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Abstract

In this paper, we study the problem of computing the effective diffusivity for a particle

moving in chaotic flows. Instead of solving a convection-diffusion type cell problem in the

Eulerian formulation (arising from homogenization theory for the Fokker-Planck equation),

we compute the motion of particles in the Lagrangian formulation, which is modeled by

stochastic differential equations (SDEs). A robust numerical integrator based on a splitting

method was proposed to solve the SDEs and a rigorous error analysis for the numerical

integrator was provided using the backward error analysis (BEA) technique [29]. However,

the upper bound in the error estimate is not sharp. In this paper, we propose a completely

new and sharp error analysis for the numerical integrator that allows us to get rid of the

exponential growth factor in our previous error estimate. Our new error analysis is based

on a probabilistic approach, which interprets the solution process generated by our numer-

ical integrator as a Markov process. By exploring the ergodicity of the solution process,

we prove the convergence analysis of our method in computing the effective diffusivity over

infinite time. We present numerical results to demonstrate the accuracy and efficiency of the

proposed method in computing effective diffusivity for several chaotic flows, especially the

Arnold-Beltrami-Childress (ABC) flow and the Kolmogorov flow in three-dimensional space.

AMS subject classification: 35B27, 37M25, 60H35, 65P10, 65M75, 76R99

Keywords: Convection-enhanced diffusion; chaotic flows; effective diffusivity; stochastic

Hamiltonian systems; ergodic theory; Markov process.

1. Introduction

Diffusion enhancement in fluid advection is a fundamental problem to characterize and quan-

tify the large-scale effective diffusion in fluid flows containing complex and turbulent stream-

lines, which is of great theoretical and practical importance; see [6, 7, 4, 5, 16, 19, 2, 24,
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25, 17, 31] and references therein. Its applications can be found in many physical and en-

gineering sciences, including atmosphere science, ocean science, chemical engineering, and

combustion. To study the diffusion enhancement phenomenon, one can consider a passive

tracer model, which describes particle motion with zero inertia

Ẋ(t) = v(X, t) + σξ(t), X ∈ Rd, (1)

where X is the position of the particle, σ > 0 is the molecular diffusion coefficient, and

ξ(t) ∈ Rd is a white noise or colored noise. The velocity v(X, t) satisfies either the Euler

or the Navier-Stokes equation. In practice, v(X, t) can be modeled by a random field that

mimics the energy spectra of the turbulent flow [19].

For spatial-temporal periodic velocity fields and random velocity fields with short-range

correlations, the homogenization theory [3, 10, 14, 26] states that the long-time large-scale

behavior of the particles is governed by a Brownian motion. More precisely, let DE ∈ Rd×d

denote the effective diffusivity matrix and Xǫ(t) ≡ ǫX(t/ǫ2). Then, Xǫ(t) converges in dis-

tribution to a Brownian motion W (t) with covariance matrix DE, i.e., Xǫ(t)
d−→

√
2DEW (t),

as ǫ → 0. The effective diffusivity matrix DE can be expressed in terms of particle ensem-

ble average (Lagrangian framework) or integration of solutions to cell problems (Eulerian

framework). The dependence of DE on the velocity field of the problem is highly nontrivial.

For time-independent Taylor-Green velocity field, the authors of [27] proposed a stochastic

splitting method and calculated the effective diffusivity in the limit of vanishing molecular

diffusion. For random velocity fields with long-range correlations, various forms of anoma-

lous diffusion, such as super-diffusion and sub-diffusion, can be obtained for exactly solvable

models (see [19] for a review). However, the long-time large-scale behavior of the particle

motion is in general difficult to study analytically.

