemma 4.14(i),
dg(u;) > 3 for i = 6,9, so u; = ug and uz = ug. Consequently, {ugur,ugug} is an edge cut
as described in Lemma 4.16, contradicting the hypothesis of the present lemma. Hence (13) is
true.

Let eg be an arbitrary leaving edge of Ry or R3 outside {e1, uqus}, having at least one end u1q
in Ry U R3. With {ej,e2,e6} in place of {e1, ez, e3}, from (7) we see that eg and es have vertex
in common. From (12) we can further deduce that e = es. Furthermore, (u19,u2) = (ug, ur)
if uyg is on Ry, and (u1g,u2) = (ug,ug) otherwise. It follows that es is the unique leaving edge
of Ry and Rj3 outside {e1,uqus}. Next, Ry has no leaving edge f other than ey, for otherwise
C U {e1,eq, f} would yield a fully odd subdivision of F; or Fy by Lemma 4.7, a contradiction.
Finally, since dg(u;) > 3 for 6 < i <9, we have u; = ug and ug = ug if ujg is on Ry and u; = ug
otherwise. Combining the above observations, we conclude that G is Ty in Figure 9. |

Proof of Lemma 4.13. In view of Lemmas 4.15-4.17, we may assume that

(1) each odd cycle in G contains precisely one odd edge.

By Lemma 4.14(i), G is 2-connected. Since G is nonbipartite, it has an odd cycle C, with odd
edge e = ujuz. As |X| > 2 by Lemma 4.14(ii), there exists an odd edge es = v1v3 outside C'in G.
By Menger’s theorem, G contains two disjoint paths @1, Qs from v, vs to two distinct vertices
w1, wy on C', respectively, where w1, w1, ws, us occur on C' in clockwise cyclic order, and w;, v; are
the two ends of Q); for i = 1,2. Set P; = Cluy, w1], Po» = Clws, uz], and K = CUQ1UQaU{es}.
From (1) it is easy to see that

(2) e1, e are the only odd edges in K.

Consequently, C[w1, wy] = wiws, for otherwise, K would correspond to a fully odd subdivision
of F3 in G*, a contradiction. For convenience, we assume that

(3) each of Py, P»,Q1,Q2 is an induced path in G.

We claim that

(4) e1, ez are the only odd edges in G.

Suppose the contrary: G contains a third odd edge e3. Then Menger’s theorem guarantees
the existence of a path R traversing es with both ends z,y in K. Using (1) and (2), it is a
routine matter to check that eq, eo, e are the only odd edges in K U R. Now let us proceed by
considering all possible locations of z and y. If {z,y} = {w1, w2}, then K U R would yield a
fully odd subdivision of Fy in G*. So {z,y} # {wi,wa}. If {z,y} CV(P,UQ;) fori=1or 2, or
x € V(P)\wy and y € V(Q2)\wa, or z € V(P2)\wz and y € V(Q1)\w1, then we can easily find
a cycle with precisely three odd edges, contradicting (1). If R is between P; and P, or between
@1 and @9, say the former, then C' U R would yield a fully odd subdivision of F3 in G*. Thus
we can reach a contradiction in each case, and hence (4) is established.

(5) P;UQ); is an induced path in G for i = 1, 2.

Suppose the contrary: some edge f is a bridge of P, U@, say. From (3) we see that one end
a of fis on P;\w; and the other end b on Q1\w;. Thus the graph obtained from K U {f} by
deleting all vertices on @1 (wi,b) would correspond to a fully odd subdivision of F3 in G*. This
contradiction establishes (5).

Let H be the union of the cycle ¢/ = K\wjws and all its chords. Then G = H, because any
bridge of H would cause a By-reduction in G by (4) and (5), contradicting the hypothesis that
G is irreducible.
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(6) If z1y1 and a9y are two disjoint chords of C’ such that uy,x1, 2,91, y2 occur on C’ in
clockwise cyclic order, then x12zo and y1y2 are two edges of C’.

Assume the contrary: xixe or yjys is not an edge of C’, say the former. Then C'[ys,y1] U
{z1y1, x2y2} would yield a fully odd subdivision of F3 in G*. This contradiction yields (6).

By Lemma 4.14(i), dg(v) > 3 for all vertices v of G. So each vertex is incident with at least
one chord of C’. Combining this with the above observations, we conclude that G is a ladder
with only top e; and bottom es odd. So G is Fg in Figure 9. |

4.6 B-extensions

In the previous subsections we have observed that the property of being good is preserved under
B-reductions, and have determined all irreducible signed graphs. Although this property is
not maintained under B-extensions, let us proceed to show that the original graph can still be
“deciphered” from irreducible signed graphs by using such reverse operations of B-reductions
and meanwhile avoiding occurrence of forbidden structures.

Throughout this subsection, G = (V, E,X) is an i-2-c¢ good signed graph with all edges odd,
and I7(G) is the set of all irreducible graphs arising from G. Moreover, G; for 1 <1i <9 are all
as depicted in Figure 4, and T} for 1 <4 < 10 are all as shown in Figure 9.

Lemma 4.18. If Ty € Ir(G), then G is a subgraph of one of Gy and Gg — Gy.

Proof. Let {v1,v2} be the vertex set of T and let e (resp. f) denote the even (resp. odd)
edge of T7. We may assume that f is created in T3 to replace a connected bipartite subgraph
of G in a B-reduction, for otherwise, f is an edge of G and G\ f is bipartite. So G is nearly
bipartite, and hence is one of the six graphs depicted in Figure 6 by Lemma 4.9, which are
subgraphs of G5 and Gg — Gy, respectively.

Let L (resp. R) be the connected bipartite subgraph of G replaced by e (resp. f) in a
B-reduction. Let L' be obtained from L by adding an edge v1v2 and let R’ be obtained from R
by adding a path vyvgve, where v3 is a new vertex outside R. Since G is i-2-c and good, so are
L’ and R'. Since L'\v1v9 and R'\vjv3 are bipartite graphs, both L’ and R’ are nearly bipartite.
By Lemma 4.9, L’ is one of H; for 1 <1 < 6 in Figure 6, and R’ is one of H; for 1 < j <6 and
Jj # 5 (as dp, (z2) = 3 while dp/(v3) = 2). Let 3 be the neighbor of 3 in H; corresponding to
vy in R’; keep in mind that z3 in on a path marked by « in Figure 6 when j = 1,2,4. Let L;
be obtained from H; (potential L’) by deleting zx2, and let R; be obtained from H; (potential
R’) by deleting xo. For convenience, we relabel (x1,x2) as (v1,v2) in L;, and relabel (z1,z3) as
(vi,v2) in R;. Observe that

(1) L # Ls.

Assume on the contrary that L. = Ls. By Lemma 4.3, either R contains a vyve-path P
together with an edge ujug, with uy € V(P) while ug ¢ V(P) or R is a path of odd length at
least three. In the former case, symmetry allows us to assume that Plvq,uq] is odd. Let w; be
the vertex above v; in Hj (see Figure 6) for i« = 1,2. Then the cycle wyvi Pvawsy together with
viwi, uug and an edge incident with we outside {wyv1, wovy} would be a fully odd subdivision of
F; in G. In the latter case, let @ be a wyjws-path in Ls\{v1,va}. Then the three paths wiQuyve,
wyve, and wiv1 Rvy would be a fully odd subdivision of F3. So we reach a contradiction in either
case. Hence (1) is justified.
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(2) If L = L4, then G is a subgraph of Gs.

To justify this, note that R is a vivo-path, for otherwise, Lemma 4.3 guarantees the existence
of a vive-path P together with an edge ujuy in R, with u; € V(P) while uy ¢ V(P). By
symmetry, we may assume that Plvy,u1] is odd. For i = 1,2, let a; be the pendant vertex right
above v; in Figure 6, let @Q); be the a;v;-path corresponding to the straight line segment linking
a; and v;, and let b;, ¢; be the two vertices succeeding a; on @;. If a =odd (see Figure 6), then
the cycle b1Q1[b1, v1]v1 PvaQalva, ca]caby together with edges ujug, a1by, bacy would yield a fully
odd subdivision of Fj. If & =even (see Figure 6), then the cycle ¢1Q1[c1, v1]v1 PvaQ2lva, bo]bacy
together with edges wjus,bicy, asbs would yield a fully odd subdivision of Fj. So we reach a
contradiction in either case. As R is a path, it is clear that G is a subgraph of G», as desired.

The same argument yields the following statement.

(3) If R = Ry, then G is a subgraph of G.

(4) If L = Ly and L cannot be drawn as L, then G is Gs.

To justify this, let P; be the path starting with v; and marked by « in Lo, let u; be the end of
P; other than v; for i = 1,2, and let u3 be the common neighbor of u; and us (see Figure 6). Since
L5 cannot be drawn as Ly, the fully subdivided subgraph in Lo is not a path. So, by Lemma 4.3,
there exists a ujus-path @ in Lo\ug and an edge wiwse, with wy € V(Q) while we ¢ V(Q), such
that Q[u1,w1] is of odd length. We claim that R is a path, for otherwise, Lemma 4.3 guarantees
the existence of a vjvy-path S together with an edge z; 22, with z; € V(S) while 22 ¢ V(S). By
symmetry, we may assume that S[vy, z1] is odd. Then the cycle Py U P, UQ U S together with
edges wiws, 2122 and one of ugus and ujus (depending on whether o =odd; see Figure 6) would
yield a fully odd subdivision of Fj. This contradiction justifies our claim. It follows instantly
that G is Gg.

Similarly, we can establish the following statement.

(5) If R = Ry and R cannot be drawn as R, then G is Gs.

(6) If L = Lg, then G is a subgraph of a plump ladder Gy.

To justify this, let vy be the neighbor of vs other than vy, let P, P> be two vgui-paths of odd
length in Lg\vg, and let J be the bipartite subgraph of G induced by V(R) U {vp}. By Lemma
4.8, one color class of J is {vg,v1}. So G is a subgraph of a plump ladder Gy, as desired.

Using the same argument, we get the following statement.

(7) If R = Rg, then G is a subgraph of a plump ladder Gy.

(8) If L = Ly and R = Ry, then clearly G is Gg or a subgraph of Gg.

(9) If L = Ly and R = R3, then G is G or a subgraph of Gg.

To justify this, let C' be a shortest cycle in G containing v; and ve and intersecting both
L1\{v1,v2} and Rs\{v1,v2}, let a3 = v1 and a4 = ve, and let aq,as, ..., as be six vertices occur
on C' in clockwise cyclic order, where Clay4, as] and Clag, a1] are the two paths marked by « in
Ly (see Figure 6), and asas is the edge connecting two fully subdivided subgraphs in Rs. Let
B; stand for the fully subdivided subgraph containing both as;_1 and a9; in G for i = 1,2,3. If
«a =even or if one of By, Bo, B3 is an ag;_ja9;-path, then clearly GG is Gg or a subgraph of Gg.
Otherwise, each B; contains an edge b;b; such that b; is on Clag;_1,a2;] and that Clag;_1, b;]
is of even length, because ag;_1 and ae; are both contained in the color 1 class of B;. Thus
C' U {b1b], babhy, bsbs} would be a fully odd subdivision of Fy. This contradiction establishes (9).

The same argument yields the following two statements.

(10) If L = L3 and R = Ry, then clearly G is G or a subgraph of Gg.
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(11) If L = L3 and R = Rg, then clearly G is G or a subgraph of Gg.
Combining the above observations, we see that GG is a subgraph of one of G2, Gg, Gs and Gy,
as desired. |

Lemma 4.19. If T; € Ir(G) for i =5,6 or 7, then G = T; and hence is a subgraph of G1.

Proof. Let vi,vo,...,vs for all the vertices of T;. We propose to show that no edge e in
T; is created to replace a connected bipartite subgraph H. of G in a B-reduction. Assume the
contrary: some edge e = vzv; of T; is a counterexample. Let P be a shortest vsvi-path in He.
Note that P is of odd length. So either P has length at least three or H.\e contains an edge
f incident with e. Let K be obtained from T; by replacing e with P or with {e, f}. It is then
a routine matter to check that K and hence G contains a fully odd subdivision of F;. This
contradiction establishes the desired statement. Hence G = T;, as desired. |

Lemma 4.20. IfT; € Ir(G) fori= 2,8 or9, then G is Gs.

Proof. Label the vertices of T; as vy, v9,v3,v4, with v4 = v1 in T5, so that C' = vivovgvsvy
is a cycle in T, and that each of {vi,ve} and {vs,v4} induces a 2-gon in T;. For convenience,
we assume that vy, vo, v3,v4 occur on C' in clockwise cyclic order, and that both the odd vy
and odd vzvy are contained in C. Let H, = (X, Ye; E.) be the connected bipartite subgraph of
G replaced by an edge e in T; in a B-reduction, where the two ends of e are contained in X, if
e is even. Let us show that

(1) for even e = ajay € {vivg,v3vs} in T;, the entire H. is a ajas-path of length two.
Moreover, for e = vovg in Ty, the entire H, is a vovs-path.

To justify this, let P, and P> be two disjoint odd ajas-paths in T;. By Lemma 4.8 with
H = H,., we have

(2) Xe = {al,ag}.

Let C' = C if i = 2 or 8, and let C’ be obtained from C by replacing v9vs with a shortest
vouz-path in Hy,,, if i = 9. By (2), Hy,;_,v,; contains a vg;_jvgj-path @Q; of length two for
j=1,2. Set K = C"UQ; UQ2. Suppose on the contrary that (1) is false. Then G has an edge
f with one end in {v1,v4} or on C’[vg,v3] and the other end outside K (see (2)). From Lemma
4.7 we deduce that K U {f} contains a fully odd subdivision of F; or F». This contradiction
establishes (1).

(3) For each odd edge e = byby in T;, the entire H, is a byba-path.

Otherwise, Lemma 4.3 guarantees the existence of a bibs-path R and an edge cico in He,
with ¢; € V/(R) while c2 ¢ V(R). Let Q; be a vaj_1vgj-path in H,,,_,4,;, and let K be obtained
from T; by replacing even vyj_jve; with @; for j = 1,2 and replacing e with RU {cica}. It is
then a routine matter to check that K contains a fully odd subdivision of F; or F5. So (3) holds.

Combining (1) and (3), we conclude that G is Gs. 1

Lemma 4.21. If T3 € Ir(G), then G is Gs.

Proof. Let vy, vy, v3,v4 be four vertices of T5 such that {vy,v2} induces a 2-gon, and let
H, = (X, Ye; E.) be the connected bipartite subgraph of G replaced by an edge e in T; in a
B-reduction, where the two ends of e are contained in X, if e is even. We propose to show that

(1) for the even e = v1v9 in T3, the entire H, is a vjve-path of length two.
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To justify this, let P, and P> be two disjoint odd wvyve-paths in T5. By Lemma 4.8 with
H = H., we have X, = {v1,v2}. Let @ be a vive-path of length two. If H, # @, then H.\e
contains an edge v;v5 for ¢ = 1 or 2. Let K be obtained from T3 by replacing the even vyvy with
Q U {v;vs}. Then K and hence G contains a fully odd subdivision of F;. This contradiction
establishes (1).

(2) For the odd e = vyvy in T3, the entire H, is a viva-path.

Otherwise, Lemma 4.3 guarantees the existence of a vive-path @Q and an edge ujus in He,
with u; € V(Q) while up ¢ V(R). Let R be a vivp-path in Hy, where f is the even vjvg, and
let K be obtained from T; by replacing even v1ve with R and replacing e with Q U {ujug}. It is
then a routine matter to check that K and hence G contains a fully odd subdivision of Fj. So
(2) follows.

(3) No odd edge e # vivg in T3 is created to replace a connected bipartite subgraph H, of
G in a B-reduction.

Otherwise, imitating the proof of Lemma 4.19, we can easily find a fully odd subdivision of
Fy in G. Thus (3) holds.

Combining (1)-(3), we see that G is Gs. 1

Lemma 4.22. [fTy € Ir(G), then G is Go or Gy.

Proof. Let vy, vo,v3,v4 be the vertices of Ty, and let H, be the connected bipartite subgraph
of G replaced by an edge e of Ty in a B-reduction. We propose to show that

(1) One end v; of e has precisely one neighbor v} in He, such that H.\v; is a fully subdivided
graph in which both v} and v;, the other end of e, belong to the color 1 class.

To justify this, note that H. + v;v; is i-2-c, so at least one of (i), (ii) and (iii) in Lemma
4.5 holds with H = H, and (z1,y1) = (v;,v;). It is easy to see that if (i) or (ii) is true, then
G would contain a fully odd subdivision of F3 or Fj. So (iii) of Lemma 4.5 occurs; that is,
H contains an edge woys such that H.\zoys has precisely two components Hy = (X1, Y1; Fy)
and Hy = (Xo,Ys; Ey), with {z1,29} C X; and {y1,y2} C Yo, and that dg(v) < 2 for any
v € Y1 U Xy, (Possibly x1 = z9 or y1 = y2.) Let P be a shortest x1y;-path in H. Then P
traverses x1, T2, Y2, y1 in order. We claim that Hy = Pxy,z2] or Ho = Plya,y1]. Otherwise, Hy
contains an edge z12] with z; on P[z1,x2] while 2] outside P[z1,x2], and Hy contains an edge
2925, with 29 on Plys,y1] while 2 outside P[ys,y1]. Observe that z; € X7 and 29 € Ya. Let K
be obtained from T} by replacing e with P U {z12], z225}. It is easy to see that K and hence G
contains a fully odd subdivision of Fj. This contradiction proves our claim, which immediately
yields (1).

(2) We may assume that for any three vertices v;,v;,vi, of Ty, at least one of the edges v;v;
and v;vy, is not created in T} to replace a connected bipartite subgraph of G'in a B-reduction.

Suppose the contrary: wv;v; (resp. wv;vy) is created in T to replace a connected bipartite
subgraph H,,,. (resp. ijvk) of G in a B-reduction. Observe that

(3) if K is a complete graph with vertex set U = {uq,us,us,us}, then each H described
below contains a fully odd subdivision of F3.

iVj

e H arises from K by adding two disjoint edges ujus and ugug, with {us,ug} NU = §;

e H arises from K by adding one edge ujus, with us ¢ U, and subdividing usus into a path
of length at least two; and

e H arises from K by subdividing each of ujus and ujus into a path of length at least two.
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From (3) it is easy to see that at least one of Hy; and Hy,y, , say the former, consists of
two edges incident with v; only; let vjvs be the edge other than v;v;. Let H{)jvk be obtained
from H, Uk by adding the edge v;vs. We may thus assume that v;v;, is created in T} to replace
the connected bipartite subgraph H,, , of G in a B-reduction, while v;v; is not created in Ty in
any B-reduction. So (2) follows.

