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Abstract

Motivated by a dictionary between polynomials and �nite Blaschke products, we study

both Smale's mean value conjecture and its dual conjecture for �nite Blaschke products

in this paper. Our result on the dual conjecture for �nite Blaschke products allows us

to improve a bound obtained by V. Dubinin and T. Sugawa for the dual mean value

conjecture for polynomials.

1 Introduction

In Stephen Smale's seminal paper [30] on the e�ciency of Newton's method for approximating
zeros of a non-constant complex polynomial P of one complex variable, Smale proposed to
study the smallest positive constant c such that for any point a in the complex plane C,���P (b)�P (a)b�a

��� � cjP 0(a)j for at least one critical point b of P (zero of P 0). Let M be the least

possible value of the factor c for all non-linear polynomials and Mn be the corresponding value
for polynomials of degree n. It was proven by Smale [30] that 1 � M � 4 and he conjectured
that M = 1 or even Mn = n�1

n
and pointed out that the number n�1

n
would, if true, be the

best possible bound here as it is attained (for any nonzero �) when P (z) = zn � �z and a = 0.
The conjecture was repeated in [31, 28] and it is also listed as one of the three minor problems
in Smale's famous problem list [32]. The conjecture is now known as Smale's mean value
conjecture which has remained open since 1981 even though it was proven to be true for many
classes of polynomials (see [5],[26],[14],[15],[17],[25],[27],[33],[34] and [37]).

�Partially supported by RGC grant HKU 704611P and HKU 703313P.
yPartially supported by a summer research fellowship of Faculty of Science, HKU.

2010Mathematics Subject Classi�cation: Primary 30C15, 30D50.

Key words and phrases. Smale's mean value conjecture, �nite Blaschke products, critical points.

Department of Mathematics, The University of Hong Kong, Pokfulam Road.

E-mail: ntw@maths.hku.hk, zyqbsc@connect.hku.hk.

1



There have been a number of re�nements on the bound forM over the past years. Beardon,
Minda, and Ng [3] showed that Mn � 4(n�2)=(n�1) using the hyperbolic metric on certain
domains. Conte, Fujikawa and Lakic [4] proved that Mn � 4n�1

n+1
by referring to Bieberbach's

coe�cient inequality ja2j � 2 for univalent functions in the unit disk. Combining these two

methods, Fujikawa and Sugawa [12] veri�ed that Mn � 41+(n�2)4
1=(n�1)

n+1
. Asymptotically, all

these upper bounds of M are of the form 4 � O( 1
n
) as n ! 1. At present the best known

result for large n was obtained by Crane [8] who showed that for n � 8, Mn < 4 � 2:263p
n
. All

these upper bounds are close to 4 when n is large. On the hand, it was proved in [18] that one
can replace 4 by 2 for a large class of polynomials which includes all odd polynomials with zero
constant term.

Notice that it is easy to show that Smale's mean value conjecture is equivalent to the
following normalized conjecture:

Let P be a monic polynomial of degree n � 2 such that P (0) = 0 and P 0(0) = 1. Let b1; : : : ; bn�1
be its critical points. Then

min
i

���� P (bi)biP 0(0)

���� � n� 1

n
:

The following dual mean value conjecture was considered independently by the �rst author
[19] and Dubinin and Sugawa [9] around the same time.

Dual Mean Value Conjecture: Let P be a monic polynomial of degree n � 2 such that
P (0) = 0 and P 0(0) = 1. Let b1; : : : ; bn�1 be its critical points. Then

max
i

���� P (bi)biP 0(0)

���� � 1

n
:

Let the largest lower bound for maxi

��� P (bi)
biP 0(0)

��� be N when we consider all polynomials satis-

fying P (0) = 0 and P 0(0) = 1 and Nn when we further restrict the degree of the polynomials to
be n. By applying the theory of amoeba, the �rst author was able to show that Nn > 0 ([19])
while Dubinin and Sugawa [9] were able to show that Nn � 1

n4n
. In this paper, we will study

similar conjectures for �nite Blaschke products.