In recent work [29], we proposed a numerical integrator to compute the effective diffusivity

of chaotic and stochastic flows using structure-preserving schemes. We also investigated

the existence of residual diffusivity for several different velocity fields, including the time

periodic cellular flows. The residual diffusivity, a special yet remarkable convection-enhanced

diffusion phenomenon, refers to the non-zero and finite effective diffusivity in the limit of zero

molecular diffusivity as a result of a fully chaotic mixing of the streamlines. Mathematically,

we provided a rigorous error estimate for the effective diffusivity. Specifically, let DE denote

the exact effective diffusivity matrix and D̃E,num denote the numerical result obtained using

our method (see Eq.(8)), respectively. We obtained the error estimate, |D̃E,num − DE| ≤
C∆t + C(T )∆t2, where the T should be greater than the diffusion time. To the best of

our knowledge, this result is the first one in the literature to study the convergence on the

numerical approximation of the effective diffusivity of chaotic flows, which shows that the

main source of error does not depend on time. However, the prefactor C(T ) in the second

term may grow exponentially fast, which makes the estimate not sharp.

To get an optimal error estimate, we shall develop a completely new methodology for

our numerical integrator in this paper, which allows us to get rid of the exponential growth

factor. Our analysis is based on a probabilistic approach. We interpret the solution process

generated by our numerical integrator as a Markov process, where the transition kernel can be
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constructed explicitly due to the additive noise in the passive tracer model (1). By exploring

the ergodicity of the solution process, we succeed in the convergence analysis of our method

and give a sharp error estimate for the numerical solution of the effective diffusivity. Most

importantly, our convergence analysis reveals the ergodic structure of the solution process, so

that we can compute the passive tracer model over infinite time without losing accuracy (i.e.,

convergence does not depend on the computational time; see Fig.3a). Finally, we present

numerical experiments to demonstrate the accuracy of the proposed method in computing

effective diffusivity for several typical chaotic flow problems of physical interests, including

the Arnold-Beltrami-Childress (ABC) flow and the Kolmogorov flow in three-dimensional

space. The phenomenon of convection-enhanced diffusion for those velocity fields will also

be investigated.

Our computation of convection-enhanced diffusivity in three-dimensional chaotic flows

appears to be the first in the Lagrangian framework. Alternative computation in the Eule-

rian framework involves singularly perturbed advection-diffusion equations whose solutions

develop sharp boundary layers with unknown locations a-priori. We are aware of only [4]

on ABC flows, which we recover and go beyond by two orders of magnitude of molecular

diffusivity; see the numerical results in the subsection 5.2 later.

The rest of the paper is organized as follows. In Section 2, we shall review the back-

ground of the passive tracer model and the definition of the effective diffusivity tensor using

the Eulerian framework and the Lagrangian framework. In Section 3, we propose our nu-

merical integrator in computing the passive tracer model. Section 4 is the main part of this

paper, where we shall provide our new error estimate based on a probabilistic approach. In

addition, we shall show that our method can be used to solve high-dimensional flow problems

and the error estimate can be obtained in a straightforward way. In Section 5, we present

numerical results to demonstrate the accuracy and efficiency of our method. We also inves-

tigate the convection enhanced diffusivity for several chaotic velocity fields, especially the

three-dimensional cases. Concluding remarks are made in Section 6.

2. The definitions of the effective diffusivity

We first introduce the effective diffusivity for chaotic flows. The motion of a particle in a

velocity field can be described by the following SDE,

Ẋ(t) = v(X) + σξ(t), X ∈ Rd, (2)

where σ > 0 is the molecular diffusion, X is the position of the particle, v(X) is the Eulerian

velocity field at position X , ξ(t) is a Gaussian white noise with zero mean and correlation

function < ξi(t)ξj(t
′) >= δijδ(t− t′). Here 〈·〉 denotes the ensemble average over all random-

ness. To be consistent with the setting of main results in this paper, we assume the velocity

v(X) in (2) is time-independent. The interested reader is referred to [19, 29] and references

therein for the results with time-dependent velocities.