(4) If both vive and wvzvy are created in Ty to replace connected bipartite subgraph H,,y,
and H,.,,, of G, respectively, in B-reductions, then H,,, |4,, is a v;—jv9-path for ¢ =1, 2.

Suppose the contrary: H,,,,, say, is not a vjva-path. Then there exist a vive-path P and an
edge ajag in Hy,y,, with a; € V(P) while ay ¢ V(P). By Lemma 4.3, H,,,, contains either a
vzvg-path @ of length at least three or two edges v3v4 and vjvs for j = 3 or 4. Let S be obtained
from Ty by replacing vive with P U {ajas} and replacing vsvy with @ or with {vsvs, vjvs}. It is
then a routine matter to check that S and hence G contains a fully odd subdivision of Fj. This
contradiction implies (4).

From (1) we deduce that if precisely one edge of Ty is created to replace a connected bipartite
subgraph of G in a B-reduction, then G is G7. In view of (4), if two disjoint edges of Ty are
created to replace connected bipartite subgraphs of G in B-reductions, then G is G2. By (2),
the present lemma is thus established. |

3 Vk

Lemma 4.23. If 11y € Ir(G), then G is a subgraph of a plump ladder Gy.

Proof. By Lemma 4.13, Ty is a ladder in which only the top uius and bottom vvs are odd
edges. Let C be the outer cycle of T1yp. Renaming the subscripts of vertices, we assume that
u1,v1, V2, us occur on C' in clockwise cyclic order. By definition, each even edge e = x1x2 in Tig
is created to replace a connected bipartite subgraph H, of G in a B-reduction; let (X.,Y.) be
the bipartition of H,, such that {1,292} C X.. For an odd edge e, we also use H, to denote the
corresponding bipartite subgraph of G involved in a B-reduction, if any. We propose to show
that

(1) if e = w129 is a chord of C, then X, = {x1,z2}.

To justify this, let C* be the cycle corresponding to C' in G*, and let P = C*[z1,x2] and
Py = C*[z2,x1]. Then both P; and P, are of odd length. So (1) follows instantly from Lemma
4.8.

(2) If e = 1o is in C\{ujug,viva}, then dy, (y) < 2 for all y € Ye.

Suppose the contrary: dg, (y) > 3 for some y € Y. Since G is i-2-¢, Lemma 4.2 guarantees
the existence of two paths @1 and Q2 from y to {z1,22} in H, that have only y in common.
Clearly, we may further assume that both ()1 and Q2 are induced. Thus y has a third neighbor
y' outside Q1 U Q2 in H.. By Lemma 4.14(i), both z1 and x5 have degree at least three in Tg.
So C has a chord r; incident with x; for ¢ = 1,2. Let x12) be an edge in H,,, let R be a path
connecting the two ends of ry in H,,, and let C’ be obtained from C by replacing edge xixo
with path Q1 U Q2. Then C" U RU {z12),yy'} would yield a fully odd subdivision of F5 in G*.
This contradiction establishes (2).

(3) If e = x129 in C'\{ujug,v1v2} is contained in a 4-cycle induced by two crossing chords of
C, then X, = {z1,z2}.

To justify this, let 21y and z2y2 be two crossing chords of C', and let C’ be the cycle obtained
from C replacing edges z1x2, y1y2 with x1y1, Toys. Then x129 becomes a chord of C’. Using
(1), with C” in place of C, we deduce that X, = {x1,22}. So (3) is justified.
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(4) If e € {ujug,viv2}, then H, is as described in Lemma 4.5(iii), with H = H, and 1,y
being the ends of e.

To justify this, we only need to consider the case when e = ujus by symmetry. Thus 1 = w3
and y; = ug. Symmetry also allows us to assume that Cfuy,v1] contains at least one edges.
By Lemma 4.14(i), both u; and v; have degree at least three in Th9. So C contains two chords
r1 = ujug and ry = vivs. Let Ry = ujuqus by a path in H,, and let Ry = viv4v3 be a path in
H,, (see (1)). Since H + ujus is i-2-c, at least one of (i), (ii) and (iii) in Lemma 4.5 holds.

If (i) is true, then H contains an ujug-path P and an xays-path @, such that V(P)NV(Q) =
{z2,y2} and that both P[zy,ys] and @ are of odd length. Let S be obtained from C\ujug by
replacing Cvy,v3] with Ry. Then S U P U Q would yield a fully odd subdivision of F3 in G*, a
contradiction.

If (ii) is true, then H contains an ujug-path P and two disjoint edges yox3 and zoys, with
{z2,y2} € V(P) while {x3,y3}NV(P) = () and with y5 on P[uy,x3], such that Pluy,ys|, Ply2, x2],
and P[zg, us] are all of odd length. Let C” be obtained from C' by replacing C[ug, u1] with P and
replacing C[vy, v3] with Ry. Then C" U {ujuy, yox3, v2ys} would yield a fully odd subdivision of
Fy in G*, a contradiction again.

So neither (i) nor (ii) of Lemma 4.5 occurs, and hence (4) follows.

By (4) and Lemma 4.5(iii), if Hy, q,, With aja2 € {ujug,viva}, exists, then Hy,, 4, contains
an edge ajay such that Hy q,\ajay has precisely two components H, , = (Xi1,Y1;E1) and
Hyyay = (X2,Y2; Ep), with {a1,a} C X1 and {as,a5} C X, and that dg(v) < 2 for any
v € Y1 UY,. Let K be obtained from Tig by first replacing each edge e with H. as specified
in (1)-(4) and then adding a bipartite graph Ly = K, for some n > 1, in which one color
class consists of the two ends of f only, for each f in {ujul, ujul, v1vh, vjve, }, if any. Clearly, G
is a subgraph of K, and K is a subgraph of a plump ladder Gg. So the desired statement holds. 1

We are now ready to finish the structural description of good graphs.

Proof of Theorem 4.1. It is routine to check that none of Gi,Go,...,Gy depicted in
Figure 4 contains a fully odd subdivision of Fy, Fy, F3 or Fy as a subgraph. So if G is a subgraph
of one of these nine graphs, then G is good.

Conversely, let G be an i-2-c, good and nonbipartite graph; we view it as a signed graph with
all edges odd. By Lemma 4.13, {T3,T5,...,T1p} in Figure 9 is the set of all possible irreducible
signed graphs arising from . The lemmas proved in this subsection assert that G is a subgraph
of one of G1,G9,...,Gy depicted in Figure 4, no matter what the irreducible signed graphs T;
arising from G are, completing the proof. |

5 Primitive Graphs

By Theorem 4.1, every i-2-¢ good graph is bipartite or is a subgraph of one of the nine graphs
G1,Ga,...,Gy (see Figure 4). The purpose of this section is to show that the restricted Edmonds
system o(G) is ESP when G is bipartite or G; for 1 <14 <9.

To facilitate better understanding of an ESP system o(G), we give an intuitive interpretation
of this concept using graph-theoretic language. Recall the notations I(G) and T (G) introduced
right above Theorem 1.2. For each v € I(G), we call §(v) the star centered at v and define
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its rank p(d(v)) to be 1. For each U C T(G), we call E[U] the odd set generated by U and
define its rank p(E[U]) to be (|[U| — 1)/2. For any collection A of stars and odd sets of G, let
p(A) =S kea p(K) and let dy(e) denote the number of members of A that contain an edge e.
For each star or odd set K in G, let mp(K) stand for the multiplicity of K in A. Observe that
p(K) is counted mp(K) times in p(A), and K is counted mp (K) times in dp(e) if e € K. An
equitable subpartition of A consists of two collections A; and As of stars and odd sets (which are
not necessarily in A) such that

(i) p(A1) + p(A2) < p(A);
(i) da,un,(e) > da(e) for all e € E; and
(iii) min{da, (e),dn,(e)} > |[da(e)/2] for all e € E.
We call G equitably subpartitionable, abbreviated ESP, if every collection A of stars and odd sets

of G admits an equitable subpartition. We refer to the above (i), (ii), and (iii) as ESP property.
The following statement follows instantly from definitions.

Lemma 5.1. A graph G is ESP if and only if o(G) is ESP.

Let G = (V, E) be a graph, and let A; and Ay be two collections of stars and odd sets in G.
We say that A; dominates Ag if p(A1) < p(A2) while da, (e) > da,(e) for all e € E. Suppose G
is not ESP. We reserve the symbol A for a collection of stars and odd sets of G such that

(5a) A admits no equitable subpartition;

(5b) subject to (5a), p(A) is minimized;

(5¢) subject to (5a-b), f(A) =Y ccpda(e) is maximized;

(5d) subject to (ba-c), g(A), the number of odd sets in A, is minimized.

Lemma 5.2. The collection A has the following properties:
(i) If Q dominates A, then mq(K) =1 for all K € Q.
(ii) If Q dominates A, then p(2) = p(A), f(2) = f(A), and g(2) > g(A).
(111) If 6(v) € A and no odd set in A contains any edge in 6(v), then v has two distinct neighbors
uy,ug such that 6(u;) € A fori=1,2.

Proof. (i) Assume the contrary: a star or an odd set K appears at least twice in €. Let
V' =0—{K,K}. As p(?) < p(Q) < p(A), from (5b) we deduce that ' admits an equitable
subpartition (Q7,€5). Set Q; = Q; U {K}. It is a routine matter to check that (€1,€9) is an
equitable subpartition of 2 and hence of A, a contradiction.

(ii) Since © dominates A, by definition p(Q) < p(A) and f(Q) > f(A). If one of the
inequalities p(Q2) < p(A), f() > f(A), and g(2) < g(A) holds, then (5a-d) would guarantee
the existence of an equitable subpartition (21, 2) of ©, which is also an equitable subpartition
of A, a contradiction.

(iii) Assume the contrary: there is at most one neighbor u of v such that d(u) € A. Let
AN = A —{6(w)}. Then p(A") < p(A). So A’ admits an equitable subpartition (A}, A%) by
(5b). Renaming subscripts if necessary, we assume that dy; (uv) < dy,(uv) if u exists. Set
A = AJU{6(v)} and Ae = Af. Tt is straightforward to verify that (A1, A2) is an equitable
subpartition of A, a contradiction. |
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Lemma 5.3. Let v be a vertex of G with dg(v) = 2. If dp(e) is odd for an edge e € 6(v), then
d(v) € A.

Proof. Assume on the contrary that 6(v) € A. Let A’ = A —{§(v)}. Then p(A’) < p(A). So
A’ admits an equitable subpartition (A}, A5) by (5b). Let f be the edge incident with v other
than e. Renaming subscripts if necessary, we assume that dy, (f) < day (f). Set Ay = AjU{d(v)}
and Ay = A). Clearly, (A1, As) is an equitable subpartition of A, a contradiction. |

For convenience, we introduce some notations which will be used throughout this section.
For each U C V, define §(U) = {6(v) : v € U}. For each path P in G, define §(P) = §(V(P)).

Lemma 5.4. Let E[S]| and E[T] be two distinct odd sets in G, such that G[A]\B is a path for
each permutation A, B of S, T with A\B # (). Then the following statements hold:

(i) If |SNT| is even and S\T # 0 # T\S, then {E[S], E[T]} £ A.
(1t) If S C T and dg(v) =2 and 6(v) € A for allv € T\S, then E[S] € A.

Proof. (i) Assume the contrary: {E[S], E[T]|} C A. Let P (resp. Q) denote the path G[T]\S
(resp. G[S]\T). Then both P and @ are of even length. Let (Uy,Us) (resp. (Us,Uy)) be the
bipartition of P (resp. Q) with |Uy| > |Us| (resp. |Us| > |U4|), and let A’ be the collection
obtain from A by deleting {E[S], E[T]} and adding 6(SNT)U§(Us UUy). Then p(A) = p(A)
and dy(e) < dps(e) for all e € E. So A’ dominates A and g(A’) < g(A), contradicting Lemma
5.2(ii).

(ii) Assume the contrary: E[S] € A. Let P denote the path G[T]\S. Then P is of odd
length. Let (Uy,Us) be the bipartition of P, and let A’ be the collection obtain from A by
deleting {E[S],§(Uz)} and adding E[T]. Then A’ dominates A and f(A’) > f(A), contradicting
Lemma 5.2(ii). 1

Lemma 5.5. Let H = (X,Y; E) be a bipartite graph, let a and b be two distinct vertices in X,
and let Q2 be a set of stars in H such that each ab-path contains a vertex v with 6(v) & Q. Then
Q can be partitioned into Q1,Qo such that (21,s) is an equitable subpartition (and hence called
equitable partition) of Q and that |Q; N {d(a),d(b)}| <1 fori=1,2.

Proof. Let us first consider the case when d(a) or §(b) is outside Q. Set ; = §(X) NN
and Qs = 6(Y) N Q. Clearly, (©2,82) is as desired. It remains to consider the case when
{6(a),8(b)} C Q. Let Z be the set of all vertices v with §(v) ¢ Q. By hypothesis, a and b are
in different components of H\Z. Let Hy = (X1,Y7; E1) be the component of H\Z containing a
and let Hy = (X2, Y5; E) be the union of the remaining components of H\Z, with a € X; and
be Xy. Set Q1 =§(X1UYs) and Q9 = §(X2 UY7). Obviously, {Q1,Qs} is a partition of Q with
the desired properties. |

We shall also need the following Lovasz’ Open Ear Decomposition Theorem in our proof.

Theorem 5.6. (Lovész [13]) Let H be a 2-connected factor-critical graph. Then H can be
decomposed as Py+ Py + - - -+ Py, where Py is an odd cycle and P;y1 is an odd path having only
its two ends in common with Py + Py +---+ P; for any 0 <i <r —1.
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Let us proceed to show that the ESP property is satisfied by all bipartite graphs and all
Gi’S.

Lemma 5.7. Fvery bipartite graph is ESP.

Proof. Suppose on the contrary some bipartite graph Gy = (Vi,Va; E) is not ESP. Let
A be a collection of stars and odd sets in Gy as specified by (5a-d) (with Gy in place of G).
By Lemma 5.2(i), we have ma(K) = 1 for all K € A. Observe that A contains no odd set,
for otherwise, let S = E[U] be such a set. Renaming subscripts if necessary, we may assume
that [UNVi| < |U N Vs|. Let A’ be obtained from A by replacing S with §(U N V7). Then A’
dominates A and g(A’) < g(A), contradicting Lemma 5.2(ii). Set A; = 6(V;) N A for i = 1,2.
Clearly, (A1, A2) is an equitable subpartition of A, contradicting (5a). [ |

Lemma 5.8. The graph Gy = (V1, E71) (see Figure 10) is ESP.

U1

V2 Vs

V3 V4

G1
Figure 10: The primitive graph Gy

Proof. Suppose on the contrary that G is not ESP. Let A be a collection of stars and odd
sets in G as specified by (5a-d) (with G; in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. Let us make some observations about A.

(1) The total number of stars contained in A, denoted by h(A), is at most 2.

Otherwise, symmetry allows us to assume that §(v;) € A for i = 1,2,3. Let U = {v1,v9,v3}
and let A’ be the collection obtained from A by replacing 6(U) with {E[U],E1}. Then A’
dominates A and f(A’) > f(A), contradicting Lemma 5.2(ii). So (1) holds.

(2) If E(U;) € A with |U;| =3 for ¢ = 1,2, then |U; NUs| = 2.

Assume on the contrary that U3 NUsz| = 1. Let A’ = (A — {E[U41], E[Us]}) U{E1}. Then A’
dominates A and f(A’) > f(A); this contradiction to Lemma 5.2(ii) establishes (2).

(3) A contains at least one odd set.

Otherwise, we may assume that A consists of stars only and d(v;) € A. From (1), we see
that ({6(v1)}, A — {d(v1)}) is an equitable subpartition of A. This proves (3).

(4) A contains precisely one odd set E[U] with |U| = 3.

Assume the contrary. If A contains no odd set E[U] with |U| = 3, then Ej is the only odd set
in A by (3). Hence ({E1}, A—{E1}) is an equitable subpartition of A by (1), a contradiction. So A
contains at least two odd sets E[U;] and E[Us], with |U;| = 3 for i = 1,2. By symmetry and (2),
we may assume that U3 N Uz = {v1,v2}. Let A’ be obtained from A by replacing { E[U1], E[Uz]}
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with {6(v1),0(v2)}. Then A’ dominates A and f(A’) > f(A), contradicting Lemma 5.2(ii). So
(4) is justified.

In view of (4), we reserve E[U] for the only odd set in A with |U| = 3 hereafter.

(5) ve Uif §(v) € A.

Otherwise, v ¢ U. Let A" = (A — {E[U],6(v)}) U{E1}. Then A’ dominates A and f(A’) >
f(A), contradicting Lemma 5.2(ii). So (5) holds.

(6) B €A

Otherwise, ({E[U]}, A — {E[U]}) would be an equitable subpartition of A by (1) and (5);
this contradiction implies (6).

Combining (4) and (6), we see that A contains precisely two odd sets E[U] and E;. If
h(A) <1, then ({E1},A — {E1}) is an equitable subpartition of A, a contradiction. Hence, by
(1), we have h(A) = 2. By symmetry, we may assume that {d(v1),d(v2)} € A. By (5), we
further obtain {vi,ve} C U. Let Ay = {E[U], E1} and A2 = {6(v1),d(v2)}. Clearly, (A1, As) is
an equitable subpartition of A, contradicting (5a). Therefore G; is ESP. |

Lemma 5.9. The graph Gy = (Va, Ea) (see Figure 11) is ESP.

G»

Figure 11: The primitive graph Go

Proof. Suppose on the contrary that G is not ESP. Let A be a collection of stars and odd
sets in Gy as specified by (5a-d) (with G in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. By Lemma 3.1, Lemma 3.8 and Lemma 5.8, G5 is not a subgraph of G;. So

(1) Py U P, contains at least two vertices outside X = {v1, va, v3,v4}.