It was �rst noted by Walsh [35] that �nite Blaschke products can be viewed as non-euclidean
polynomials in the standard unit disk D and he has proven a version of Gauss-Lucas Theorem
for �nite Blaschke products. This point of view was also propagated by Beardon and Minda in
[2], as well as Singer in [29]. Recently, a dictionary between polynomials and �nite Blaschke
products has been established by Ng and Tsang in [20] based on the papers [23], [21], [22] and
see also [6] and [36] for more recent results not included in this dictionary.

In view of the dictionary between polynomials and �nite Blaschke products [20], it is natural
to study Smale's mean value conjecture for �nite Blaschke products. Actually, Sheil-Small
[27] has already pointed out that Smale's proof for M � 4 can be adapted without much
modi�cation to show that for �nite Blaschke products the same bound 4 also applies. If we
let K and Kn be the counterpart of M and Mn respectively for �nite Blaschke products (the
precise de�nition of them will be given in section 2), Sheil-Small also showed that M � K and
Mn � Kn (see p.365 of [27]). Therefore, it would be interesting to consider Smale's mean value
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conjecture for �nite Blaschke products. In this paper, we will prove the following result.

Theorem 1. Kn � 22n�1+(2n�3)4
1=(1�n)

2n�1 for n � 2.

Unfortunately, Kn is of the form 4 � O( 1
n
) as n ! 1 and therefore we cannot get any

improvement of Mn for polynomials.

It is known that Mn =
n�1
n

for n = 2; 3 and 4 and extremal polynomials exist for each case.
The following result shows that this is not true for Kn.

Theorem 2. Kn � 1 when n � 3. K2 = 1 and no extremal �nite Blaschke products exist in
this case.

For the dual mean value conjecture, if we let L and Ln be the counterpart of N and Nn

respectively for �nite Blaschke products (the precise de�nition will be given in section 2), then
we have the following

Theorem 3. Ln > 1=4n for n � 2.

As a corollary, we have an improvement of Dubinin and Sugwa's bound, Nn � 1
n4n

.

Corollary. Nn � Ln > 1=4n for n � 2.

Finally, we have

Theorem 4. Ln � 1=n when n � 3. L2 = 1=2 and no extremal �nite Blaschke products exist
in this case.

In Section 2, we will review some properties of �nite Blaschke products and formulate both
Smale's mean value conjecture and the dual mean value conjecture for �nite Blaschke products.
We will then prove Theorem 1 and 2 in Section 3 and Theorem 3 and 4 in Section 4.

2 A Brief Review on Finite Blaschke Products

We recall some basic facts about �nite Blaschke products that will be used later. These facts
can be found in [2], [20], [27] and the reference therein.

De�nition. A �nite Blaschke product of degree n is a rational function of the form

B(z) = ei�
nY

k=1

z � zk
1� zkz

where � is a real number and z1; : : : ; zn are complex numbers on the standard unit disk D =
fz : jzj < 1g.

It follows immediately from the de�nition that B has n zeros and n poles, counting mul-
tiplicity, and the zeros and poles of B are conjugate relative to the unit circle @D. Also we
have jB(z)j < 1 for jzj < 1, jB(z)j = 1 for jzj = 1 and jB(z)j > 1 for jzj > 1. If we write

P (z) =
Qn

k=1(z � zk) and de�ne P �(z) = znP (1=z), then B(z) = ei� P (z)
P �(z)

.
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Just as polynomials of degree n are precisely the n-to-1 covering maps of the complex plane
onto itself, �nite Blaschke products of degree n are precisely the n-to-1 covering maps of the
unit disk D onto itself. Hence, for each w 2 D, B(z) = w has exactly n roots in D, counting
multiplicity. Let M(z) = ei� z��

1��z be a M�obius transformation with � 2 R and � 2 D. Then

B �M and M �B are �nite Blaschke products of degree n.