There are two main frameworks to compute the effective diffusivity of the passive tracer

models. We first discuss the Eulerian framework. Given any initial density u0(x), the particle
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X(t) of Eq.(2) has a density u(x, t) that satisfies the Fokker-Planck equation,

ut +∇ · (vu) = D0∆u, u(x, 0) = u0(x), x ∈ Rd, (3)

where D0 = σ2/2 is the diffusion coefficient. When v(x) is incompressible (i.e. ∇x ·v(x) = 0),

deterministic and periodic in O(1) scale, where we assume the period of v(x) is 1 in space,

the formula for the effective diffusivity matrix is [3, 26]

DE = D0I −
〈

v(x)⊗ χ(x)
〉

p
, (4)

where we have assumed that the fluid velocity v(x) is smooth and the (vector) corrector filed

χ(x) satisfies the cell problem

−D0△χ+ v(y) · ∇χ = −v(y), y ∈ Td, (5)

and 〈·〉p denotes spatial average over Td. Since v(x) is incompressible, the solution χ(x) to

the cell problem (5) is unique up to an additive constant by the Fredholm alternative. The

correction to D0 is positive definite in Eq.(4). By using L2-estimate of χ in Eq.(5), we can

simply arrive at,

DE � 1

D0
, as D0 → 0. (6)

More details of the derivation can be found in [4]. By multiplying χ to Eq.(5) and integrating

in Td with consideration of periodicity of χ and v, we will get another formula for the effective

diffusivity,

DE = D0I +D0

〈

∇χ(x)⊗∇χ(x)
〉

p
. (7)

We can see that DE ≥ D0, this is called convection-enhanced diffusion. The residual diffu-

sivity phenomenon that we studied in [29] is one case. While the upper bound of Eq.(6) is

another case, which is called convection-enhanced diffusion with maximal enhancement [21].

In practice, the cell problem (5) can be solved using numerical methods, such as spectral

methods. In [18], a small set of adaptive basis functions were constructed from fully resolved

spectral solutions to reduce the computation cost. However, when D0 becomes extremely

small, the solutions of the advection-diffusion equation Eq.(5) develop sharp gradients and

demand a large number of Fourier modes to resolve, which makes the Eulerian framework

computationally expensive and unstable.

Alternatively, one can use the Lagrangian framework to compute the effective diffusivity

tensor, which is defined by (equivalent to Eq.(4) via the homogenization theory)

DE
ij = lim

t→∞

〈

(

xi(t)− xi(0))(xj(t)− xj(0)
)

〉

r

2t
, 1 ≤ i, j ≤ d, (8)

where X(t) = (x1(t), ..., xd(t))
T is the position of a particle tracer at time t and the average

〈·〉r is taken over an ensemble of test particles. If the above limit exists, that means the

transport of the particle is a standard diffusion process, at least on a long-time scale. If
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the passive tracer model has a deterministic divergence-free and periodic velocity field, this

is the typical situation, i.e., the spreading of the particle
〈

(

xi(t) − xi(0))(xj(t) − xj(0)
)

〉

r

grows linearly with respect to the time t. For example when the velocity field is given by

the Taylor-Green velocity field [6, 27], the long-time and large-scale behavior of the passive

tracer model is a diffusion process. However, there are also cases showing that the spreading

of particles does not grow linearly with time but has a power law tγ, where γ > 1 and γ < 1

correspond to super-diffusive and sub-diffusive behaviors, respectively [4, 19, 2].

We shall consider the Lagrangian approach in this paper. The Lagrangian framework

has the advantages that it is easy to implement and does not directly suffer from a small

molecular diffusion coefficient σ during the computation. However, we should point out

that the major difficulty in solving Eq.(2) comes from the fact that the computational time

should be long enough to approach the diffusion time scale. To address this challenge, we

shall develop robust numerical integrators, which are structure-preserving and accurate for

long-time integration. Moreover, we aim to develop the convergence analysis of the proposed

numerical integrators in long-time integration. Finally, we shall investigate the relationship

between several typical chaotic flows and the corresponding effective diffusivity.

3. Symplectic stochastic integrators

3.1. Derivation of numerical integrators

To demonstrate the main idea, we construct the new stochastic integrators for a two-

dimensional passive tracer model with a separable Hamiltonian,

{

dp = −f(q)dt+ σdW1,t, p(0) = p0,

dq = g(p)dt+ σdW2,t, q(0) = q0,
(9)

where dWi,t are independent Brownian motions and we have assumed that there exists a

separable Hamiltonian function H(p, q) = F (q) + G(p) such that f(q) = Hq(p, q), g(p) =

Hp(p, q), and H(p, q) is a periodic function on R2 with period 1. Furthermore, we assume

that H(p, q) is sufficiently smooth so the first order derivatives of f(q) and q(p) are bounded,

which guarantee the existence and uniqueness of the solution (p, q) to the SDE (9).