Repeated application of Lemma 5.2(iii) yields

(2) for i =1 and 2, if §(v) € A for some v € V(P;)\X, then §(P;) C A.

Let Uy = {’U4} U V(Pl), Uy = {Ug} U V(Pl), Us = {’Ul} U V(PQ), and Uy = {’Ug} U V(PQ),
and let S; = E[U;] for 1 < ¢ < 4. Since both P, and P, are odd, each S; is an odd set in G.
Furthermore, Gy contains no other odd sets. Using Lemma 5.4(i), we obtain

(3) A contains at most one odd set.

(4) A contains no odd set.

Otherwise, by (3) and symmetry, we may assume that S; € A. Let (Uy, Us) be the bipartition
of P, with v3 € Uj. Set Ay = {S1} U{0(v) € A: v € Ui} and A = A — A;. Using (2) it is
routine to check that (A1, A2) is an equitable subpartition of A; this contradiction justifies (4).

In view of (4), each member of A is a star. If |P;| > 1 for ¢ = 1,2 and d(v) &€ A for all
v € VB\X, then A = §(X) by Lemma 5.2(iii). Let Ay = {d(v1),d(v2)} and Ay = {d(v3),(v4)}.
Then (A, Ag) is an equitable subpartition of A, a contradiction. So
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(5) for ¢ =1 or 2, either |P;| =1 or §(v) € A for some v € V(P;)\X and hence §(P;) C A by
(2).

(6) For i =1 or 2, there holds §(F;) C A.

Assume the contrary. By (5) and (1), we may assume that |P;| = 1 and |Py| > 2. Further-
more, d(v) € A for all v € V(P2)\X. Since 6(v;) € A for some 1 < i < 4, repeated application
of Lemma 5.2(iii) yields §(v;) € A for j =1,2. Thus §(P;) € A and hence (6) is justified.

By (6) and symmetry, we may assume that §(P;) C A. It follows from Lemma 5.2(iii) that
at least one of §(v3) and d(vy), say the former, belongs to A. Let (U, Us) be the bipartition of
Py with vg € Up. Set Aj = {S1}U{d(v) e A: ve Ui} and Ag = {So} U{d(v) € A: v e Us}. Tt
is easy to see that (Aj, As) is an equitable subpartition of A, a contradiction. Therefore Go is
ESP. ]

Lemma 5.10. The graph Gs = (V3, E3) (see Figure 12) is ESP.

Py
Vo= odd =~ U
d N
’ \
,IPI Us P3\l
\
aqy Ve o;dd
\
N v/\ ‘
172\N - 3d_d- - V3
P,
G3

Figure 12: The primitive graph G3

Proof. Suppose on the contrary that Gg is not ESP. Let A be a collection of stars and odd
sets in G3 as specified by (5a-d) (with G3 in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. Let Uy = {vs} UV (Py) and Uy = {vg} UV (P,). Then S; = E[U;] is an odd set in
G for i = 1,2. Throughout the proof, we reserve

e O for the family consisting of all odd sets in A;

o X for {vy,v9,v3,04};

o (A1, As) (resp. (As, Ay)) for the bipartition of P, (resp. P3) with v € A (resp. vs € As);

e (By, By) (resp. (Bs, By)) for the bipartition of P (resp. Py) with vy € By (resp. vy € Bs).

We break the proof into a series of simple observations. Repeated application of Lemma
5.2(iii) yields

(1) for 1 < i < 4, if no odd set in A contains P; and §(v) € A for some v € V(F;)\X, then
d(P;) CA.

(2) If §(P2) C A, then d(vg) € A. Also, if 6(Py) C A, then §(vs) € A.

Suppose the contrary: §(Py)U{d(vs)} C A. Let A’ be obtained from A by replacing 6(Bz\v3)U
{6(vs)} with S;. Then A’ dominates A and f(A’) > f(A), contradicting Lemma 5.2(ii). By
symmetry, the second half also holds. So (2) is justified.

(3) O #0.
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Assume the contrary: O = (). Let Y = {v € V5: 6(v) € A} and let H be the subgraph of G
induced by Y. By (1) and (2), the maximum degree of H is at most two. Furthermore, H is an
odd cycle, for otherwise H would be a bipartite graph. Let (Y7,Y2) be a bipartition of H and
let A; = 0(Y;) for i = 1,2. Then (A1, Az) is an equitable subpartition of A, contradicting (5a).

Observe that at least one of v5 and vg is outside H, for otherwise, let A’ be obtained from A
by replacing {6(vs), d(ve) }Ud(Az)Ud(Ag\vg) with E(H) (an odd set by (2)). Then A’ dominates
A and f(A') > f(A), contradicting Lemma 5.2(ii). If neither vs nor vg is contained in H, set
Ay = E3 (the odd set induced by V3) and Ay = E(H); if exactly one of vs and vg, say the latter,
is contained in H, set Ay = §(A; UA3)U{S1} and Ay = E(H). It is easy to see that (A1, Ag) is
an equitable subpartition of A in either case, contradicting (5a). So (3) is established.

Depending on the parity of P;, we consider two cases.

Case 1. P; is of odd length.

Let Us = {’U5} U V(P1 UupP, UP3), Uy = {'Uﬁ} U V(P1 UP3U P4), Us = ‘/3\116, and Ug = Vg\’U5.
Then S; = E[U;] is an odd set in G5 for 3 < i < 6. Let us make some observations about O.

(4) 0] > 2

Assume the contrary. Then |O| = 1 by (3). Let O = {S;}. Symmetry allows us to distinguish
among the following subcases.

e i = 1. In this subcase, if d(vg) € A, then d(v) € A for all v € V(P)\X by (1) and (2).
Repeated applications of Lemma 5.2(iii) also yields 6(P;)Ud(Ps) C A. Set Ay = {S1}Ud(A1UA3),
and Ag = A — Aj. Then (A1, Ag) is an equitable subpartition of A, contradicting (5a). So we
assume that 0(vg) € A. Observe that §(v) € A for some v on Py U P, U P3\{vy,v4}, for otherwise
(S1,A—{5S1}) would be an equitable subpartition of A, contradicting (5a). From Lemma 5.2(iii),
we further deduce that §(v) € A for all v on Py U P, U Ps. Since {S7,d(v1)} € A, by Lemma 5.3,
we have 6(vs) ¢ A. Let Ay = {S5} and Ao = {S2} U§(A2 U Ay) U (§(Ps) NA). Then (Aq,A2) is
an equitable subpartition of A, contradicting (5a).

e i = 3 or 5. In this subcase, observe that if i = 3 (that is, O = {S3}), then é(v) ¢ A for
some and hence for all v € V/(P;)\X by Lemma 5.4(ii) and by (1). Let A; = {S;,d(vs)} N A and
Ay = A — Ay. Then (Aq,A2) is an equitable subpartition of A; this contradiction to (5a) proves
4).

(5) If {S;,5;} € O with 1 < < j <6, then {4, j} is one of the following five pairs:

{1,2}, {1,5}, {2,6}, {3,5}, {4,6}.

To justify this, note that

o {i,j} ¢ {{1,4},{2,3},{5,6}} by Lemma 5.4(i).

o {i,j} # {3,4}. Otherwise, let A’ be obtained from A by replacing {S3,S4} with §(B; U
B3\X)Ud(Py)Ud(P3). Then A’ dominates A and f(A’) > f(A), contradicting Lemma 5.2(ii).

o {i,j} ¢ {{1,3},{2,4}}. Otherwise, by symmetry we may assume that {i,j} = {1,3}. Let
AN = (A—{S51,53})U{S5,0(vs5)}. Then A’ dominates A and g(A’) < g(A), contradicting Lemma
5.2(ii).

o {i,j} ¢ {{3,6},{4,5}}. Otherwise, by symmetry we may assume that {i,7} = {3,6}. Let
A’ be obtained from A by replacing {S3, S¢} with §(Bs\vs)Ud(PyUP,UPs). Then A’ dominates
A and f(A') > f(A), contradicting Lemma 5.2(ii).

o {i,j} ¢ {{1,6},{2,5}}. Otherwise, by symmetry we may assume that {i,j} = {1,6}.
Let A’ be obtained from A by replacing {S1, S} with {So} U d(P4\X) U §(A2 U Ay). Then A’
dominates A and g(A’) < g(A), contradicting Lemma 5.2(ii).
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Combining the above observations, we see that (5) holds.

(6) O is {51,52}, {51,55}, {52,56}, {53,55}, or {54,56}.

To justify this, let H be the graph with vertex set {S1, Sa, ..., S} and with five edges {S;, S; }
as described in (5). Since H contains no triangle, |O| < 3 and hence |O] = 2 by (4). Thus the
statement follows instantly.

(7) It O = {S;,S5} for i = 1 or 3, then §(vs) € A. Otherwise, let A’ be obtained from A
by replacing {Ss,d(vs)} with {S1,S3}. Then A’ dominates A and my/(S;) > 2, contradicting
Lemma 5.2(3).

By (6) and symmetry, we only need to consider the following three subcases.

e O ={51,55}. In this subcase, let A} = {S1}U((6(A1 UA3)UI(P))NA) and Ay = A—Ay.
Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

e O = {51,55}. In this subcase, d(vs) ¢ A by (7). Notice that if é(v) € A for some
v € V(Py)\X, then 6(Py) C A by Lemma 5.3. Set Ay = {S1,S55,0(vg)} N A and Ay = A — Ay
if 5(Py) C A, and set Ay = {S5,0(vs)} N A and Ay = A — A; otherwise. Then (Aq,A2) is an
equitable subpartition of A, contradicting (5a).

e O = {S3,55}. In this subcase, d(vs) & A by (7). Moreover, d(vs) & A, for otherwise,
let A’ be obtained from A by replacing {S5,d(vg)} with {Sg,d(vs)}. Then A’ satisfies (5a-d)
and contains {Ss,Ss}, contradicting (5). Notice that if §(v) € A for some v € V(FP;)\X, then
d(P;) C Afori=1,2,3 by Lemma 5.3. Let Ay = {S3,55} and Ay = A—A; if §(PLUP,UP3) C A,
let Ay = {S5} U (0(4; UBy)NA) and Ay = A — Ay if 6(v) € A for all v € V(P;)\X, where
{i,7} = {1,3}, and let Ay = {S5} U (6(A1 U A3) N A) and Ae = A — A if 6(v) € A for all
v € V(P)\X. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining the above three subcases, we conclude that G3 is ESP if Case 1 occurs.

Case 2. P is of even length.

Let Uz = V3\{vs, v}, Us = {vs,06} UV (PL U P3), Ug = V3, let S; = E[U;] for i = 7,8,9, and
let S19 = E3\E(P,), S11 = Es\E(Py). Then S; is an odd set in G5 for 7 <14 < 11. Let us make
some observations about O.

(8) If S; € O, then §(v) € A for some v € {vg} UV (P U P3). Otherwise, let A’ be
obtained from A by replacing {S1} U {6(vs)} U §(Az U As\v3) with S19. Then A’ dominates A
and f(A') > f(A), contradicting Lemma 5.2(ii).

(9) If {S1,S9} or {Ss,S10} or {Sg,S11} C O, then 6(vs) ¢ A. Moreover, if {Ss,S9} or
{58,511} or {59,510} - (9, then 5(’[)6) Q A.

Suppose {S1,S9} C O while §(vs) € A. Let A = (A — {So,d(vs)}) U {S1,511}. Then
A’ dominates A and my/(S1) > 2, contradicting Lemma 5.2(i). Similarly, we can prove the
statement for the other cases.

(10) |O| > 2.

Assume the contrary. Then |O| =1 by (3). Let O = {S;}. Symmetry allows us to distinguish
among the following subcases.

e ; = 1. In this subcase, at least one of d(v2) and §(vs3) belongs to A, for otherwise d(v) ¢ A
for any v € V(P UP,UP3)\X by (1). Thus ({S1},A—{S1}) would be an equitable subpartition
of A, contradicting (5a). Moreover, §(vg) € A, for otherwise §(v) € A for all v € V(P U P, U P3)
by Lemma 5.2(iii). Let A’ be obtained from A by replacing {S;}Ud(AyUByU As) with Sg. Then
A’ dominates A and f(A") > f(A), contradicting Lemma 5.2(ii). So d(v) € A for allv € V(Py)\ X
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(which is nonempty) by (1) and (2), which implies from (1) that 6(P;)Ud(P3) C A, contradicting
(8).

e 7 < i < 11. In this subcase, observe that d(v) ¢ A for each v on P, U Py not covered by
S;, if any, using Lemma 5.4(ii). Let A = {S7} U ({0(v5),0(vg)} NA) and Ay = A — Ay if 1 =7,
and let A; = {S;} and Ay = A — Ay otherwise. Then (A1, A2) is an equitable subpartition of A,
contradicting (5a). This proves (10).

(11) If {S;, 8;} € O with i # 5, then 7 ¢ {i,j} and {i,j} & {{1,8},{2,8},{1,11},{2,10}}.

To justify this, note that

o {i,j} ¢ {{1,7},{2,7}} by Lemma 5.4(i).

o {i,j} #{7,j} for 8 < j < 11. Otherwise, if {i,j} = {7, 8}, letting A’ be obtained from A
by replacing {S7, Ss} with §(Py)Ud(P3)Ud(B1UB3\X), then A’ dominates A and f(A) > f(A),
contradicting Lemma 5.2(ii). Similarly, we can prove that {7, j} # {7,j} for 9 < j <11.

o {i,j} ¢ {{1,8},{2,8},{1,11},{2,10}}. Otherwise, if {i,j} = {1,8}, letting A’ be ob-
tained from A by replacing {S1, S} with {S10,0(vs)}, then A’ dominates A and g(A’) < g(A),
contradicting Lemma 5.2(ii). Similarly, we can prove that {7, j} ¢ {{2,8},{1,11},{2,10}}.

Combining the above observations, we see that (11) holds.

(12) If {S;, S}, Sk} € O with 4, j, k distinct, then {7, 7, k} Z {8,9,10,11}.

Suppose the contrary. Consider the case when {7, j,k} = {8,9,10}. Let A’ = (A—{Ss, So}) —
{510,511} Then A’ dominates A and my/(S19) > 2, contradicting Lemma 5.2(i). Similarly, we
can prove the statement for other cases.

(13) |O| > 3.

Assume the contrary. Then |O| = 2 by (10). Let O = {5;, S;}. In view of (11), we distinguish
among the following subcases.

e {i,j} = {1,2}. In this subcase, 6(P;) C A for t = 1,3 if §(v) € A for some v € V(P)\X
by (1). Observe that d(v) ¢ A for some v € V(P; U P3)\X, for otherwise, let A’ be obtained
from A by replacing {S1, 52} U (A2 U Ag\vg) with Syg. Then A’ dominates A and f(A’) > f(A),
contradicting Lemma 5.2(ii). Let Ay = {S1, 52} U (6(A2) NA) and Ag = A — Ay if §(v) &€ A for
all v e V(P3)\X, and let Ay = {S1} U ((6(P2) Ud(A3))NA) and Ae = A — Ay if §(v) € A for all
v e V(P)\X. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

e {i,j} € {{1,9},{2,9}}. By symmetry, we may assume that {7, 7} = {1,9}. In this subcase,
d(vs) € A by (9). Observe that 6(Py) C A if 6(v) € A for some v € V(P;)\X by Lemma 5.3. Let
A =0 if6(Py) C A and Ay = Sy otherwise, and let A = A — Ay. Then (A1, Ag) is an equitable
subpartition of A, contradicting (5a).

e {i,j} € {{1,10},{2,11}}. By symmetry, we may assume that {i,j} = {1,10}. In this
subcase, we can similarly obtain an equitable subpartition of A as in the preceding subgraph.

o {i,j} € {{8,9},{10,11}}. By symmetry, we may assume that {i,j} = {8,9}. In this
subcase, set A’ = (A —{Ss, So})U{S10, 511} Clearly, A’ satisfies (5a-d). Observe that 6(P;) C A
if §(v) € A for some v € V(P;)\X for i = 1,3 by Lemma 5.3. Let Ay = O and Ap = A — Ay if
(5(P1) U 5(P3) CA, let Ay = ({5(115), 510} @] 5(P2) U 5(A3)) NA and Ay = A’ — Ay if 5(1}) ¢ A for
all v € V(P1)\X, and let Ay = ({3(vs5),0(vs), So} Ud(Az)) NA and Ay = A — Ay if §(v) € A for
all v € V(P3)\X. Then (A1, Ag) is an equitable subpartition of A, contradicting (5a).

o {i,j} € {{8,10},{8,11}}. By symmetry, we may assume that {i,j} = {8,10}. In this
subcase, 6(vs) € A by (9) and d(v) € A for all v € V(P,)\X by Lemma 5.4(ii) and (1). Observe
that 6(P;) C Afort=1,3if §(v) € A for some v € V(P;)\X by Lemma 5.3. If 6(vg) € A, letting
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Ay = {S10} U (6(A2 U A3) N A) and Ay = A — Ay, then (Aq,Asz) is an equitable subpartition
of A, this contradiction to (5a) implies that d(vg) € A. Let Ay = O and Ay = A — Ay if
(5(P1) @] (5(P3) C A, let Ay = ({(5(’02),510} U 5(A3)) NAand Ay = A — Aq if 5(?)) ¢ A for all
v € V(P)\X, and let Ay = ({0(v6),S10} Ud(A2)) N A and Ay = A — Ay if §(v) € A for all
v € V(P3)\X. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

o {i,j} € {{9,10},{9,11}}. By symmetry, we may assume that {i,7} = {9,10}. In this
subcase, 0(vg) & A by (9). Observe that d(vs) € A, for otherwise, let Ay = {So} U (6(Az U Ay U
By)NA) and Ay = A —A;. Then (A1, Ag) is an equitable subpartition of A, a contradiction. Let
AM=0and Ay = A—Aqif (5(P1)U5(P3) CAlet Ay = ({(5(’01), Sg}Ué(A4))ﬂA and Ao = A— Ay
if 0(v) ¢ A for all v € V(P1)\X, and let Ay = ({6(v5), S} Ud(A2)) N A and Ay = A — Ay if
d(v) & A for all v € V(P3)\X. Then (A1, A2) is an equitable subpartition of A, contradicting
(5a).

Combining the above observations, we see that (13) holds.