By di�erentiating the relation B(z)B(1=z) = 1, we conclude that the critical points of B

inside and outside the unit disk are conjugating relative to the unit circle. Let eB(z) = e�i�B(z).
Then eB and B share the same set of zeros and critical points. Di�erentiation yields

eB0(z) =
P 0(z)P �(z)� P (z)(P �)0(z)

(P �(z))2
= a

Q(z)Q�(z)
(P �(z))2

;

where Q(z) :=
n�1Q
i=1

(z� �i) and �1; � � � ; �n�1 are the critical points of eB within the unit disk, and

a is a complex constant depending on B. This follows from the observation that the numerator
is of degree 2n � 2, and the critical points are in conjugating pairs relative to the unit circle,
as already remarked. The complex constant a may not be 1, as one can verify by computing a
simple case. Hence we have B0(z) = ei�aC(z)R2(z) in D, where C(z) = Q(z)

Q�(z)
is a �nite Blaschke

product of degree n� 1 with zeros at the critical points of B, and R(z) = Q�(z)
P �(z)

=
Qn�1

k=1 (1��kz)Qn�1
k=1 (1�zkz)

is

analytic and non-zero in D. For an exposition in more details, we refer to Section 11.3 in [27],
although there the author omits the complex constant a, either for convenience or by error in
equation (11.21) of [27].

To give a proper formulation of Smale's mean value conjecture for �nite Blaschke products
in the hyperbolic setting, we introduce the notions of pseudo-hyperbolic distance and hyperbolic
derivative.

Let z and w be two points in D. The complex pseudo-hyperbolic distance [z; w] is de�ned
by [z; w] = z�w

1�wz . Let f be a function from D to D. We de�ne the hyperbolic derivative of f at

w to be the limit limz!w
[f(z);f(w)]

[z;w]
, if it exists, and we denote it by DHf(w). If f is analytic at

a point w, then DHf(w) = limz!w

f(z)�f(w)

1�f(w)f(z)
z�w
1�wz

= limz!w
f(z)�f(w)

z�w
1�wz

1�f(w)f(z) = f 0(w) 1�jwj2
1�jf(w)j2 .

Now we formulate Smale's mean value conjecture for �nite Blaschke product in the hyper-
bolic setting. As mentioned before, in the case of complex polynomials, it su�ces to consider
polynomials with a single zero at 0 and a = 0, as we can always apply linear transformations
to convert the problem into this case. It happens that we have a similar simpli�cation in the
case of �nite Blaschke products, provided we formulate the problem in the following way:

Problem. Let B be a �nite Blaschke product of degree n � 2. Suppose �1; : : : ; �n�1 are the
critical points of B, and suppose B0(w) 6= 0. For any such B, what is the smallest constant Kn

such that the following holds for at least one of its critical point �i:���� [B(�i); B(w)][�i; w]

���� � KnjDHB(w)j?

Remark. First of all, it's enough to consider w = 0. To see this, let M(z) = z+w
1�wz , and replace

B by C = B �M . Second, we can assume B(0) = 0 as we can let M(z) = z�B(0)

1�B(0)z
, and replace

B by C = M � B. Finally, we may assume the adjusting coe�cient ei� in the expression of B
to be 1. This is easily achieved by replacing B with e�i�B.
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We denote by B(n) the set of all �nite Blaschke products of degree n of the form B(z) =Qn
k=1

z�zk
1�zkz such that B(0) = 0 and B0(0) 6= 0. Then for each B 2 B(n), we de�ne

S(B) := min

����� B(�)�B0(0)

���� : B0(�) = 0; � 2 D
�
:

Then by what we have discussed in the previous remark, we have Kn = supfS(B) : B 2
B(n)g.