In [29], we proposed a structure-preserving scheme based on an operator splitting idea

to solve the SDE (9). Specifically, we split the SDE (9) into a deterministic subproblem

(i.e., dp = −f(q)dt and dq = g(p)dt) that is solved using a symplectic-preserving scheme

and a random subproblem (i.e., dp = σdW1,t and dq = σdW2,t) that is solved using the

Euler-Maruyama scheme [23].

Now, we discuss how to discretize the SDE (9) using the Lie-Trotter splitting method.

From time t = tn to time t = tn+1, where tn+1 = tn + ∆t, t0 = 0, assuming the solution

(pn, qn)
T ≡ (p(tn), q(tn))

T is given, we discretize the deterministic subproblem by

{

p∗ = pn − τHq

(

αp∗ + (1− α)pn, (1− α)q∗ + αqn
)

,

q∗ = qn + τHp

(

αp∗ + (1− α)pn, (1− α)q∗ + αqn
)

,
(10)
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where the parameters α ∈ [0, 1]. Notice that α ∈ [0, 1] gives the same convergence rate.

Then, we find that the exact solution of the random subproblem can be approximated by,
{

pn+1 = p∗ + σ∆nW1(∆t),

qn+1 = q∗ + σ∆nW2(∆t),
(11)

with ∆nWi(∆t) = Wi(tn +∆t)−Wi(tn), i = 1, 2. In practice, each ∆nWi(∆t) is represented

by an independent random variable of the form
√
∆tN (0, 1). In this paper, we choose α = 1

in the scheme (10) and combine the two schemes (10)(11) together and obtain,

{

pn+1 = pn − f(qn)∆t + σ
√
∆tN (0, 1)

qn+1 = qn + g
(

pn − f(qn)∆t
)

∆t + σ
√
∆tN (0, 1).

(12)

We denote the stochastic process generated by (12) as Xn = (pn, qn), which is the numerical

approximation to the exact solution X(n∆t) to the SDE (9).

Though there are several prior works on developing symplectic-preserving scheme for

solving ODEs and PDEs (see [12, 13, 1] and references therein), the novelty of our paper

is the rigorous theory in the numerical error analysis in computing the effective diffusivity.

When the Hamiltonian system contains additive temporal noise, the noise itself is considered

to be symplectic [22]. Since the symplectic scheme is a convergent symplectic transform and

a composition of symplectic transform still preserves symplecticity. Thus, the scheme (12)

is a symplectic-preserving scheme.

Remark 3.1. In general, the second-order Strang splitting [28] is more frequently adopted

to solve ODEs and PDEs. The only difference between the Strang splitting method and

the Lie-Trotter splitting method is that the first and last steps are modified by half of the

time-step ∆t. For the SDEs, however, the dominant source of error comes from the random

subproblem (11). Thus, it is not necessary to implement the Strang splitting scheme.

3.2. The backward Kolmogorov equation and related results

For the convenience of the reader, we first give a brief review of the theoretical results

for the scheme (12) obtained in [29] and references therein. One natural way to study

the expectation of the paths for the SDE given by the Eq.(9) is to consider its associated

backward Kolmogorov equation . Specifically, we associate the SDE with a partial differential

operator L, which is called the generator of the SDE, also known as the flow operator.

ut = Lu, u(x, 0) = u0(x), (13)

where the operator L is given by

L = −f∂q + g∂p +
1

2
σ2∂2

p +
1

2
σ2∂2

q . (14)

A probabilistic interpretation of Eq.(13) is that given initial density u0(x) and a smooth

function φ in R2, the solution to the Eq.(13), u(x, t) satisfies u(x, t) = E(φ(Xt)|X0 = x),

where Xt = (p(t), q(t)) is the solution to the Eq.(9).
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Similar to (13), we can study the flow generated by symplectic splitting scheme. Recall

that the Hamiltonian of the Eq.(9) is separable. We define L1 = −f∂p, L2 = g∂q, and