Recall that {Ss, So, S10,S11} Z O (see (12)). We may further assume that

(14) {S10,511} € O. Otherwise, let A’ be obtained from A by replacing {Sio, S11} with
{Ss,S9}. Then A’ dominates A. Since every equitable subpartition of A’ is one for A, we may
consider A’ instead of A.

(15) O is {51, SQ, Sg}, {51, Sg, 510}, or {52, 59, 511}.

To justify this, let H be the graph with vertex set {S1, S, S7, Ss, . ..,S11} and with all edges
{Si,S;} as described in (11) and (15). Note that H contains precisely ten edges, in which vy is
an isolated vertex. Since H contains no K4, we have |O| < 4 and hence |O| = 3 by (13). The
triangles in H are {51, 52, Sg}, {Sl, Sg, 510}, {SQ, Sg, 511}, {Sg, Sg, 510}7 and {Sg, Sg, Sll}. In
view of (12), we obtain (15).

By (15) and symmetry, we only need to consider the following two subcases.

e O = {51,52,59}. In this subcase, {6(vs),d(vg)} N A =0 by (9). Observe that 6(F;) C A
for i = 2,4 if §(v) € A for some v € V(P;)\X by Lemma 5.3. Let Ay = O and As = A — Ay if
I(P) Ud(Py) C A, let Ay = {So} and Ag = A — A; if 6(v) € A for all v € V(P U Py)\X, and
let Ay = {S;,S9} and Ay = A — Ay if §(v) € A for some v € V(P%;)\X and §(P;) C A, where
{i,7} € {{1,4},{2,2}}. Then (A1,A2) is an equitable subpartition of A, contradicting (5a).

e O ={51,S59,S510}. In this subcase, {6(vs5),5(vg)} N A =0 by (9). Observe that §(F;) C A
fori=1,3if 6(v) € A for some v € V(P;)\X by Lemma 5.3. Let A; = {So, S10} and Ay = A—A4
if 5(P1) U 5(P3) CA let Ay = {51,510} U ((5(P2) @] 5(A3)) NAand Ag = A — Ay if 5(1}) ¢ A for
all v € V(P)\X, and let A; = {51,590} U (6(A2) NA) and Ay = A — Ay if §(v) ¢ A for some
v € V(P3)\X. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining the above two subcases, we conclude that G5 is also ESP if Case 2 occurs. This
completes the proof of the present lemma. |

Lemma 5.11. The graph G4 = (Vy, E4) (see Figure 13) is ESP.
Proof. Suppose on the contrary that G4 is not ESP. Let A be a collection of stars and odd

sets in G4 as specifies by (5a-d) (with G4 in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. Let U1 = {’Ul,’Ug,’Ug}, U2 = {’Ul,’Ug,’Ug}, U3 = {’U5,’U6,’U7}, and U4 = {U4,U5,U6}.
Then S; = E[U;] is an odd set in G4 for i = 1,2,3,4. Throughout this proof, we reserve

e O for the family consisting of all odd sets in A;

o X for {vy,v9,v5,v6};
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Figure 13: The primitive graph G4

o Y for {v3,v4,v7,v8}; and

o (A1, Ay) (resp. (B, Bg)) for the bipartition of P, (resp. P») with vg € A (resp. vz € By).

Repeated application of Lemma 5.2(iii) yields

(1) for ¢ = 1,2, if no odd set in A contains P; and d(v) € A for some v € V(P;)\Y, then
5(P;) CA.

(2) [0(X)NA] >2if O =0 (by Lemma 5.2(iii) and (1)).

(3) {Si,0(v1),6(v2)} € A and {S},d(vs),6(ve)} L A, for ¢ = 1,2 and j = 3,4.

Suppose the contrary: {§(v1),d(v2),S1} C A. Let A" = (A —{6(v1),0(v2)}) U{S1,S2}. Then
A’ dominates A and mp/(S1) > 2, contradicting Lemma 5.2(i). The statement for other cases
can be justified similarly. So (3) is established.

Depending on the parities of P; and P», we consider two cases.

Case 1. P; and P, have the same parity.

Let Us = Vi\vs, Us = Vi\vs, Uy = Vi\v; and Us = V4\ve. Then S; = E[U;] is an odd set in
G4 for i =5,6,7,8. Let us make some observations about O.

(4) If O = 0, then §(v) & A for some v € V(P U P,).

Otherwise, 6(Py) Ud(P2) € A. If {6(v1),d(va)} or {6(vs),d(ve)} C A, say the former, letting
A ={S5}U({d(ve)}NA) and Ay = {Ss}U({d(v5}NA), then (A1, Ay) is an equitable subpartition
of A, contradicting (5a). Thus, by (2) and symmetry, we may assume that {0(v1),0(vs)} C A
and {0(v2),d(vs)}NA = 0. Let C be the even cycle induced by Vj\{ve, v5} in Gy, let (Ry, R2) be
the bipartition of C, and let A; = §(R;) for i = 1,2. Then (A, Ag) is an equitable subpartition
of A; this contradiction to (5a) justifies (4).

(5) O # 0.

Assume the contrary: O = (). Then §(X) € A, for otherwise, let A; = {51, 54} U (6(A3 U
Bi) N A) if both P, and P, are odd and A; = {S1, 53} U (6(A2 U B1) N A) otherwise, and let
Ay = (A—3(X))U(UL{{S:})—A1. Then (A, Ay) is an equitable subpartition of A, contradicting
(5a).

By symmetry, we may assume that d(vg) ¢ A. If §(vs) € A, then {d(v1),d(v2)} C A by
(2) and {§(v4),0(v7)} N A = () by Lemma 5.2(iii). Hence A C {6(v1),d(v2),0(vs),d(vs)} by (1).
Let Ay = {S1} U ({d(v3)} NA) and Ay = {S2} U ({d(vs)} N'A). Then (A1,Az) is an equitable
subpartition of A, this contradiction to (5a) implies that §(vs) € A. It follows from Lemma 5.2
(iii) and (1) that 6(P;) Ud(P) C A, contradicting (4). So (5) holds.

(6) 10| > 2
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Assume the contrary. Then |O| =1 by (5). Let O = {S;}. Symmetry allows us to distinguish
among the following subcases:

e i = 3. In this subcase, by (3) and symmetry, we may assume that 6(vs) ¢ A. Observe that
{6(v1),0(v2)} € A, for otherwise, let Ay = {S1} U (({6(vs)} Ud(As U By)) N A) if both P; and
P, are odd and A; = {S1,S3} U (0(A2 U B1) N A) otherwise, and let Ay = (A — {d(v1),(v2)}) U
{51, 52} — A;. Then (A1, As) is an equitable subpartition of A, contradicting (5a).

If {6(v1),0(va) }NA = 0, then ({S3}, A—{S3}) would be an equitable subpartition by Lemma
5.2(iii) and (1). Thus symmetry allows us to assume that 6(v;) € A and d(v2) € A. It follows
from Lemma 5.2(iii) that 6(P;) U d(Py) C A. Moreover, at least one of d(vs) and d(vg) is in A.
By (3), we assume that d(vg) € A and §(vs) ¢ A. Consequently, ({Ss3,S6},{Ss}) is an equitable
subpartition of A, contradicting (5a).

e i = 5. In this subcase, let Ay = {S5,0(vg)} N A and A = A — As. Then (Aq,As) is an
equitable subpartition of A; this contradiction to (5a) proves (6).

Using Lemma 5.4(i), it is routine to obtain the following statement.

(7) If {S;, 5} € O with 1 < < j <8, then {4, j} is one of the following pairs:

{1,3},{1,4},{2,3},{2,4}, {s, t}
with s € {1,2,3,4} and t € {5,6,7,8}.

(8) 10| = 3.

Assume the contrary. Then |O] =2 by (6). Let O = {S;,S;}. In view of (7), we distinguish
among the following subcases:

e {i,j} € {{1,3},{2,4}}. By symmetry, we may assume that {i,j} = {1,3}. By (3), we
have 6(v;) ¢ A nor 6(v;) ¢ A fori =1 or 2 and j = 5 or 6. Symmetry allows us to further
assume that {§(v2),0(vg)} NA = 0. Let Ay = {S3} U (({6(v1)} Ud(Ay U Bg)) N A) if both Py
and P, are odd and A; = {S1,S3} U (6(4A2 U By) N A) otherwise, and let As = A — Ay. Then
(A1, A — Ay) is an equitable subpartition of A, contradicting (5a).

o {i,j} € {{1,4},{2,3}}. By symmetry, we may assume that {i,j} = {1,4}. By (3), we
have 6(v;) ¢ A nor 6(v;) ¢ A fori =1 or 2 and j = 5 or 6. Symmetry allows us to further
assume that {0(va),d(ve)} NA = 0. Let Ay = {S1,S54} U (6(A2 U B1) N A) if both P; and P, are
of odd path and Ay = {S1} U (6(A2 U B1)) N A) otherwise, and let Ay = A — Ay. Then (A1, As)
is an equitable subpartition of A, contradicting (5a).

e {i,7} € {{1,5},{1,6},{2,5},{2,6},{3,7},{3,8},{4,7},{4,8}}. By symmetry, we may
assume that {i,7} = {1,5}. By (3), we may further assume that d(ve) & A. Let Ay =
{51, S5, 0(ve) } A if {5(v1),0(vs)} € A and Ay = {S5,d(ve) } N A otherwise, and let Ay = A —A;.
Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

o {i,7} € {{1,7},{1,8},{2,7},{2,8},{3,5},{3,6},{4,5},{4,6}}. By symmetry, we may
assume that {i,5} = {1,7}. By (3), we have d(v;) € A for t =1 or 2. Let Ay = O if §(v2) € A
and Ay = {S7,0(v1)} N A otherwise, and let Ay = A — A;. Then (Aq,A3) is an equitable
subpartition of A, contradicting (5a).

Combining above observations, we see that (8) holds.

(9) O is {S;, 55, Sk} for some i € {1,2}, j € {3,4}, and k € {5,6,7,8}.

To justify this, let H be the graph with vertex set {S1, S, ..., Ss} and with all edges {S;, S;}
as described in (7). Since H contains no Ky, we have |O| < 4 and hence |O] = 3 by (8). The
triangles in H are all displayed in (9), so the statement follows.
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By (9) and symmetry, we may assume that O = {S1,53,55}. By (3), we may further
assume that d(vy) ¢ A. Let Ay = O if {§(v1),(vs),d(vs)} C A, let Ay = {S1,55,d(vg)} N A
if {6(v1),0(vg)} € A and 0(vs) ¢ A, let Ay = {S3, S5} if {d(v1),0(vs)} € A and d(vs) € A, let
Ay = {S5,5(vg)} N A otherwise, and let Ao = A — A;. Then (A1, Ay) is an equitable subpartition
of A, contradicting (5a). Therefore G4 is ESP if Case 1 occurs.

Case 2. P; and P, have different parities.

By symmetry, we may assume that P; is of odd length and P is of even length. Let
Ug = V4\{U1,’U5}, U10 = V4\{’U2,’U6}, U11 = V4\{’U1,U(5}, U12 = V4\{U2,U5}, and U13 = V4. Then
S; = E[U;] is an odd set in G4 for 9 < ¢ < 13.

(10) If S; € Afori = 1or 3, then §(v) € A for some v € V(PiUP,). Otherwise, §(P;)Ud(Py) C
L. By symmetry, we may assume that S; € A. Let A" = (A — ({S1} Ud(A2 U By))) U {S13}.
Then A’ dominates A and f(A’) > f(A), contradicting Lemma 5.2(i)

(11) If {6(v1),0(v2)} € A, then 6(v) & A for some v € V(P U P,). Otherwise, let A* =
(A—{0(v1),0(v2)}) U{S1,S2}. Then A* dominates A. By using the same proof employed in the
preceding paragraph (with A* in place of A), we reach a contradiction to Lemma 5.2(i).

(12) O #£10.

Assume the contrary: O = (). Observe that 6(X) € A, for otherwise, d(v) ¢ A for some
v e V(PLUP,) by (11). So 6(v) ¢ A for all v € V(P)\Y or for all v € V(P)\Y by (1).
Let Ay = {52,514} U (({0(v7),d(vs)} Ud(B2)) NA) if §(v) & A for all v € V(P)\Y and Ay =
{89, S5} U(({8(vs)} US(A1)) N A) otherwise, and let A = ((A —§(X))U (UL;{S;})) — A;. Then
(A1, A2) is an equitable subpartition of A, contradicting (5a).

By symmetry, we may assume that 6(vg) ¢ A. Then d(vs) ¢ A, for otherwise, 6(FP;) U
d(P2) € A by Lemma 5.2(iii), contradicting (11). Let Ay = {S1} U ({6(v3)} N A) and Ay =
{S2} U ({0(vg)} N'A). Then (A1,A2) is an equitable subpartition of A, contradicting (5a). So
(12) is justified.

(13) |O| > 2.

Assume the contrary. Then |O| = 1 by (12). Let O = {S;}. Symmetry allows us to
distinguish among following subcases:

e i = 3. In this subcase, d(vs) or d(vs) ¢ A by (3), say the latter. Moreover, §(P;) C A
for t = 1,2 if 6(v) € A for some v € V(FP)\Y by (1). Observe that {§(v1),d(v2)} N A #
for otherwise, (S3,A — {S3}) would be an equitable subpartition of A by Lemma 5.2(iii),
a contradiction. By (10) and Lemma 5.2(iii), we further obtain {d(v1),d(v2)} € A. Let
A = {S2} U (({0(v5),0(v7),0(vg)} Ud(B2)) NA) if §(v) ¢ A for all v € V(P)\Y and Ay =
{S2,53} U ({0(va)} US(A1)) NA) if §(v) ¢ A for all v € V(P2)\Y (see (11)), and let Ay =
((A = {6(v1),d(v2)}) U{Sy,S2}) — Ay. Then (A1, As) is an equitable subpartition of A, contra-
dicting (5a).

e i = 4. In this subcase, {0(v1),0(ve)} N A # 0, for otherwise, ({Ss}, A — {S4}) would be an
equitable subpartition of A by Lemma 5.2(iii), a contradiction. Observe that {d(v1),d(v2)} C A,
for otherwise, we may assume that 6(v;) € A and §(v2) € A by symmetry. Thus §(P;)Ud(P) C A
by Lemma 5.2(iii). Let Ay = {d(v1),S4} U (A2 U By) and Ay = A — A;. Then (A, Ag) is an
equitable subpartition of A, a contradiction. Let A; = {S3, Sy} U (({d(v7),d(vs)} Ud(Bs2)) NA)
if 6(v) € A for all v € V(P1)\Y and Ay = {S1,54} U (({d(v3)} Ud(A2)) NA) if 6(v) & A for all
v € V(P)\Y (see (11)), and let Ay = (A — {d(v1),d(v2)}) U {S1,S2} — Ay. Then (Aq,As) is an
equitable subpartition of A, contradicting (5a).

9
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e i = 9. In this subcase, let Ay = {Sg} U ({0(v1),0(ve)} NA) and Ag = A—Ay. Then (Aj, Ag)
is an equitable subpartition of A, contradicting (5a).

e i = 13. In this subcase, let Ay = {S13} and A, = A — A;. Then (A1, A2) is an equitable
subpartition of A, contradicting (5a).

Combining above observations, we see that (13) holds.

(14) If {S;,S;} € O with i # j, then {i, j} is one of the following pairs:

{1,3},{1,4},{2,3},{2,4},{s,13}
with s € {1,2,3,4}.

To justify this, note that

o {i,j} & {{1,2},{3,4},{9,11},{9,12}, {10, 11}, {10,12}} U {{s,¢} : 1 < s < 4,9 < ¢ < 12}
by Lemma 5.2(iii).

o {i,j} & {{s,13} : 9 < s < 12}. Otherwise, by symmetry we may assume that {i,j} =
{9,13}. Let A’ = (A —{Sy, S13})Ud(Ug). Then A’ dominates A and g(A") < g(A), contradicting
Lemma 5.2(ii).

o {i,j} ¢ {{9,10},{11,12}}. Otherwise, by symmetry we may assume that {i,j} = {9,10}.
Let A" = (A — {So, S10}) US(Py U P,). Then A’ dominates A and p(A’) < p(A), contradicting
(5a).

Combining above observations, we see that (14) holds.

(15) |0 > 3.

Assume the contrary. Then |O| = 2 by (13). Let O = {5;, S;}. In view of (14), we distinguish
between the following subcases.

o {i,7} € {{1,3},{1,4},{2,3},{2,4}}. In this subcase, by symmetry we may assume that
{1,7} = {1,3} and that {§(v2),0(vs)} N A =0 (see (3)). Observe that §(P;) C A, for otherwise,
let Ay = {51,553} U (6(B1) NA) and Ay = A — Ay. Then (A1, Ag) is an equitable subpartition
of A, a contradiction. Hence, by (1) and (10), we obtain d(v) € A for all v € V(P)\Y. Let
A = {51} Ud(A2) U ({6(v3),d(vs)} NA) and A = A — A;. Then (Aj,A2) is an equitable
subpartition of A, contradicting (5a).

o {i,j} € {{1,13},{2,13},{3,13},{4,13}}. In this subcase, by symmetry we may assume
that {i,7} = {1, 13} and that §(ve) &€ A (see (3)). Let Ay = O if {6(v1),0(vg)} C A and Ay = Si3
otherwise, and let Ay = A — A;. Then (A1, A2) is an equitable subpartition of A, contradicting
(5a).

Combining above observations, we see that (15) holds.

(16) O is {51, 53, 513}, {51, 54, 513}, {52, 53, 513}, or {SQ, 54, 513}.

To justify this, let H be the graph with vertex set {S, Se, 53,54, 59, ...S13} and with all
edges {S;, S;} as described in (14). Since H contains no Ky, we have |O| < 4 and hence |O| = 3
by (15). The triangles in H are all displayed in (16), so the statement holds.