For the dual mean value conjecture for �nite Blaschke products, it is clear that we should
consider

T (B) := max

����� B(�)�B0(0)

���� : B0(�) = 0; � 2 D
�

and then have Ln = inffT (B) : B 2 B(n)g.

3 Bounds for Kn

The proof of the upper bound for Kn in Theorem 1 follows closely the arguments used by

Fujikawa and Sugawa in [12] for the bound Mn � 41+(n�2)4
1=(n�1)

n+1
. The only di�erence is the

algebra involved for �nite Blaschke products is more complicated, so we include the detailed
arguments here.

We will need a result in [3] concerning the hyperbolic metric for a speci�c domain. Any
simply connected domain 
 of C has a hyperbolic metric, which we denote by �
(z)jdzj. Let f
be a conformal map from 
 onto another simply connected domain �, then �� (f(z)) jf 0(z)j =
�
(z). In particular we have �D(z) =

2
(1�jzj)2 for D. Now let R be a positive real number and

lk be the ray of the form frei�k : r � Rg, k = 1; : : : ; n, where the rays are distinct. For the
domain 
 := C� (l1 [ � � � [ ln), it is proven in [3] that �
(0) � 2

R
4�1=n.

Proof of Theorem 1. Let B = z
Qn�1

k=1
z�zk
1�zkz 2 B(n). First note that B is analytic in C �

f1=z1; : : : ; 1=zn�1g and covers every point in C. We may assume the zeros of B are distinct
and we know B has exactly n � 1 critical points in D, counting multiplicity. Let �1 : : : �n�1
be its critical points in D, arranged such that minfj�kj : k = 1; : : : ; n � 1g = j�1j. Then the
critical points outside D are precisely 1=�1; : : : ; 1=�n�1. And we have B(1=�k) = 1=B(�k). Let
R = minfjB(�k)j : k = 1; : : : ; n � 1g > 0. Let lk be the ray of the form frei�k : r � Rg that
passes through B(�k) (and hence passes through B(1=�k) too). Let 
 = C � (l1 [ � � � [ ln�1).
Consider the inverse branch '(w) of w = B(z) with '(0) = 0. Then '(w) has expansion
'(w) = a1w + a2w + � � � and can be analytically continued to 
 as it does not contain any
critical values of B. Hence ' is a univalent function in 
. Let DR be the open disk centered at
the origin with radius R, then '(w) is univalent in DR. We have '(Rw)

a1R
is a normalized univalent

function in D and '(Rw)
a1R

= w + a2
a1
Rw2 + � � � . We then have

���a2a1R��� � 2.

As none of the �k's lies in ' (DR), we have 'k(w) =
'(w)

1�'(w)=�k is univalent throughout DR.

Now 'k(w) = a1w + (a2 + a21=�k)w
2 + � � � . So we have

����a2
a1
+ a1

�k

�
R
��� � 2. Since ' (DR) � D,

we also have 'x(w) =
'(w)

1�x'(w) is univalent in DR for any x 2 D. Hence
����a2

a1
+ a1x

�
R
��� � 2. By

the triangle inequality, jx� 1=�kj � 4=(ja1jR) = 4jB0(0)j=R.
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Let f : D ! 
 be a conformal homeomorphism satisfying f(0) = 0, which has the form
f(u) = c1u+ c2u

2+ � � � . The hyperbolic density �
 of 
 at 0 satis�es �
(0)jc1j = �D(0). Hence
jc1j = �D(0)=�
(0) � R41=(n�1).

Now consider g(u) = ('�f)(u) = a1c1u+(a1c2+a2c
2
1)u

2+� � � . We have g(u) omits the critical

points of B. Let gx(u) =
g(u)

1�g(u)=x = a1c1u+(a1c2+a2c
2
1+a21c

2
1=x)u

2+ � � � , where x = �k or 1=�k.

Hence
��� c2c1 + c1

�
a2
a1
+ a1

x

���� � 2, therefore
��� c2c21 + a2

a1
+ a1

x

��� � 2
jc1j � 2

R
4�1=(n�1). In particular, this

holds for x = �1. By the triangle inequality,
��� 1x � 1

�1

��� � 1
a1

���� c2
c21
+ a2

a1
+ a1

x

�
�
�
c2
c21
+ a2

a1
+ a1

�1

���� �
jB0(0)j

R
4
n�2
n�1 .

By the relation ' (B(z)) = z, we have '00(0) (B0(0))2 + '0(0)B00(0) = 0. Hence 2a2=a
2
1 +

a1B
00(0) = 0. From Section 2, we know that for B(z) = z

Qn�1
k=1

z�zk
1�zkz , we have B0(z) =

aC(z)R2(z), where C(z) =
Qn�1

k=1
z��k
1��kz is the Blaschke product formed by the critical points

of B, R(z) =
Qn�1

k=1 (1��kz)Qn�1
k=1 (1�zkz)

, and a is a complex constant. It follows that 1
a1

= B0(0) = aC(0) =

(�1)n�1aQn�1
k=1 �k andB

00(0) = aC 0(0)+2aC(0)R0(0). Now, R0(z) =
Pn�1

k=1
zk��k

(1�zkz)2
Q

1�s�n�1
s 6=k

1��sz
1�zsz

and

C 0(z) =
n�1X
k=1

1� �k�k

(1� �kz)2

Y
1�s�n�1

s 6=k

z � �s

1� �sz
:

Hence R0(0) =
Pn�1

k=1(zk � �k) and

C 0(0) = (�1)n�1
 

n�1Y
k=1

�k

!
n�1X
k=1

(�k � 1=�k) = C(0)
n�1X
k=1

(�k � 1=�k):

Summarizing all these, we have �2a2=a31 = B00(0) = 1=a1
Pn�1

k=1(2zk � 1=�k � �k). Thus

4jB0(0)j
R

�
����2a2a21 +

2

�1

���� =
����� 2�1 +

n�1X
k=1

�
�2zk + 1

�k
+ �k

������
=

����� 3�1 +
n�1X
k=1

��2zk + �k
�
+

n�1X
k=2

1

�k

�����
=

���� j�1j�1
����
����� 3j�1j +

n�1X
k=1

�1
j�1j

��2zk + �k
�
+

n�1X
k=2

�1
j�1j

1

�k

�����
� 3

j�1j � 2
n�1X
k=1

Re
�1zk
j�1j +

n�1X
k=1

Re
�1�k
j�1j +

n�1X
k=2

Re
�1
j�1j�k :

On the other hand, 4
n�2
n�1

jB0(0)j
R

�
��� 1x � 1

�1

��� � 1
j�1j � Re �1

j�1jx , and hence Re �1
j�1jx � 1

j�1j �
4
n�2
n�1

jB0(0)j
R

, where x = �k or 1=�k. Also
4jB0(0)j

R
�
����zk � 1

�k

��� � 1
j�1j+Re

�1zk
j�1j and hence�Re �1zk

j�1j �
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1
j�1j � 4 jB

0(0)j
R

. Now we have

4jB0(0)j
R

� 3

j�1j � 2
n�1X
k=1

Re
�1zk
j�1j +

n�1X
k=1

Re
�1�k
j�1j +

n�1X
k=2

Re
�1
j�1j�k

� 3

j�1j + 2(n� 1)

�
1

j�1j �
4jB0(0)j

R

�
+ (2n� 3)

�
1

j�1j � 4
n�2
n�1
jB0(0)j
R

�
,

which gives 1
j�1j � 22n�1+(2n�3)4

1=(1�n)

2n�1
jB0(0)j

R
.