By (16) and symmetry, we may assume that O = {51, S3,S13}. Symmetry and (3) allow us
to further assume that {d(v2),d(vs)} NA = 0. Let Ay = O if {6(v1),d(vg),(v7),d(vg)} C A, let
Al = {51,513} if {5(U1)75(U8)} - A and {5(U6) ( )} Z A let Al = {53,513} if {(5(?}1) (Ug)} ,@
A and {6(vg),d(v7)} C A, let Ay = {S13} otherwise, and let Ay = A — Ay. Then (A1, A2) is an
equitable subpartition of A, contradicting (5a). Therefore G4 is also ESP if Case 2 occurs. This
completes the proof of the present lemma. |

Lemma 5.12. The graph G5 = (V5, Es5) (see Figure 14) is ESP.
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Figure 14: The primitive graph G5

Proof. Suppose on the contrary that G5 is not ESP. Let A be a collection of stars and odd
sets in G5 as specified by (5a-d) (with G5 in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. Let Uy = {v1,v9,v7}, Us = {v1,v2,v3}, and Us = {v5} UV (P3). Then S; = E[U;]
is an odd set in G5 for i = 1,2,3. Throughout this proof, we reserve

e O for the family consisting of all odd sets in A;

o X for {v3,v4,v6,v7};

o (A1, Ay) (resp. (As, Ay)) for the bipartition of P, (resp. P») with vy € Ay (resp. vs € A3);

e (By, By) for the bipartition of P35 with vy € By.

Repeated application of Lemma 5.2(iii) yields

(1) for i = 1,2,3, if no odd set in A contains P; and d(v) € A for some v € V(F;)\X, then
5(P;) CA.

(2) If 6(P3) C A, then d§(vs) ¢ A. Otherwise, let A’ be obtained from A by replacing
{6(vs)} U 6(B1\vg) with S3. Then A’ dominates A and f(A’) > f(A), contradicting Lemma
5.2(i).

(3) {Si,0(v1),0(ve)} € A for @ = 1,2. Otherwise, by symmetry we may assume that
{6(v1),8(v2),51} € A. Let A" = (A — {6(v1),d(v2)}) U {S1,S2}. Then A’ dominates A and
mps(S1) > 2, contradicting Lemma 5.2(i). So (3) is established.

Depending on the parities of P; and P», we consider two cases.

Case 1. P; and P, have the same parity.

Let Uy = V5, Us = {1)1,1)2,1)5} U V(Pl U PQ), Ug = V5\{7)1,’U5}, U; = V5\{1)2,’U5}. Then
S; = E[U;] is an an odd set in G5 for 4 < ¢ < 7. Note that Sy = S5 if |V(P3)| = 2. So we
implicitly assume that |V (Ps)| > 3 if S5 occurs in our proof.

(4) If S3 € A and {d(v1),0(v2)} N A # 0, then §(v) € A for some v € V(P U Py).

Otherwise, 6(P;) Ud(P,) C A. By symmetry, we may assume that §(v) € A. Let A’ = (A —
({Sg}Ué(A1UA3)))U{S4} if both P; and P, are odd and A’ = (A—({é(vl), Sg}Ué(AQUA4)))U{S4}
otherwise. Then A’ dominates A and f(A’) > f(A), contradicting Lemma 5.2(ii).

(5) If {S;} Ud(P1)US(Py) C A fori=1or 2, then §(v) € A for all v € {vs} UV (P5)\X.

Assume the contrary: d(v) € A for some v € {vs} UV (P3)\X. By symmetry, we may
assume that S7 € A. Observe that v # vs, for otherwise, if both P; and P, are odd, letting
AN = (A —{6(v5),S1} U§(A3) Ud(Ax\vg)) U {S5}, then A’ dominates A and f(A") > f(A),
contradicting Lemma 5.2(ii). Similarly, we can reach a contradiction if both P, and P» are even.
It follows from (1) that 6(P3) C A. If both P; and P, are odd, letting A’ by obtained from A by
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replacing {S1} U (A2 U A3 U Bs) with Sy, then A’ dominates A and f(A’) > f(A), contradicting
Lemma 5.2(ii). Similarly, we can reach a contradiction if both P; and P» are even. So (5) holds.

(6) O # 0.

Assume the contrary: O = (). By (1), (2) and Lemma 5.2(iii), we have {d(v1),d(v2)}NA # 0.
Furthermore, 6(P1) Ud(Py) C Aif 6(vs) € A. Observe that {d(v1),d(v2)} € A, for otherwise, let
AN = (A —{6(v1),0(v2)}) U{S1,S2}. Then A’ dominates A. If §(v5) € A, then {S1} Ud(Py) U
§(P,) € A/, and thus we can reach a contradiction to Lemma 5.2(ii) by using the same argument
as employed in the proof of (5). If §(vs) € A, then 6(v) € A for all v € V(P U P, U Ps)\{vs,v7}
by (1), (5) and Lemma 5.2(iii). Let Ay = {S1} U ({6(v3)} NA) and Ay = A" — A;. Then (A1, A2)
is an equitable subpartition of A, contradicting (5a).

By symmetry, we may assume that d(v;) € A and 6(v2) € A. Then 6(P1) Ud(P) C A
by (1) and Lemma 5.2(iii). Consider the subcase when d(vs) € A. Now d(v) ¢ A for all
v e V(P3)\X by (1) and (2). Let Ay = {6(v1)} U(A2 U Ay) if both P, and P, are odd and
A = {d(v1),d(vs)} U (A2 U Ay) otherwise. Then (Aj, A — Aj) is an equitable subpartition of
A, a contradiction. It remains to consider the subcase when §(vs) € A. Now d(v) € A for all
v € Vs\{va,v5} by (1) and Lemma 5.2(iii). Thus ({S4},{S7}) is an equitable subpartition of A,
a contradiction. Therefore (6) is established.

(7) 0] = 2.

Assume the contrary. Then |O| =1 by (6). Let O = {S;}. Symmetry allows us to distinguish
among the following subcases.

e i = 1. In this subcase, we may assume that §(ve) € A by (3) and symmetry. If §(vs) € A,
then 0(P2) C A; furthermore, §(P3) C A or d(vs) € A by Lemma 5.2(iii). It follows that
d(P1) C A, contradicting (5). So d(vs) € A, which implies that 6(v) & A for all v € V5\{v1, va, v7}
by (1) and Lemma 5.2(iii). Thus ({S1}, A—{S1}) is an equitable subpartition of A, contradicting
(5a).

e i = 3. In this subcase, if {§(v1),0(v2)} N A = 0, then ({S5},A — {S3}) is an equitable
subpartition of A by (1) and Lemma 5.2(iii). So {6(v1),d(v2)} N A # 0. By (1), (4) and
symmetry, we may assume that §(v) ¢ A for all V(P;)\X, which implies {6(v1),d(v2)} € A by
Lemma 5.2(iii). Let A’ = (A — {d(v1),0(v2)}) U{S1, 52}, and let Ay = {S1, S5} U (6(As) N A') if
both Py and P are odd and Ay = {S2, S3}U(({0(v7)}Ud(A4))NA’) otherwise. Then (A1, A’—Aq)
is an equitable subpartition of A, contradicting (5a).

e i = 4 or 5. In this subcase, observe that if i = 5, then d(v) € A for all v € V(P3)\X
by (1) and Lemma 5.4(ii). Thus ({S;}, A — {S;}) is an equitable subpartition of A for i = 4,5,
contradicting (5a).

e i = 6. In this subcase, let Ay = {d(v1),d(v5),S6} NA. Then (A;, A — Ay) is an equitable
subpartition of A, contradicting (5a).

Combining above observations, we see that (7) holds.

(8) If {S;,S;} C O with 1 <i < j <7, then {3, j} is one of the following pairs:

{1,3},{1,4},{2,3},{2,4},{1,5},{2,5}, {3,4},{4,5}.

To justify this, note that

o {i,5} & {{1,2},{1,6},{1,7},{2,6},{2,7},{3,6},{3,7},{6,7}} by Lemma 5.4(i).
o {i,j} # {3.5}. Otherwise, let A’ = (A — {S3,S5}) U{S4,(vs5)}. Then A" dominates A and
g(A") < g(A), contradicting Lemma 5.2(ii).

55



o {i,j} & {{4,6},{4,7}}. Otherwise, by symmetry we may assume that {i,j} = {4,6}. Let
A’ be obtained from A by replacing {S4, S¢} with §(Us). Then A’ dominates A and g(A’) < g(A),
contradicting Lemma 5.2(ii).

o {i,j} & {{5,6},{5,7}}. Otherwise, by symmetry we may assume that {i,5} = {5,6}. Let
A’ be obtained from A by replacing {S5, S¢} with 6(Us N Us) U d(B1\v4). Then A’ dominates A
and f(A") > f(A), contradicting Lemma 5.2(ii).

Combining above observations, we see that (8) holds.

(9) If {S;,S3} C A for i =1 or 2, then 6(v) € A for some v € V(P U Py).

Assume the contrary: §(P;) U (FP2) C A. By symmetry, we may assume that S; € A. Let
AN = (A= ({51,553} Ud(A3 U A1\v7)) U {S4} if both P, and P, are odd. Then A’ dominates A
and f(A") > f(A), contradicting Lemma 5.2(ii). Similarly, we can reach a contradiction if both
Py and P, are even. So (9) is justified.

(10) |O| > 3.

Assume the contrary. Then |O] =2 by (7). Let O = {5;,S;}. In view of (8), we distinguish
among the following subcases.

o {i,5} € {{1,3},{2,3}}. By symmetry, we may assume that {4, j} = {1,3}. By (9) and (1),
we have 0(v) ¢ A for all v € V(P)\X or for all v € V(Py)\X. Let Ay = {S1, 53} Ud(A43) NA if
d(v) € Aforallv e V(P1)\X and Ay = ({d(v3),0(vs5), S1}U(A2) US(Ps))NA if 6(v) € A for all
v € V(P)\X. Then (A1,A — Ay) is an equitable subpartition of A if both P; and P are odd.
Similarly, we can reach a contradiction to (5a) if both P; and P» are even.

o {i,j} € {{1,4},{2,4},{1,5},{2,5}}. By symmetry, we may assume that i = 1 and §(vq) ¢
A (see (3)). Observe that if S5 € A, then 6(v) € A for all v € V(P;)\X by Lemma 5.4(ii) and
(1). Let Ay = O and Ay = A — Ay if {6(v1),0(v7)} C A, and let Ay = {S;} and Ay = A — A for
j = 4,5 otherwise. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

e {i,j} = {3,4}. Observe that if §(P;) C A, letting A; = O and Ay = A — Ay, then (Aj, Ag)
is an equitable subpartition of A, contradicting (5a). Thus d(v) ¢ A for all v € V(P3)\X by
Lemma 5.3. It follows that ({Ss4}, A — {S4}) is an equitable subpartition of A, contradicting
(5a).

o {i,j} = {4,5}. Observe that 6(P;) C A for i = 1,2 if §(v) € A for some v € V(F;)\X by
Lemma 5.3. If {§(v1),d(ve)} € A, say d(ve) & A, letting Ay = ({d(v5),S4} Ud(A1 U A3)) N A
if both P and P, are odd and Ay = ({(v1),Ss} Ud(A2 U Ag)) N A, then (A1, A — A;) is an
equitable subpartition of A, contradicting (5a). So {0(v1),d(ve)} C A. If 6(P1)Ud(P) C A, then
(O, A—0) is an equitable subpartition of A, a contradiction. Hence d(v) ¢ A for allv € V/(P)\X
or all 6(v) & A for all v € V(P)\X by Lemma 5.3. Consider the subsubcase when both P; and
Py are odd. Let Ay = {S2, S4}U(({0(v5)Ud(A1))NA) if §(v) € A for all v € V(P)\X and A =
{S1, 84} U (({0(vs5)} Ud(A3)) NA) otherwise, and let Ag = ((A —{d(v1),0(v2)}) U{S1, S2}) — As.
Then (A1, As) is an equitable subpartition of A, contradicting (5a). Similarly, we can reach a
contradiction if both P; and P are of even length.

Combining above observations, we see that (10) holds.

(11) O is {51, 53, 54}, {51, 54, 55}, {SQ, 53, 54}, or {SQ, 54, 55}.

To justify this, let H be the graph with vertex set {51, S ...,S7} and with all edges {5;, S;}
as described in (8). Since H contains no K4, we have |O] < 4 and hence |O| = 3 by (10). The
triangles in H are all displayed in (11), so the statement holds.

By (11) and symmetry, we only need to consider the following subcases.
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e O = {51,853,54}. In this subcase, observe that if 6(P3) Z A, then d(v) ¢ A for all
v € V(P3)\X by Lemma 5.3. Let Ay = O if {§(v1),d(v7)} Ud(P3) C A, let Ay = {S1,54} if
{6(v1),0(v7)} € A and d(v) € A for all v € V(P3)\X, let Ay = {S5,S4} if {d(v1),d(v7)} € A
and 6(P3) C A, let Ay = {S,} otherwise, and let A = A — A;. Then (Aq, As) is an equitable
subpartition of A, contradicting (5a).

e O ={51,854,55}. In this subcase, by (3) and symmetry we may assume that 6(vy) & A.
When both P; and P, are odd, let Ay = {S4, S5} if 6(P1) Ud(P) C A, let Ay = {S7,54} U
(6(A3) N A) if §(v) € A for all v € V(P)\X, let Ay = ({0(v1),S4} Ud(A7)) NAif 6(v) & A
for all v € V(P)\X, and let Ay = A — Ay. Then (A1, A2) is an equitable subpartition of A,
contradicting (5a). Similarly, we can reach a contradiction if both P; and P, are even.

Combining above subcases, we conclude that G5 is ESP if Case 1 occurs.

Case 2. P; and P, have different parities.

By symmetry, we may assume that P; is odd and P, is even. Let Ug = V;\vs, Ug = V5\v1,
Uio = Vs\vg, Upp = {1)2,1)5} U V(Pl UP), U = {1)1,1)5} U V(Pl U Py). Then S; = E[U,] is an
odd set in G5 for 8 < i < 12. Note that Sg = S1; and S1g = S12 if |[V(Ps)| = 2. So we implicitly
assume that |V (P3)| > 3 if S11 or Si2 occurs in our proof.

(12) O # 0.

Assume the contrary: O = (). Let us first consider the subcase when §(vs) € A. By (1)
and (2), we have d(v) € A for all v € V(P3)\X. From Lemma 5.2(iii), we further deduce that
§(P1)Ud(P2) C A and that {§(vy1),0(v2) }NA # 0. When 6(v1) € A, let A" = (A—({5(v1),d(vs) }U
5(A1 U Ay))) U{S1,S12}. Then A’ dominates A. Set A = {§(v2),S12} N A" and Ay = A" — A;.
When 6(v1) € A, let A = (A — ({6(v2),0(vs5)} Ud(A1 U Ay))) U{S1,S11}. Then A’ dominates A.
Set Ay = {S11} and Ay = A’ —Ay. Then (A1, Ay) is an equitable subpartition of A, contradicting
(5a).

It remains to consider the subcase when §(vs) € A. If §(v) &€ A for some v € V(P UP,U P3),
then {d(v1),0(v2)} € A C {d(v1),d(v2),d(v3),d(v7)} by Lemma 5.2(iii). Let A; = {S1} U
({6(v3)} N A) and Ay = A — Ay. Then (A;, Ag) is an equitable subpartition of A, contradicting
(5a). So §(P;) C A for i = 1,2,3, which implies {6(v1),d(v2)} N A # (). By symmetry, we may
assume that 0(v1) € A. Let Ay = {Ss} and Ay = {S10,d(v2)} NA. Then (A1, As) is an equitable
subpartition of A, contradicting (5a). This proves (12).

(13) |O| > 2.

Assume the contrary. Then |O] = 1 by (12). Let O = {S;}. Symmetry allows us to
distinguish among the following subcases.

e i = 1. In this subcase, observe that if d(vs) € A, then §(P; U Py) C A by (1) and §(v) € A
for all v € V(P3)\X by (2). Let Ay = {S1} Ud(A2 U A3) and A = A — A;. Then (A1, A)
is an equitable subpartition of A, contradicting (5a). Hence d(vs) ¢ A. If §(v) € A for some
v € V(P UPyU P3), then ({S1},A — {S1}) is an equitable subpartition of A; this contradiction
implies that 6(P;) C A for ¢ = 1,2,3. Thus §(v;) € A for i = 1 or 2. Let Ay = {Sg} and
A2 = {51,510} if i = 1 and let A1 = {Sg} and Ag = {51,59} if i = 2. Then (Al,Ag) is an
equitable subpartition of A, contradicting (5a).

e i = 3. In this subcase, observe that {§(v1),0(ve)} € A, for otherwise, let A" = (A —
{5(?}1), 5(@2)})U{Sl, 52}, and let A = {SQ, Sg}U((s(A1UA4)ﬂA) and Ay = A'—A;. Then (Al, Ag)
is an equitable subpartition of A, a contradiction. If {§(v1),d(ve)}NA = 0, then ({S5}, A—{S5})
is an equitable subpartition of A by Lemma 5.2(iii). Thus precisely one of d(v;) and §(v2)}
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belongs to A, which implies §(P;) U §(P) € A. Let Ay = {S10} and Ay = (A — ({6(v1), S3} U
5(A1UA4)))U{51} if 5(’01) € A,and let A = {Sg} and Ay = (A—({é(’[)g), 53}U5(A1UA4)))U{51}
if 0(ve) € A. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

e i = 8. In this subcase, let A} = {Sg,d(v5)} N A and Ay = A — A;. Then (A1, Az) is an
equitable subpartition of A, contradicting (5a).

e i = 9. In this subcase, let Ay = {Sg,d(v1)} N A and A = A — A;. Then (A1, Az) is an
equitable subpartition of A, contradicting (5a).

e i = 11. In this subcase, d6(v) € A for all v € V(P3)\X by Lemma 5.4(ii) and (1). Let
Ay = {S11,6(v1)} N A and Ay = A — A;. Then (Ay,As) is an equitable subpartition of A,
contradicting (5a).

Combining above subcases, we see that (13) holds.

(14) If {S;, S;} C A, then {i,j} is one of the following pairs:

(1,3}, {1,8}, {1,9}, {1, 10}, {2, 3}, {2, 8}, {2,9}, {2, 10}, {3,9}, {3, 10}, {9, 11}, {10, 12}.

To justify this, note that

o {i,j} & {{1,2},{1,11},{1,12}, {2, 11}, {2, 12}, {9, 10}, {11,12}} by Lemma 5.4(i).

e {i,j} # {3,8}. Otherwise, let A’ be obtained from A by replacing {Ss3, Sg} with {S;} U
d(A2 U A3) U(Ps). Then A’ dominates A and g(A’) < g(A), contradicting Lemma 5.2(ii).

o {i,j} & {{3,11},{3,12}}. Otherwise, by symmetry we may assume that {i,j} = {3,11}.
Let A" = (A — {S3,511}) U{0(v5),S9}. Then A’ dominates A and g(A’) < g(A), contradicting
Lemma 5.2(ii).

o {i,j} & {{8,11},{8,12}}. Otherwise, by symmetry we may assume that {i,j} = {8,11}.
Let A’ be obtained from A by replacing {Ss, S11} with §(U11\vs)Ud(B1\vs). Then A’ dominates
A and f(A") > f(A), contradicting Lemma 5.2(ii).

o {i,j} ¢ {{9,12},{10,11}}. Otherwise, by symmetry we may assume that {i,j} = {9,12}.
Let A’ be obtained from A by replacing {Sg, S12} with §(U2\v1)Ud(B1\vs). Then A’ dominates
A and f(A") > f(A), contradicting Lemma 5.2(ii).

o {i,j} & {{8,9},{8,10}}. Otherwise, by symmetry we may assume that {i,j} = {8,9}.
Let A’ be obtained from A by replacing {Ss, So} with §(Us N Ug). Then A’ dominates A and
f(A") > f(A), contradicting Lemma 5.2(ii).

Combining above observations, we see that (14) holds.

(15) |0 > 3.

Assume the contrary. Then |O| = 2 by (13). Let O = {5;, S;}. In view of (14), we distinguish
among the following subcases.

o {i,j} ={1,3}. Let Ay = {S1} U (6(A2U A3)Ud(Ps))NA and Ay = A — A;. Then (A, Ag)
is an equitable subpartition of A, contradicting (5a).

° {Z,j} = {2,3}. Let A = {52,53} U ((5(141 @] A4) N A) and Ap = A — Ay. Then (Al,Ag) is
an equitable subpartition of A, contradicting (5a).

o {i,7} € {{1,8},{2,8}}. By symmetry, we may assume that {i,j} = {1,8} and that
d(ve) ¢ A (see (3)). Let Ay = {571, Ss,0(vs)} NA if {§(v1),d(v7)} € A and Ay = {Ss,0(vs)} NA
otherwise, and let Ay = A — A;. Then (A1, A2) is an equitable subpartition of A, contradicting
(5a).

o {i,j} € {{1,9},{1,10},{2,9},{2,10}}. By symmetry, we may assume that {i,j} = {1,9}.
Let Ay = O if §(ve) € A and Ay = {Sg,d(v1)} N A otherwise, and let Ao = A—Ay. Then (A1, Ag)
is an equitable subpartition of A, contradicting (5a).
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o {i,j} € {{3,9},{3,10}}. By symmetry, we may assume that {7, j} = {3,9}. From Lemma
5.3, we see that d(v) € A for all v € V(P3)\X if 0(P3) € A. Let Ay = {§(v1),S1,S9} N A if
d(P3) € A and Ay = {6(v1),0(v5),S9}, and let Ag = A — Ag. Then (Aj,Ag) is an equitable
subpartition of A, contradicting (5a).

o {i,j} € {{9,11},{10,12}}. By symmetry, we may assume that {i,j} = {9,11}. Observe
that §(vy) ¢ A, for otherwise, let A’ = (A — {6(v1),S9}) U {d(v5),Ss}. Then A’ dominates A
and satisfies (5a-d). Since {Ss,S9} C A’, we reach a contradiction to (14). Let A; = O if
5(P1) U 5(P2) CA,let Ay = ({59,5(’02),5(’05)} U 5(144)) NA if 5(’0) g A for all v € V(Pl)\X, let
A1 = ({So,0(v3),0(vs5)FUI(A1))NAif 6(v) € A for all v € V(P)\ X, and let A9 = A—A;. Then
(A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining above subcases, we see that (15) holds.

(16) O is {Sl, 53, Sg}, {Sl, 53, 510}, {SQ, 53, Sg}, or {SQ, 53, 510}.

To justify this, let H be the graph with vertex set {51, Se, S3, Ss, ..., S12} and with all edges
{Si,S;} as described in (14). Since H contains no K4, we have |O| < 4 and hence |O| = 3 by
(15). The triangles in H are all displayed in (16), so the statement holds.

By (16) and symmetry, we only need to consider the subcase when O = {S}, 53, S9}. Let
A =01if {5(’02)} U 5(P3) CA, let Ay = {51,59,5(215)} NA if 5(’02) € A and 5(’0) ¢ Aforallve
V(Pg)\X, and let Al = {53, 59,5(1)1)}ﬂA if 5(1)2) Q A and (5(P3) - A, let Al = {59,5(1)1),5(1)5)}
otherwise, and let Ag = A — A;. Then (Aq,As) is an equitable subpartition of A, contradicting
(5a). Therefore G5 is also ESP if Case 2 occurs. This complete the proof of present lemma. §

Lemma 5.13. The graph G¢ = (Vs, Eg) (see Figure 15) is ESP.

(%1

V2

Ge

Figure 15: The primitive graph Gg

Proof. Suppose on the contrary that Gg is not ESP. Let A be a collection of stars and odd
sets in Gg as specified by (5a-d) (with Gg in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. We use H to denote the fully subdivided graph in Gg. Throughout this proof,
we reserve

e O for the family consisting of all odd sets in A;
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e P for the family consisting of all paths connecting v; and v2 in H; and

e (X,Y) for the bipartition of H with {v;,v2} C X.

Let Up = V(P) for each P € P. Then Sp = E[Up] is an odd set in Gg. We break the proof
into a few observations.

(1) Each P € P contains a vertex v € Y with §(v) ¢ A. Otherwise, let A’ be obtained from
A by replacing 6(V(P) NY) with Sp. Then A’ dominates A and f(A’) > f(A), contradicting
Lemma 5.2(ii).

(2) O £0.

Assume the contrary: O = . By (1) and Lemma 5.5, A contains an equitable partition
(A1, A2) of A with |[A;N{d(v1),0(ve)}| < 1fori=1,2 (with A in place of ), contradicting (5a).

(3) [0 = L.

Assume the contrary. Then |O| > 2 by (2). Let {Sp,Sg} C A with P, Q distinct in P, let
Wy =V(PUQQ)NX and W =V (P)NV(Q)NY, and let A’ be obtained from A by replacing
{Sp,Sq} with §(W; U Ws). Then A’ dominates A and g(A’) < g(A), contradicting Lemma
5.2(ii).

By (3), we have O = {Sp} for some P € P. Let Ay = {Sp} U (J(Y\V(P)) NA) and
Ay = A —A;. Then (Aq, As) is an equitable subpartition of A, contradicting (5a). Therefore Gg
is ESP. |

Lemma 5.14. The graph G7 = (V, E;) (see Figure 16) is ESP.
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Figure 16: The primitive graph G~

Proof. Suppose on the contrary that G7 is not ESP. Let A be a collection of stars and odd
sets in G'7 as specified by (5a-d) (with G7 in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. Let Uy = {v1,v2,v6} and Uy = {vy,va,v3}. Then Sy = E[U;] and Sy = E[Us] are
two odd sets in G7. We use H to denote the fully subdivided subgraph in G7. Throughout this
proof, we reserve

e O for the family consisting of all odd sets in A;

e P for the family consisting of all paths connecting v4 and vs in H;

e (X,Y) for the bipartition of H with {vs,v5} C X;

o 7 for {vs, vy, v5,v6};

o Qfor 6(XUY)NA; and

o (A1, As) (resp. (As, Ay)) for the bipartition of P, (resp. P») with vg € A1 (resp. vs € As).

Repeated application of Lemma 5.2(iii) yields
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(1) for i = 1,2, if no odd set in A contains P; and d(v) € A for some v € V(P;)\Z, then
d(P;) CA.

(2) {Si,0(v1),6(v2)} € A for i = 1,2. Otherwise, by symmetry we may assume that
{6(v1),0(v2),S1} € A. Let A" = (A — {6(v1),d(v2)}) U {S1,S2}. Then A’ dominates A and
mas(S1) > 2, contradicting Lemma 5.2(1).

Depending on the parities of P; and P», we distinguish between two cases.

Case 1. P; and P, have the same parity.

Let Up = V(P U P, U P)U{v1,v9} for each P € P. Then Sp = E[Up| is an odd set in G7.

(3) If {8(v1),0(v2)} NA # 0 and 6(Y NV(P)) C A for some P € P, then 6(v) € A for some
NS V(Pl U Pg).

Assume the contrary: 6(P;) U d(P;) € A. By symmetry, we may assume that 6(v1) € A.
Let A" = (A —0(A; UA3U (V(P)NY)))U{Sp} if both P, and P, are odd and A’ = (A —
({6(v1)}UO(AUALU(V(P)NY))))U{Sp} otherwise. Then A’ dominates A and f(A’) > f(A),
contradicting Lemma 5.2(ii).

(4) O £10.

Assume the contrary: O = (). Let us proceed by considering three subcases.

e {0(v1),0(v2)} € A. In this subcase, observe that §(v) € A for some v € V(P; U P,), for
otherwise, (3) and Lemma 5.5 would guarantee the existence of an equitable partition (€1, $2s)
of Q such that §(vs) € Q1 and 0(vs) € Qa. Let Ay = {S1} U((A2\vs) U A3) U Qg and Ay =
{52} U 5(.41 U (A4\U4)) U, if both P, and P, are odd, and let A1 = {Sl} @] (5(142 U (A3\7}4)) U
and Ao = {S2} Ud((A1\vs) U Ag) U Qg otherwise. Then (A1, A2) is an equitable subpartition of
A, contradicting (5a).

When both P; and P are odd, set Ay = {S1} U ((6(Y U A3)) N A) if §(v) ¢ A for all
v € V(P)\Z and Ay = {S2} U ((0(Y U A1) NA)if 6(v) € A for all v € V(P)\Z (see (1)).
When both P; and P, are even, set A; = {S2} U (({d(ve)} Ud(Y U Ag))NA)if 6(v) & A for all
veV(P)\Z and Ay = {S1} U (({0(v3)} US(Y U As))NA)if 6(v) € A for all v € V(P2)\Z. Set
Ag = (A — {d(v1),d(v2)}) U{S1,S2}) — A;. It is routine to check that (A, As) is an equitable
subpartition of A, contradicting (5a).

e {§(v1),0(v2) }NA = . In this subcase, A C Q by Lemma 5.2(iii) and (1). Let A; = 6(X)NA
and Ay = 6(Y)N L. Then (A1, As) is an equitable subpartition of A, contradicting (5a).

e |[{d(v1),d(v2)} N Al = 1. In this subcase, by symmetry we may assume that d(v;) € A and
d(ve) & A. Let Ay = 0(Y UA; UA3)N A if both P, and P, are odd and Ay = {§(v1)} US(Y U
Ay U Ag) N A otherwise, and let Ao = A — Ay. Then (A1, A2) is an equitable subpartition of A,
contradicting (5a).

Combining the above subcases, we see that (4) holds.

(5) O] = 2.

Assume the contrary. Then |O| =1 by (4). Let O = {S;}. Symmetry allows us to distinguish
between the following two subcases.

e i = 1. In this subcase, observe that §(v3) € A, for otherwise, d(v) € A for all v € V/(P2)\Z
by (1) and Lemma 5.2(iii). Let Ay = §(Y U A1) N A if both P; and P, are odd and A; =
({S1}Ud(Y UA2))NA, and let Ao = A — Ay. Then (A1, Az) is an equitable subpartition of A, a
contradiction. Thus, by symmetry and Lemma 5.2(iii), we may assume that d(v;) € A. It follows
that d(ve) ¢ A (see (2)) and that 6(P») C A (see (1) and Lemma 5.2(iii)). If each path in P
contains a vertex v with d(v) ¢ A, then Q admits an equitable partition (21, Q2), with 6(v4) € 3
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if 6(vq) € A and with §(vs) € Qo, by Lemma 5.5. Let Ay = ({S1} Ud((A2\vs) U A3) UQ2) N A
and Ao = ({0(v1)} U (A1 U (Ag\vg)) U Q1) N A if both P, and P, are odd, and let A; =
({S1TUd(A2U (As\va))UQ)NA and Az = ({0(v1) FUI((A1\vs) UAs) UQ2) N A otherwise. Then
(A1, A2) is an equitable subpartition of A, contradicting (5a). Hence there exists P € P such that
d(P) C A. Therefore, by (3) and the fact 6(P2) C A, we obtain 6(v) ¢ A forallv € V(P;)\Z. Let
A = ({S1}UN(Y UA3))NA if both P, and P, are odd and A1 = ({6(v1),0(ve) }US(Y UA,))NA
otherwise, and let Ay = A — A;. Then (A1, A2) is an equitable subpartition of A, contradicting
(5a).

e i = P for some P € P. In this subcase, let Ay = {Sp}U(0(Y\V(P))NA) and Ay = A—A;.
Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining the above subcases, we see that (5) holds.

(6) If Sp € A for some P € P, then Sg & A for all Q € P\P .

Assume the contrary: Sg € A for some Q € P\P. Let Wi = V(PUQ)NX, let Wy =
V(P)NV(Q)NY, and let A’ be obtained from A by replacing {Sp, Sg} with {§(v1),d(ve)} U
(P \vs)US(Po\vg)Ud (W7 UWs). Then A’ dominates A and g(A’) < g(A), contradicting Lemma
5.2(ii).

(7) If {S;, S} C A, then i € {1,2} and j € P.

To justify this, note that

o {i,7} # {1,2} by Lemma 5.4(i).

e {i,j} # {P,Q} for any distinct P and @ in P by (6).

Combining these two observations, we see that (7) holds.

(8) O is {S1,Sp} or {S3,Sp} for some P € P.

Let K be the graph with vertex set {Si,S2} U{Sp : P € P} and with edges {S5;,5;} as
described in (7). Since K contains no triangle, we have |O| < 3 and hence |O| = 2 by (5). Thus
the statement follows instantly.

By (8) and symmetry, we only need to consider the subcase when O = {S1, Sp} for some P €
P. Symmetry and (2) allows us to assume that d(ve) € A. Let A; = {S1,Sp}U(S(Y\V(P))NA)
if {6(v1),d0(vg)} € A and Ay ={Sp}U(B(Y\V(P))NA) and let Ao = A — A;. Then (A1, As) is
an equitable subpartition of A, contradicting (5a). Therefore G7 is ESP if Case 1 occurs.

Case 2. P; and P, have different parities.

By symmetry, we may assume that P; is an odd path and P, is an even path. For each
PeP,let Up={v}UV(PLUP,UP)and Up = {v1} UV (P UP,UP), and let Tp = E[Up)]
and T = E[Up]. Then Tp and T} are odd sets in G7.

(9) O #10.

Assume the contrary: O = (). Let us proceed by considering three subcases.

e {§(v1),0(v2)} C A. In this subcase, let A; = {Sa} U (6(Y UALUAs ) NA) and Ag = ((A —
{6(v1),d(v2)}) U {S1,S2}) — A1. Then (Aq,As) is an equitable subpartition of A, contradicting
(5a)

e {0(v1),0(v2)} N A = 0. In this subcase, A C §(X) Ud(Y) by Lemma 5.2(iii) and (1). Let
Ay =6(X)NA and A2 = 06(Y)NA. Then (A;, A2) is an equitable subpartition of A, contradicting
(5a).

o [{0(v1),0(v2)} NA] = 1. In this subcase, §(P;) U d(FP2) € A by Lemma 5.2(iii). By
symmetry, we may assume that 6(v1) € A. Observe that §(P) € A for any P € P, for otherwise,
let Ay = {Tp}U(S(Y\V(P))NA) and A = (A—{6(v1) }US(AUALU(Y NV (P))U{S1,Tp})—A1.

~—
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Then (A1, Ag) is an equitable subpartition of A, contradicting (5a). Thus Lemma 5.5 guarantees
the existence of an equitable partition (Q1,Q2) of Q with d(vs) € Q1 and §(vs) € Qy. Let
A = {5(?)1)} @] 5((A2\U5) U A4) U Qo and Ay = 5(A1 U (Ag\’l)4)) U Q. Then then (Al,Ag) is an
equitable subpartition of A, contradicting (5a).

Combining the above observations, we see that (9) holds.

(10) |O| = 1.

To justify this, observe that

e A contains none of the following pairs

{Slv 52}’ {Sl’ TP}v {51’ leD}v {527 TP}’ {52’ leD}v {Tp, TIIJ}
for any P € P by Lemma 5.4(i).

e A contains neither {Tp, T} nor {Tp,Tj} for any distinct P,Q in P. Otherwise, let
Wy =V(PUQ)NX and W = V(P)NV(Q)NY, and let A’ be obtained from A by replacing
{Tp,To} with {5(v2) }US(Pr\vs)Ud (P \vg)US(W1UW3). Then A’ dominates A and f(A') > f(A),
contradicting Lemma 5.2(ii).

e A contains no {Tp, Té?} for any distinct P, @ in P. Otherwise, let W1 = V(PUQ)N X and
Wy =V(P)NV(Q)NY, and let A’ be obtained from A by replacing {7, T(,} with 6(P1\vs) U
§(Py\vs) U (W1 UWs). Then A’ dominates A and p(A’) < p(A), contradicting Lemma 5.2(ii).

Let K be the graph with vertex set {S1, S2} U (Upep {Tp,Tp}) and with all edges which are
not excluded above. Then the degree of each vertex in K is zero, which implies that |O] < 2, so
(10) is established.