Now for �k such that jB(�k)j = R, we have

S(B) �
���� B(�k)�kB0(0)

���� = R

j�kjjB0(0)j �
R

j�1jjB0(0)j � 2
2n� 1 + (2n� 3)41=(1�n)

2n� 1
:

Hence Kn � 22n�1+(2n�3)4
1=(1�n)

2n�1 as desired. �

Proof of Theorem 2. For brevity we write d = n � 1. Let !d be the primitive d-th root

of unity. We consider B(z) = z
Qd�1

k=0
z�!kd�
1�!kd�z

= z zd��d
1��dzd , where � 2 (0; 1). Then B0(z) =

��dz2d+((d�1)�2d�(d+1))zd+�d
(1��dzd)2 . The critical points of B in the unit disk are d-th roots of � =

(d+1)�(d�1)�2d�
q
((d+1)2�(d�1)2�2d)(1��2d)

2�d
=

(d+1)�(d�1)�2�
p

((d+1)2�(d�1)2�2)(1��2)
2�

, where � = �d 2
(0; 1).

Hence, S(B) =
��� 1� ���

1���

��� = 1
�2

p
(d+1)2�(d�1)2�2�(d+1)

p
1��2p

(d+1)2�(d�1)2�2�(d�1)
p

1��2
< 1, and tends to 1 as � tends to

1. Hence Kn � 1. Moreover, it's easy to see that we actually have equality holds when n = 2
and no extremal �nite Blaschke products exist in this case. �

4 Bounds of Ln

Dubinin and Sugawa [9] showed that for polynomials, Nn is bounded below by 1=(n4n). Their
method can be adapted to prove a similar result for �nite Blaschke products (Theorem 3), with
the help of the following lemma which improves the inequality (7) in Duren and Schi�er's paper
[11].

Lemma 1. Let f be a function analytic and univalent in the annulus A(r) = fz : r < jzj < 1g
satisfying the following:

1. jf(z)j < 1 in A(r) while jf(z)j = 1 on @D;
2. f(z) 6= 0 in A(r);
3. f(1) = 1.

Then lim supjzj!r jf(z)j � maxf2r; 4r
1+4r2

g < 4r.

Proof of Lemma 1. The domain D�f(A(r)) is conformal to the annulus A(r) via the univalent
map f . Hence the modulus of D�f(A(r)) is given by log(1=r). Suppose s = lim supjzj!r jf(z)j.
Since f(z) 6= 0 in A(r), D � f(A(r)) is an annular domain separating 0 and a point with
modulus s from the unit circle. Therefore, its modulus is bounded by �(s), the modulus of the
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extreme Gr�otzsch ring D � [0; s] (see p.54 of [16]). From the inequality (4.5) in page 643 of

[24] or the inequality (2.13) in page 63 of [16], we have �(s) < log(2(1+
p
1�s2)
s

). Hence we have

log(1=r) < log(2(1+
p
1�s2)
s

) or s
r
< 2(1 +

p
1� s2). If s < 2r, then we are done. If s � 2r, then

( s
r
� 2)2 � 4(1� s2) and hence s � 4r

1+4r2
. Therefore, lim supjzj!r jf(z)j � maxf2r; 4r

1+4r2
g < 4r.

�

Proof of Theorem 3. Consider a �nite Blaschke product B = z
Qn�1

k=1
z�zk
1�zkz 2 B(n) with critical

points �1; : : : ; �n�1. Further, assume that R = jB(�1)j1=n = maxfjB(�k)j1=n : k = 1; : : : ; n� 1g.
Consider the annulus A(Rn) = fw : Rn < jwj < 1g. Let U = fz : jB(z)j � Rng, then
U contains all the zeros and critical points of B. The function B : D � U ! A(Rn) is a
covering map of degree n. We wish to �nd a bijective holomorphic function ' from A(R)
to D � U satisfying the assumptions of Lemma 1. Suppose such a function exists, we have
lim supjwj!R+ j'(w)j < 4R by Lemma 1, and thus U � D4R. In particular, j�kj < 4R and

jzkj < 4R. Now T (B) �
��� B(�1)
�1B0(0)

��� = Rn

j�1j
Qn�1

k=1 jzkj
> 1

4n
.

It remains to show how to de�ne the function '. For this we use the topological theory of
covering spaces. The reader may refer to any reference book on algebraic topology for detailed
expositions, for example [13]. De�ne eA(R) to be the annulus A(R; 1=R) = fw : R < jwj < 1=Rg
for any R 2 (0; 1). Now let R assume the same meaning as in the last paragraph. De�neeU := fz : jB(z)j � Rn or jB(z)j � 1=Rng. Then eU contains all the critical points, zeros

and poles of B on the complex plane. The restriction of B to C � eU is a covering map of
degree n onto the annulus eA(Rn), sending 1 to B(1) on the unit circle. The domain C � eU is
connected, as in particular all points in the �ber B�1(1) lie in the same connected component.

The induced map B� is an injective homomorphism from �1(C� eU; 1) to �1( eA(Rn); B(1)) �= Z,
and the image of this map is a subgroup of index n. This subgroup must be nZ.

On the other hand, the map pn : eA(R) ! eA(Rn); z 7! B(1)zn is also a covering map of
degree n, sending 1 to B(1). The induced map on the fundamental group is multiplication by n.

Hence in particular (pn)�(�1( eA(R); 1)) = B�(�1(C� eU; 1)). By the theory of covering spaces (for
example, Proposition 1.37 in [13]), there exists a covering space isomorphism ' : eA(R)! C� eU
such that '(1) = 1. Since B �' = pn with B; pn being local homeomorphisms and holomorphic,
we conclude that ' is holomorphic. It is immediate that j'(z)j = 1 if jzj = 1, and < 1 if jzj < 1
in its domain of de�nition.

Restrict the map ' to the annulus A(R) = fw : R < jwj < 1g, which we still denote by '.
This map satis�es all the assumptions of Lemma 1. �

Remark. The reader may be familiar with the notion of \smooth covering spaces" introduced
in the classical book of Ahlfors and Sario [1]. However, one should be aware that the notion
of covering spaces adopted here aligns with the standard notion in algebraic topology, which
is di�erent from that in the aforementioned book. Here we require that each point in the base
space should possess a neighborhood that is evenly covered. This ensures the homotopy lifting
property, which only holds for regular smooth covering spaces in the sense of Ahlfors and Sario.

Proof of Theorem 4. Let C(z) = zn�an
1�anzn be a �nite Blaschke product of degree n � 2, where

a 2 (0; 1). Let M(z) = z+a
1�az . Then B = C � M is a �nite Blaschke product of degree

n with the property B(0) = 0. Now C 0(z) = n(1�a2n)zn�1
(1�anzn)2 , thus C(z) has one critical point

0 in D with multiplicity n � 1. We have B0(z) = C 0(M(z))M 0(z) = C 0(M(z)) 1�a2
(1+az)2

, so

B0(z) = 0 () C 0(M(z)) = 0. Hence B(z) has one critical point �a in the unit disk. Now
B(�a) = C(M(�a)) = C(0) = �an, B0(0) = C 0(M(0))(1�a2) = C 0(a)(1�a2) = nan�1

1�a2n (1�a2).
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Hence
��� B(�a)
(�a)B0(0)

��� = 1
n
1�a2n
1�a2 > 1

n
, and ! 1

n
as a ! 0. Therefore Ln � 1=n. When n = 2 it's

easily seen that the equality actually holds and no extremal �nite Blaschke products exist in
this case. �

Proof of the Corollary. By Theorem 4, it su�ces to prove the following lemma.

Lemma 2. Ln � Nn for all n 2 N.