By symmetry and (10), we only need to consider the following subcases

e O ={S1}. In this subcase, let Ay = {6(v;)}U(O(Y UALUA4)NA) if 6(v;) € Afori=1or
2 (see (2)), and let Ay = A — Ay. Then (A, A2) is an equitable subpartition of A, contradicting
(5a).

e O = {S2}. In this subcase, let A; = {S2} U (6(Y UA; UA4)NA)and Ay = A — A;. Then
(A1, Ag) is an equitable subpartition of A, contradicting (5a).

e O = {Tp} for some P € P. In this subcase, let Ay = {6(v1),Tp} U (6(Y\V(P)) NA) and
Ay = A — Ay. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining the above subcases, we conclude that G7 is also ESP if Case 2 occurs. This
completes the proof of the present lemma. |

Lemma 5.15. The graph Gg (see Figure 17) is ESP.
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Figure 17: The primitive graph Gg
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Proof. Suppose on the contrary that Gg is not ESP. Let A be a collection of stars and odd
sets in Gg as specified by (5a-d) (with Gg in place of G). By Lemma 5.2(i), we have mp(K) =1
for all K € A. Let H denote the fully subdivided subgraph in Gg. Throughout this proof, we
reserve

e O for the family consisting of all odd sets in A;

e (X,Y) for the bipartition of H with {v4,v5} C X;

e P for the family consisting of all path in H connecting v4 and vs;

o O for 6(XUY)NA; and

e (A, Ag) for the bipartition of @ with vy € A;.

Let Uy = {v2}UV(Q) and Up = V(PUQ) for each P € P. Then S; = E[U;] and Sp = E[Up]
are odd sets in GGg. We break the proof into a series of observations.

(1) If 6(Q) C A, then §(v2) € A. Otherwise, let A’ be obtained from A by replacing
{6(v2)} U d(A1\vy) with S;. Then A’ dominates A and f(A’) > f(A), contradicting Lemma
5.2(i).

(2) If no odd set contains @ and d(v) € A for some v € V(Q), then 6(Q) € A by Lemma
5.2(ii).

(3) O #0.

Assume the contrary: O = (). Observe that if §(vy) € A, then d(v) € A for all v €
V(Q)\{Ul,vg} by (1) and (2) Let Al == ((5(Y)U{5(U1), (5(’03)})01\ and A2 == A—Al. Then (Al, Ag)
is an equitable subpartition of A; this contradiction implies that §(vy) € A. If {6(v1), d(vs) }NA =
0, letting Ay = 0(X)NA and Ay = 6(Y)NA, then (A1, Ag) would be an equitable subpartition of
A, a contradiction again. So A contains §(v1) or §(v3). From Lemma 5.2(iii) and (2), it follows
that {d(v4),d(vs)} US(Q) C A. We claim that 6(V(P)NY) < A for any P € P, for otherwise,
let A" = (A—(8(Y NV(P))UQ))) U{S1,Sp}, let Ay = {Sp} U (B \V(P)) NA), and let
Ay = A" — A;. Then (A1, A2) is an equitable subpartition of A, contradicting (5a). Our claim
and Lemma 5.5 guarantee the existence of an equitable partition (2, ) of Q with §(v4) €
and 6(vs) € Qy. Let Ay = §(A;) UQy and Ay = 0(Az) U Q. Then (Ay,As) is an equitable
subpartition of A, contradicting (5a). So (3) holds.

(4) O] = 1.

To justify this, observe that

e {S1,Sp} € A for any P € P by Lemma 5.4(i).

e {Sp,,Sp,} € A for any distinct P, P in P. Otherwise, let W; = (V(PL U P)) N X
and Wy = V(P) NV (P) NY, and let A’ be obtained from A by replacing {Sp,,Sp,} with
5(Q) US(Wy UWs). Then A’ dominates A and f(A") > f(A), contradicting Lemma 5.2(iii).

Let K be the graph with vertex set {S1} U{Sp : P € P} and with all edges that are not
excluded above. Then the degree of each vertex in K is zero, so |O| < 2 and hence |0 =1 by
(3).

By (1) and symmetry, we only need to consider the following two subcases.

e O = {S51}. In this subcase, let A} ={S1} U (6(X)NA)and Ay = A — A;. Then (A, Ag) is
an equitable subpartition, contradicting (5a).

e O = {Sp} for some P € P. In this subcase, let A; = {Sp} U (({d0(v2)} US(Y\V(P))NA)
and Ag = A — Ay. Then (A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining the above observations, we conclude that Gg is ESP. |
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Lemma 5.16. The graph Gy = (Vy, Eg) (see Figure 18) is ESP.

Uy U1

U2 V2

Gy

Figure 18: The primitive graph Gg

Proof. Suppose on the contrary that Gg is not ESP. Let A be a collection of stars and odd
sets in Gy as specified by (ba-d) (with Gg in place of G). By Lemma 5.2(i), ma(K) = 1 for all
K € A. Recall the definitions of ladder and plump ladder in Subsection 4.1,

(1) Gy is obtained from a ladder H with top ujug, bottom vjvy, and outer cycle C' by

e replacing each chord e of C in H with a complete bipartite graph L. = K», for some
n > 1, in which one color class consists of the two ends of e only; and

e replacing each edge f in C\{ujv1,ugv2} with a fully subdivided graph Ly, in which both
ends of f belong to the color 1 class, where Ly = Ky for some ¢t > 1 if f is contained in
a 4-cycle induced by two crossing chords.

For convenience, we assume that wi, vy, ve,us occur on C in clockwise cyclic order, and view
V(C) as a vertex subset of Gg; that is, V(C) C Vy. As introduced in Section 4, for each vertex
won C, we use u~ (resp. u') to denote the vertex preceding (resp. succeeding) u on C in the
clockwise direction. Let Z. be the color class of L. disjoint from V(C') for each chord e of C' in
H, let Z be the set of all these Z., and let ¢(C) = [6(Z) N A|.

Suppose a1by and agbs are two crossing chords of C' in H, with both a; and as on Cluy, v1].
Then, by the definition of ladder, ajas and biby are two edges of C. Let C’ be obtained from
C by replacing {ajag,biba} with {a1b1,asbs}. Observe that H is also a ladder with top wujus,
bottom vjvy, and outer cycle C’'. We call the operation of replacing C by C’ a switching with
respect to a1b; and agbo, and assume that

(2) C is an outer cycle of H with the minimum ¢(C') under switching operations with respect
to crossing chords.

Throughout the proof, for each edge f in C\{ujug,v1v2}, we reserve

o (Xy,Yy) for the bipartition of Ly, with two ends of f contained in X;

° Qf for 5(Xf U Yf) NA;

o Cy (resp. C}) for the longest cycle in H containing the edge ujus (resp. vivy), precisely

one end of f, and precisely one chord of C; and

® Oy (resp. ©%) for the set of all chords of C' with two ends on Cy (resp. C%).

Moreover, we reserve
e X (resp. Y1) for Usecqu, o) X7 (resp. Usectur,om) Y5);
o Xy (resp. Y2) for Uscciug,ug) X (teSP. Usec(vn,uo] Y1)
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e X for X UXyand Y for YUY, (so Z = Vo\(X UY)); and

e O for the family consisting of all odd sets in A.

Since Gg\{ujug,viv2} is a bipartite graph, the following statement follows instantly from
Theorem 5.6.

(3) Every odd set S = E[U] in Gg contains at least one of ujuy and v1ve. Furthermore, if S
contains precisely one of these two edges, then G[U] = P, is an odd cycle. If S contains both of
them, then G[U] = Py + Py, where Py is an odd cycle containing ujug, and P; is an odd path
containing v1v9 and having only its two ends in common with Fp.

Let S = E[U] be an odd set in Gg. We say that S is of Type 1 if it contains precisely one
of ujue and viv and is of Type 2 otherwise. We also say that S passes through an edge e in
H\{ujug,viva} if [U N (V(Le)\X)| > 1. By (3), each odd set in Gg is either of Type 1 or of
Type 2.

For each odd set S = E[U] in Gy of Type 1 with ujuy € S (resp. vivy € S), there exist
vertices a on Clug, v1] and b on C[vg, ug| such that no vertex in C'(a,b) (resp. C(b,a)) is contained
in U. From (3) and the definition of ladder, we see that ab is a chord of C' in H and S passes
through ab. We call ab the representing chord of C for S. Moreover, the following statement
holds.

(4) Let S = E[U] be an odd set in Gg of Type 1, with representing chord ab and with a on
Clui,v1]. If ugug € S (resp. vivg € S), then all vertices on Cb,a] (resp. Cla,b]) are contained
in U. Moreover, if S passes through one of two crossing chords of C' other than ab, then it also
passes through the other.

By (3) and (4), we get the following structural property.

(5) Let S = E[U] be an odd set in Gg of Type 2, let Py and P; be as defined in (3), and let
ab be the representing chord of Py. Then the ends of P are {a,b} or {a~,a} or {b,b"}, and
V(C)CU.

(6) If A contains two distinct odd sets E[U;] and E[Us] with |[U; NUs| > 2 and Uy \Us # () #
U \Uy, then both E[U;] and E[Us] are of Type 1. Furthermore, ujus € E[U;] and vivy € E[Us_]
fori =1 or 2.

Suppose the contrary. Let A’ be obtained from A by replacing { E[U1], E[Uz]} with 6((Uy U
U)NX)US(Uy NUaN (Y U Z)). Using (1) and (3)-(5), it is a routine matter to check that A’
dominates A. Since g(A’) < g(A), we reach a contradiction to Lemma 5.2(ii) and hence establish
(6).

(7) If A contains two distinct odd sets E[U;] and E[Us], then U3y NUs| <1 or U; C Uy or
Us CU;.

Assume the contrary: |Uy NUs| > 2 and U1\Us # () # U2\U;. By (6), both E[U;] and E[Us]
are of Type 1. Furthermore, ujus € E[U;] and vivy € E[Us_;] for i = 1 or 2, say the former. By
(3), U induces an odd cycle C; in Gy for j = 1,2. Let e; = a1b; be the representing chord of C
for E[U;] with a; on Clug,v1]. Let ¢ and d be two vertices in V(Cy) NV (Cy) such that Cs[e, d]
contains v1v9 and Cq(c, d) has no vertex in common with C;. From the definition of ladder H, we
see that {c,d} is {a1,b1} or {a],a1} or {b1,b]}. Set A =U; UV (Ca(c,d)) and B = V(Cs[d, c]).
Let A’ be obtained from A by replacing {E[U;], E[Us]} with {E[A]} U§(BN (Y UZ)). Then A’
dominates A and g(A’) < g(A), contradicting Lemma 5.2(ii). So (7) is established.

For each edge f in H\{ujuz,v1v2}, let P; be the set of all paths in L; connecting the ends
of f in H hereafter. We call f saturated if there exists P € Py with 6(V(P)\X) C A, and
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unsaturated otherwise. Furthermore, we call an edge f in C\{ujug,viva} strongly unsaturated
with respect to ujui (resp. viv2) if f and chords of C' in © (resp. @’f) are all unsaturated.

(8) Let e = ab be a chord of C in H with a € Cluy,v;1]. If all edges in C[b, a]\ujuz or all
edges in Cla, b]\v1vy are saturated, then e is unsaturated. (In particular, e is unsaturated if it
is parallel to ujugz or v1vs.)

Assume the contrary: §(t) € A for some ¢ in V(L.)\X. By symmetry, we may assume that
all edges f in C[b,a]\ujuy are saturated. Let Py be a path in Py with §(V(Pf)\X) C A for
each such edge f, let U be the union of V(Py) for all these f, and let A’ be obtained from
A by replacing 6(U NY) U {d(t)} with E[U U {t}]. Then A’ dominates A and f(A") > f(A),
contradicting Lemma 5.2(ii). So (8) is justified.

A saturated chord e = ab of C' in H, with a € Cluy,v1], is called ujuo-minimal (resp. viva-
minimal) if there is no saturated chord ¢’ = a't/ of C'in H, with o’ € C[uq,v1], such that C[b',d]
(resp. Cld’,b']) is a proper subpath of C[b,a] (resp. of Cla,b]).

(9) Let e = ab be a saturated chord of C' in H that is ujus-minimal (resp. vjvy-minimal),
with a € C[uy,v1]. Then C[b,a] (resp. Cla,b]) contains a strongly unsaturated edge with respect
to ujug (resp. v1vg).

Assume the contrary: C1b, a, say, contains no strongly unsaturated edge with respect to ujus.
By (8), there exists an unsaturated edge on C[b,a]\ujus. Let f be an arbitrary unsaturated
edge on Cfuq,al, if any. Since f is not strongly unsaturated, there exists a saturated chord g in
©y. From the minimality assumption on e, we deduce that e and g are crossing chords of C'. By
the definition of ladder H, we thus obtain f = a~a and ¢ = a~b~. Similarly, if there exists an
unsaturated edge f’ in C[b,us], then f' = bbT and ¢’ = a™b™ is a saturated chord of C. From
the definition of ladder H, we see that g and ¢’ cannot exist simultaneously (because they are
crossing and do not form a 4-cycle). Hence C[b, a|\ujus contains precisely one unsaturated edge
by (8). If g exists, then b~b is an unsaturated edge, using (8) with respect to C[b~,a"]. Let C’
be obtained from C by switching with respect to crossing chords e and g. Then ¢(C’) > ¢(C),
contradicting (2). Similarly, we can reach a contradiction if ¢' exists. This proves (9).

(10) Let e = ab be a chord of C in H, with a € C[uy,v1], such that C[b,a] (resp. C|a,b])
contains an unsaturated edge. Then C[b, a] (resp. C|a,b]) contains a strongly unsaturated edge
with respect to ujug (resp. v1v2).

Assume the contrary: no unsaturated edge in C'[b, a]\ujuz, say, is strongly unsaturated with
respect to ujug. Symmetry allows us to assume that C[ug,a] contains unsaturated edges; let f
be such an arbitrary edge. Since f is not strongly unsaturated, there exists a saturated chord
g = cd in O that is ujup-minimal, with ¢ on Clui,a). By (9), C[d,c] contains a strongly
unsaturated edge h. By assumption, h is outside C[b,a]. It follows that e and g are crossing
chords of C'in H, and hence f =a~a, g =a~ b~ and h = bb~ by the definition of ladder H. Let
C’ be obtained from C' by switching with respect to crossing chords e and g. Then ¢(C") > ¢(C),
contradicting (2). So (10) holds.

(11) Let e = ab be a saturated chord of C in H, with a € Cluy,v1]. Then C[b,a] contains a
strongly unsaturated edge f with respect to ujug, and C|a,b] contains a strongly unsaturated
edge g with respect to v1vz, such that g ¢ Cy and f ¢ Cy.

To justify this, note that C[b, a] (resp. Cfa,b]) contains a strongly unsaturated edge f (resp.
g) with respect to ujus (resp. vivg) by (8) and (10). Suppose on the contrary that g € Cy or
f € Cy, say the former. By symmetry, we may assume that f is on C[uy,a] and g is on C[vg, b].
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Let h be the unique chord of C contained in Cy. Then e and h are crossing chords of C' in
H. By the definition of ladder H, we thus obtain f = a~a, g = bb~ and h = a=b~. Let C’
be obtained from C' by switching with respect to crossing chords e and h. Then ¢(C’) > ¢(C),
contradicting (2). So (11) is established.

For each odd set S = E[U] in Gy of Type 1, define S* = {f € C\{uiug, v1v2} : [V(Ly)NU| <
1}. Then S* # (), because G[U] is an odd cycle containing precisely one of the edges ujus and
vivg by (1) and (3). Note that S* is actually the edge set of Cla,b] (resp. Cb,a]) if ujug € S
(resp. v1ve € S), where ab is the representing chord of C for S with a € Cluy,v1].

(12) S* contains an unsaturated edge for each odd set S = E[U] of Type 1 in A.

Otherwise, for each f € S*, there exists Py € Py such that 6(V(Pr)\X) C A. Let K =
Ures+ V(Py) and let A’ be obtained from A by replacing {E[U]} U (K NY) with E[U U K].
Then A’ dominates A and f(A’) > f(A); this contradiction to Lemma 5.2(ii) justifies (12).

In view of (10) and (12), we get

(13) S* contains a strongly unsaturated edge with respect to v1ve (resp. ujug) for each odd
set S = E[U] of Type 1 in A if ujug € S (resp. vivg € 5).

(14) If O =0, then 6(Z) N A # 0.

Otherwise, let (A, B) be the bipartition of G[XUY]. Then (6(A)NA, §(B)NA) is an equitable
subpartition of A, contradicting (5a). So (14) is true.

(15) O #£0.

Assume the contrary: O = (). By (14), we have §(Z)NA # 0; let e = ab be a saturated chord
of C'in H, with a € C[uy,v1]. By (11), C[b,a] contains a strongly unsaturated edge f = rr™
with respect to ujug, and C[a,b] contains a strongly unsaturated edge g = sst with respect
to vivg, such that g ¢ Cy and f ¢ C. By symmetry, we may assume that f is on Clus,a].
By Lemma 5.5, Qf (resp. €,) admits an equitable partition (Q},Q}) (resp. (Q;,Qf])), with
5(r) € Qf, 6(r™) € QF, 6(s) € Q and 4(sT) € QF, if the corresponding star exists in A.

Observe that ¢ is on Cfva,b], for otherwise, let II; be the union of 6(X}) for all edges
h € Cluy,r] U C[sT,v1], let Iy be the union of §(Y}) for all h € Crt,s] U Clvg, us], let Ay =
(I UTI U Q} UQ2Ud(Z))NA, and let Ag = A —A;. Then (Ay, Az) is an equitable subpartition
of A, contradicting (5a).

Let II3 be the union of §(X}) for all edges h € Cluy,r] U C[vg,s], let II4 be the union of
§(Yy) for all edges h € Clrt,v1] U CsT,ug], let Ay = (T3 UTL, U QG UQ UH(Z)) N A, and let
Ay = A —Ay. Then (A1, Ay) is an equitable subpartition of A, contradicting (5a) again. So (15)
is established.

(16) |O| > 2.

Assume the contrary. Then |O| = 1 by (15). Let S = E[U] be the unique odd set in O.
Depending on the type of S, we consider two cases.

e Sis of Type 1. In this case, symmetry allows us to assume that ujug € E[U]. Let ab be the
representing chord of C for S with a on Cuy, v1]. By (13), C|a, b] contains a strongly unsaturated
edge g = ssT with respect to vjve. By symmetry, we may assume that g is on Cla,v1]. By
Lemma 5.5, Q2 admits an equitable partition (Q;,Qz) of Q4 with d(s) € Q}] and §(st) € Q?], if
the corresponding star exists in A. Let IT; be the union of §(X}) for all edges h € C[s™,v1], let
II; be the union of 6(Y}) for all edges h € Cla, s] U Clvg, b], and let I3 be the union of (Y, \U)
for all edges h € Cluy,a] UC[b,us]. Set Ay = ({S} UL} UTl, UTI3 U Qg Ud(Z\U)) N A and
Ay = A — Ay. Clearly, (A1, A2) is an equitable subpartition of A, contradicting (5a).
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e S is of Type 2. In this case, let Ay = ({STUI((Y UZ)\U))NA and Ay = A — Ay. Then
(A1, A2) is an equitable subpartition of A, contradicting (5a).