Proof. Given P (z) = z
n�1Q
i=1

(z�ai) with critical points ci, de�ne Bm(z) = z
n�1Q
i=1

 
z � ai

m

1� ai
m
z

!
. Then

when m is su�ciently large, Bm is a �nite Blaschke product. Let fm(z) = mnBm

�
1

m
z

�
=

z
n�1Q
i=1

 
z � ai

1� ai
m2 z

!
. Then fm(z)! P (z) locally uniformly on C as m!1.

If cm;i are the critical points of Bm, then dm;i = mcm;i are the critical points of fm and

fm(dm;i)

dm;if 0m(0)
=
mnBm(

1
m
dm;i)

dm;imn�1B0
m(0)

=
Bm(cm;i)

cm;iB0
m(0)

:

So if for some C > 0 such that there exists some 1 � j � n� 1 such that���� Bm(cm;j)

cm;jB0
m(0)

���� � C;

then as m!1, we also have there exists some 1 � k � n� 1 such that���� P (ck)ckP 0(0)

���� � C:

By the de�nition of Nn and Ln, we must have Nn � Ln. �

Remark. The connection between polynomials and �nite Blaschke products through some
rescalings was pointed to the �rst author by Toshiyuki Sugawa and Yum Tong Siu, indepen-
dently.

Remark. There is a much more direct way to get Nn � 1=4n (but not Nn > 1=4n). The idea is
that inequality (2.3) of [9] remains true if one replaces the critical points in it by zeros of the
polynomials.

5 Conclusion

Smale's mean value conjecture for �nite Blaschke products seems to be as di�cult as the original
Smale's conjecture. The algebra involved can be quite complicated for �nite Blaschke products.
Moreover, neither the derivative of a �nite Blaschke product nor the sum of two �nite Blaschke
products is a �nite Blaschke products. So some arguments for polynomials cannot be carried
over to �nite Blaschke products. However, one may hope that there are more results from
geometric function theory that one can apply as �nite Blaschke products are self maps of the
unit disk. For example, we have the following
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Proposition 1. Let B be a �nite Blaschke product of degree n with B(0) = 0, B0(0) 6= 0. If

r = min
B0(�i)=0

jB(�i)j � 1

2
, then there exists some critical points �k and �l such that

���� B(�k)�kB0(0)

���� � 4
n�2
n�1

2

3

and ���� B(�l)�lB0(0)

���� � 1

2n
;

where n is the degree of the �nite Blaschke product B.

Proof. From the proof of Theorem 1, we can extract the following lemma easily.

Lemma 3. Let B be a �nite Blaschke product of degree n with B(0) = 0, B0(0) 6= 0 and
r = min

B0(�i)=0
jB(�i)j = jB(�k)j > 0 for some 1 � k � n� 1. Let ' = B�1 : Dr ! D be such that

'(0) = 0. If x; y 2 C are such that (1� x'(w))(1� y'(w)) 6= 0 for all w 2 Dr, then

jx� yj � 4
n�2
n�1
jB0(0)j

r
:

Now take x =
1

�k
, y =

ei�B(�k)

�k
where � is chosen such that ei�B(�k) = �jB(�k)j. Note that

jyj < 1 as
B(z)

z
is a �nite Blaschke product.

By Lemma 3, we have ����1 + jB(�k)j�k

���� � 4
n�2
n�1
jB0(0)j

r
:

Hence ���� B(�k)�kB0(0)

���� � 4
n�2
n�1

1 + jB(�k)j
and the �rst inequality follows.

For the second inequality, since r = min
B0(�i)=0

jB(�i)j � 1

2
, max
B0(�i)=0

jB(�i)j � 1

2n
and hence

R := max
B0(�i)=0

jB(�i)j1=n = jB(�l)j1=n � 1

2
. It follows that 2R � 4R

1+4R2 . As in the proof of

Theorem 3, applying Lemma 1, we have j�kj � 2R and jzkj � 2R for all 1 � k � n � 1. Now��� B(�l)
�lB0(0)

��� = Rn

j�lj
Qn�1

k=1 jzkj
� 1

2n
and we are done. �
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