Combining the above cases, we see that (16) holds.

The following statement follows instantly from (3)-(5) and (7).

(17) Let Sy = E[U;] and Sy = E[Us] be two odd sets in O. Then one of the following two
cases occurs:

e 51 and Sy are both of Type 1 and |U; NUs| < 1;

e S, is of Type 1, S3_; is of Type 2, and U; C Us_; for i =1 or 2.

(18) |O| = 2.

Assume the contrary: |O| > 3. Let S; = E[U;] for i = 1,2,3 be three odd sets in 0. By
(17), we may assume that S; and Sy are of Type 1, with ujug € S; and vivy € So, while S
is of Type 2. In view of (3) (with Sy in place of S), S3 = Py + P;, where P is an odd cycle
containing ujus, and P; is an odd path containing vyve and having only its two ends ¢ and d
in common with Py. Let @ stand for the cd-subpath of Py\ujug. From (3) and (17), we obtain
G|U1] = Py and G[Us] = QU Py. Thus V(Q) C U; NU;y and hence |Uy N Us| > 2, contradicting
(17). So (18) is justified.

Let O = {E[U1], E[Us]}. By (17) and symmetry, we may assume that FE[Uj] is of Type
1 and contains ujug. If E[Us] is of Type 1, then vjvy is contained in E[Us] by (17). Let
A = {E[UL], E[Us]} U (6((Y U Z2)\(Uy UUz)) N A) and Ag = A — A;. Then (A1, Az) is an
equitable subpartition of A; this contradiction to (5a) implies that E[Us] is of Type 2. Hence
U1 Q U2 by (17)

(19) 6(y) € A for some y € Uy NY. Otherwise, 6(N(y)) C A for all y € U1 NY by Lemma
5.3as Uy C Us. Let Ay = {E[Ul],E[UQ]} U (5((Y U Z)\Ug) ﬂA) and Ao = A—A;. Then (Al,Ag)
an equitable subpartition of A, contradicting (5a).

(20) Let f be an edge on C\{ujugz,viv2} such that §(y) &€ A for some y € Uy NYy. Then f
is unsaturated.

Assume the contrary: 6(V(P)\X) C A for some P € Py. Let Q be the path in Py with
V(Q) € Uy. Then P # Q. Let Uy = (U;\V(Q)) UV (P), and let A’ be obtained from A by
replacing {E[U1]}US(V(P)NY) with {E[U{]}US(V(Q)NY'). Then A’ dominates A and satisfies
(5a-d). Since E[U]] is of Type 1 and Uj € Us, we reach a contradiction to (17) (with A’ in place
with A). So (20) is true.

Let ab be the representing chord of C for E[Up] with a on Cluq,v1]. By (19) and (20), C[b, a]
contains an unsaturated edge, and hence contains a strongly unsaturated edge g = ss* with
respect to ujug by (10).

By Lemma 5.5, Q, admits an equitable partition (Q,2) with d(s) € @ and §(s™) € Qo,
if the corresponding star exists in A. By symmetry, we may assume that g is on Cluy,a]. Let
IT; be the union of §(X}) for all edges h € Cluq, s|, let IIs be the union of d(Y}) for all edges
h € C[s*,a] UC[b,us], and let II3 be the union of §(Y,\Us) for all edges h € Cla,v1] U Clva, b].
Set Ay ={E[Uz]} U ((II; UIL, UTI3 U Q1 UH(Z)) NA) and Ay = A — A;. Clearly, (A1, Az2) is an
equitable subpartition of A, contradicting (5a).

Combining the above subcases, we conclude that Gg is ESP. |

69



6 Proof of Theorem 1.4

In Section 3 we have established the “if” part of Theorem 1.4 (see Lemma 3.2); the objective of
this section is to establish its “only if” part. For this purpose, we need two summing operations
on graphs.

Let Hy and Hs be two graphs. As usual, the 0-sum of Hy and Hs is their disjoint union.
The 1-sum of Hy and Hy is obtained by first choosing an edge a;b; of H; for ¢ = 1,2 such that
b; has degree one in H;, then deleting b; from H;, and finally identifying a; and ay (let a be the
resulting vertex); see Figure 19 for an illustration.

H, H, H
Figure 19: The 1-sum of two graphs

Lemma 6.1. Let H be the 0-sum of Hy and Hy. If both o(Hy) and o(Hs) are box-TDI, then
so is o(H).

Proof. Write the linear system o(H;) as A;x < b;, * > 0 for i = 1,2, and write o(H) as
Az < b, x > 0. Since H is the 0-sum of H; and Hj, by definition U C T (H) if and only if
U CT(H;) for i =1 or 2. Thus

A O b
A—{O A2}andb—{b2}.

Therefore the statement holds trivially. |

Lemma 6.2. Let H be the 1-sum of Hy and Hsy. If both o(Hy) and o(Hs) are box-TDI, then
so is o(H).

Proof. Recall the definition: H = (V, E) is obtained from Hy = (Vi, Ey) and Hy = (Va, E2)
by first choosing an edge a;b; of H; for ¢ = 1,2 such that b; has degree one in H;, then deleting
b; from H;, and finally identifying a; and az (let a be the resulting vertex). Write the linear
system o(H) as Ax < b, > 0. Assume on the contrary that o(H) is not box-TDI. Then there
exist | € Qf and u € (Q) U {4+o00})¥ with I < u, such that Az < b, l <x <u, x> 0is not a
TDI-system; subject to this, we assume that

(1) L(a) = Y ces(a) l(e) is maximized.
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With a slight abuse of notation, we write Max(A,b,l, u,w) for both the linear program
max{w’x : Ax < b,1 < x < wu, x> 0} and its optimal value, and write Min(A, b,1,u, w) for
both the linear program min{a’b — Bl + yTu : aTA - BT + 47 > w”, a, 3,7 > 0} and its
optimal value. For a detailed description of this primal-dual pair, refer to the paragraph below
Lemma 3.1. By the definition of TDI systems, there exists w € Z such that Min(A, b, 1, u, w)
has finite optimum, but has no integral optimal solution. Observe that

(2) for any optimal solution & to Max(A, b, 1, u, w), we have z(e) = [(e) for all e € 6(a).

Suppose the contrary: there exists an optimal solution & to Max(A,b,l,u,w) such that
x(f) > I(f) for some f € 6(a). Let & = (x(f) —1(f))/2. Then 6 > 0. Let I be obtained from [
by replacing I(f) with I(f) + 6. Then a remains to be an optimal solution to Max(A, b, 1, u, w),
because the feasible region of Max(A,b,l,u,w) is a subset of that of Max(4,b,1,u, w). So
Max(A, b, 1, u,w) = Max(4,b,1,u, w). Since L(a) = Y ces(a) l(€) > L(a), there exists an inte-
gral optimal solution (e, 3,7) to Min(A, b,l,u,w) by (1) and assumption. Note that («, 3,7)
is also feasible to Min(A,b,l,u,w). Furthermore, 5(f) = 0 by complementary slackness as
z(f) > I(f). Thus b — 871+ ~"u = a”b — BTl + 4Tu, which implies that (a,3,7) is an
integral optimal solution to Min(A, b,l, u,w); this contradiction justifies (2).

Set €i = Y ces(a)nr; [(e) for i = 1,2. Then

(3) e1 +e2 < 1.

To justify this, let & be an optimal solution to Max(A,b,l,u,w). From the restricted
Edmonds system, we see that Y ces() 2(e) < 1. By (2), we obtain Y cc5q) 2(€) = €1 + 2. Thus
(3) follows.

Let H = (V',E’) be the 0-sum of H; and Hy. By Lemma 6.1, o(H’) is box-TDI. Write
o(H') as Az’ <b',2’ > 0 and define

(4) V' € QY ' € (Qr U {+oo})?, and w' € Z¥' such that

o l'(e) =l(e), u'(e) = ule), w(e) =w(e) for all e € E"\{a1b1, azbs},

[ ] l’(albl) = &9, l,(agbg) = &1, u’(albl) = u,(CLng) = 400, and w’(albl) = w/(CLQbQ) =0.

Since no constraint z’(e) < +oo appears in Max(A4’,b',l',u/, w'), neither v'(a1b1) nor +'(azbs)
is introduced in Min(A4’,b',l',u’, w’) by (4).

(5) Max(A, b,l, u,w) = Max(A", b, ', v/, w').

To justify this, let & be an optimal solution to Max(A,b,l,u,w), and let =’ € RE" be
defined by z’'(e) = xz(e) for all e € E'\{a1b1,asbs}, 2'(a1b1) = e2, and a'(azbs) = ;. In
view of (2) and (4), =’ is a feasible solution to Max(A’, b, I, v/, w') with (w')Ta’ = wlz. So
Max(A, b, 1, u,w) < Max(A', b, ', v/, w').

Assume on the contrary that Max(A,b,l,u,w) < Max(A",b',l',u',w’). Let = and x’' be
optimal solutions to Max(A,b,1,u, w) and Max(A",b',l’, v/, w’), respectively. By (4), we have
SeeE{asbi} W (€)' (€) > Yeep fashiy w(e)z(e) for i =1 or 2, say the former. Let & € RF be
defined by Z(e) = 2'(e) for all e € E1\{a1b1} and Z(e) = z(e) for all e € Es\{agbs}. Note
that Zeé&(a) Z(e) = ZeeEl\{aﬂn} x/(e) + ZeGEQ\{azbz} z(e) <1-— x/(albl) + ZeGEQ\{azbz} z(e) <
1 —e9+e9 = 1, where the last inequality follows from (2) and (4). So & is a feasible solution to
Max(A, b, 1, u,w), with w”2 > w”x; this contradiction establishes (5).

Since o(H’) is box-TDI, Min(A’,b",1',4/,w’) has an integral optimal solution (a’,3’,v’).
For this solution the constraints corresponding to edges in d(a1) U d(az) read, respectively,

(6) Yeesw) @' (V) + X eerp & (U)—B'(e) +7'(e) > w'(e) for all e € §(a1)Ud(az)\{aib1, asbs};

(7) &/(a;) — B'(a;b;) > 0 for i = 1,2.
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We may assume that both equalities in (7) hold with equalities; that is,

(8) o/(ai) — 5,((%()@) =0 fori= 1, 2.

Otherwise, let 6; = o/(a;) — B'(a;b;). Then at least one of #; and #y is positive. Let
3" be obtained from B’ by replacing 3'(a1b1) with 8'(a1b1) + 61 and replacing ('(asbs) with
B'(azby) + 2. Tt is easy to see that (a/,3”,v’) is a feasible solution to Min(A’, b’ l', v/, w'),
with (o) — (BT + (v)Tu' < ()T — (BT + (v)Tu'. So (o/,B"”,7') is also an optimal
solution to Min(A’, b, I',u/,w’). Hence we may assume (8), otherwise replace (o', 3',v’) with
(a,,ﬁ”,")’/).

(9) e1 +e2 = 1.

Otherwise, 1 + €2 < 1 by (3). Let x be an optimal solution to Max(A,b,l,u,w). By
(2), we have Y .csa)2(e) = €1 +e2 < 1. Let o’ € R”" be defined by 2’/(e) = z(e) for all
e € E"\{a1b1, asbs}, 2'(a1b1) = e2, and 2'(azbe) = 1. In view of (2) and (3), ' is a feasible
solution to Max(A’,b’,1’,u/,w’). Note that wx = (w')Tx’ by (4), so =’ is an optimal solution
to Max(A’,b',l',u’,w’) by (5). Since Y ees(a;) Z'(€) = Yeem\faibi} L(€) +e3-5 = €1+ €2 < 1, we
deduce from complementary slackness that o/(a1) = o/(az) = 0. Hence f'(a1b1) = 8'(az2b2) =0
by (8). Let (a,3,v) be defined by a(u) = o(u) for all u € I(H) U T(H)\{a}, a(a) = 0,
Be) = f'(e), v(e) =+(e) for all e € E. Tt is routine to check check that («, 3,7) is a feasible
solution to Min(4, b, I, u,w), with (/)T — ()71 + (v')Tu' = a”b — 871 + vTu. By (5),
(at, B,7) is an integral optimal solution to Min(A4, b, 1, u, w), contradicting our assumption. So
(9) is justified.

We may further assume that

(10) o(a1) = &/(a2). So B'(a1b1) = B'(azb2) by (8).

Otherwise, symmetry allows us to assume that o/(a1) > o/(ag2). Set 8 = o/(a1) — o/ (az). Let
" be obtained from o’ by replacing o/ (az) with o/(az) + 6, and let 3" be obtained from 3’ by
replacing 3'(e) with f'(e) + 0 for all e € §(az). It is easy to see that (a,3",~') satisfies the
constraints corresponding to (6) and (7), which implies that (a”,3”,7’) is a feasible solution
to Min(A’,b',1',u/,w'). By (4) and (9), we obtain (a”)Td' — (8")T1 + (v)Tu' = [(a/)TV +
0] = [(B)T + 0 Yeesqay U'(e)] + (¥)Tu" = ()T = (B)V + (v)Tu + [0 — 0(e1 + e2)] =
(@) — (BT + (v")Tu'. So (@”,B”,7') is also an optimal solution to Min(A’, b,l’,u’, w').
Hence we may assume (10), otherwise replace (a/, 3',v) with (”, 3",v).

Let us now construct an integral optimal solution (e, 3,4) to Min(A, b,l, u, w) by setting

o(u) = ' (u) for u € (I(H) UT(H)\a
a(a) = o(a1);

B() S'(e) and y(e) = +'(e) for all e € E,

(10) it is easy to see that («,3,7) is feasible to Min(A, b, l, u, w).
1) o — B71+ 47w = ()T — ()70 + ()T

[ ]
From
(1
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Indeed, by direct computation we obtain
aTb - BTl +~yTu

= > a@+ > | \U! — Y l(e)Ble) + > u(e

vel(H) UeT(H) eclE ecE
= > o+ X | IU Ja(U) = D Ue)Ble) + Y ule)y(e) + (' (az) — B(azb2))
vel(H) UeT(H) eck eck
= d(a1) + ' (az) — 28 (a1b1) — €18 (azbs) + Z o (v) + Z \U!
vel(H")\{a1,a2} UeT(H')
- > I'(e)B'(e) + > u'(e)y'(e)
e€E'\{a1b1,a2b2} ecE'\{a1b1,a2b2}
= d(a1) +d'(a2) + > )+ > L |U|Ja - U
UEI(H’)\{aLaz} UeT(H') e€E’

+ D d(e) (e)

ecE’!
— (a/)Tb/ _ (B/)Tl/ + (7/)Tu/’

where the second and third equalities follow from (8)-(10). So (11) holds.
Combining (5) and (11), we conclude that (a,3,7) is an integral optimal solution to
Min(A,b,l, u, w), contradicting our assumption. Therefore o(H) is box-TDI. |

We are eventually ready to establish the main result of this paper.

Proof of Theorem 1.4. The “if” part follows from Lemma 3.2. It remains to derive the
“only if” part. We apply induction on |V (G)|. The case |V(G)| = 1 is trivial, so we proceed to
the induction step. By Lemmas 3.1, 6.1 and 6.2, we may assume that G cannot be represented
as the k-sum (k = 0,1) of two smaller graphs (otherwise we are done). Thus G is i-2-c. From
Theorem 4.1, we deduce that G is a bipartite graph or is a subgraph of one of the nine graphs
G1,Ga,...,Gy (see Figure 4). By Lemmas 5.7-5.16 and Lemma 5.1, o(K) is ESP and hence
box-TDI, by Theorem 1.8, if K is a bipartite graph or one of G1,Gs,...,Gg. In view of Lemma
3.1, m(K) is also box-TDI. From Lemma 3.8, we thus conclude that 7(G) is a box-TDI system.

This completes the proof of our theorem.

References

[1] G. Birkhoff, Three observations on linear algebra (in Spanish), Univ. Nac. Tucumdn Ser.
A 5 (1946), 147-151.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.

[3] K. Cameron, Polyhedral and Algorithmic Ramifications of Antichains, Ph.D. Thesis, Uni-
versity of Waterloo, 1982.

[4] X. Chen, Z. Chen, and W. Zang, A unified approach to box-Mengerian hypergraphs, Math.
Oper. Res. 35 (2010), 655-668.

73



[5]

[6]
[7]

[15]
[16]
[17]

[18]

G. Ding, L. Feng, and W. Zang, The complexity of recognizing linear systems with certain
integrality properties, Math. Program. Ser. A 114 (2008), 321-334.

W. Cook, On box totally dual integral polyhedra, Math. Programming 34 (1986), 48-61.

W. Cunningham and A. Marsh, A primal algorithm for optimum matching, Math. Pro-
gramming Stud. 8 (1978), 50-72.

G. Ding and W. Zang, Packing cycles in graphs, J. Combin. Theory Ser. B 86 (2002),
381-407.

J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat. Bur.
Standards Sect. B 69 (1965), 125-130.

J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Ann.
Discrete Math. 1 (1977), 185-204.

J. Edmonds and R. Giles, Total dual integrality of linear inequality systems, in: Progress
in Combinatorial Optimization, pp. 117-129, Academic Press, Toronto, 1984.

J. Geelen, B. Gerards, B. Reed, P. Seymour, and A. Vetta, On the odd-minor variant of
Hadwiger’s conjecture, J. Combin. Theory Ser. B 99 (2009), 20-29.

L. Lovész and M. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.

C. Papadimitriou and M. Yannakakis, On recognizing integer polyhedra, Combinatorica 10
(1990), 107-1009.

W. Pulleyblank and J. Edmonds, Facets of 1-matching polyhedra, Lecture Notes in Math.
411 (1974), 214-242.

N. Robertson and P. Seymour, Graph minors. XX. Wagner’s conjecture, J. Combin. Theory
Ser. B 92 (2004), 325-357.

A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, New York,
1986.

A. Schrijver, Combinatorial Optimization — Polyhedra and Efficiency, Springer-Verlag,
Berlin, 2003.

74