L3 =
σ2

2
(∂pp + ∂qq). Starting from u(·, 0), we compute











∂tu
1 = L1u

1, u1(·, 0) = u(·, 0),
∂tu

2 = L2u
2, u2(·, 0) = u1(·,∆t),

∂tu
3 = L3u

3, u3(·, 0) = u2(·,∆t),

(15)

and obtain u(·,∆t) ≈ u3(·,∆t). We can repeat this process to compute the solution at other

time steps u(·, n∆t), n = 2, 3, ....

To analyze the error between the flow operator in Eq.(13) and the operator associated

with the symplectic splitting (15), we shall resort to the Baker-Campbell-Hausdorff (BCH)

formula, which is widely used in non-communicative algebra [11]. For example, in the martix

theory,

exp(At) exp(Bt) = exp

(

t(A+B) + t2
[A,B]

2
+

t3

12

(

[

A, [A,B]
]

+
[

B, [B,A]
]

)

+ · · ·
)

, (16)

where t is a scaler, A, B are two square matrices with the same size, [, ] is the Lie-Bracket,

and the remaining terms on the right hand side are all nested Lie-brackets.

In our analysis, we replace the matrices in (16) by PDE operators and the BCH formula

yields some insights into the particular structure of splitting errors. Let I∆t denote the flow

operator associated with the symplectic splitting (15), i.e.,

u(·,∆t) ≈ I∆tu(·, 0) = exp(∆tL3) exp(∆tL2) exp(∆tL1)u(·, 0). (17)

Recall that the exact solution to the Eq.(13) can be represented as

u(·,∆t) = exp(∆tL)u(·, 0) = exp(∆t(L1 + L2 + L3))u(·, 0). (18)

Therefore, we can apply the BCH formula to analyze the error between the original flow and

the approximated flow. Moreover, we find that to compute the k-th order modified equation

associated with the Eq.(9) is equivalent to compute the terms of BCH formula up to order

(∆t)k. To show that the solution generated by (12) follows a perturbed Hamiltonian system

(with divergence free velocity and additive noise) at any order p, we only need to consider

the (p+ 1)-nested Lie bracket consists of {−f∂q, g∂p, ∂pp + ∂qq} and we can easily see that

they will not generate non-divergence free field.

In [29], we proved that for the SDE (9) with a time-dependent and separable Hamiltonian

H(p, q, t) = F (p, t)+G(q, t), the numerical solution obtained using the symplectic-preserving

scheme (12) follows an asymptotic Hamiltonian H∆t(p, q, t), which is a first-order approxi-

mation to H(p, q, t). Equivalently, the solution to the first-order modified equation (density

function) (15) is divergence-free and the invariant measure on torus (defined by Rd/Zd, when

period is 1) remains uniform, which is also known as the Haar measure. While the numerical

solution obtained using the Euler-Maruyama scheme does not have these properties.
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Moreover, given any explicit splitting scheme for deterministic systems, by adding addi-

tive noise we shall have similar form of flow propagation. And we shall see in later proof

that, such operator formulation is very effective in analyzing the order of convergence and

volume-preserving property.

4. Convergence analysis

We shall prove the convergence rate of our symplectic stochastic integrators in computing

effective diffusivity based on a probabilistic approach, which allows us to get rid of the

exponential growth factor in our error estimate.

4.1. Convergence to an invariant measure

The numerical method to compute effective diffusivity of a passive tracer model is closely

related to study the limit of a sequence generated by the stochastic integrators. Therefore,

we can apply the results from ergodic theory to study the convergence of the solution. The

following result is fundamental for the proof of our convergence analysis.

Proposition 4.1. On the torus space Ỹ = Rd/Zd, let I∗∆t denote the transform of the density

function during ∆t using the numerical scheme (12). Let I∆t denote the adjoint operator

(i.e., the flow operator) of I∗∆t in space of B(Ỹ ), which is the set of bounded measurable

functions on Ỹ . Then I∆t is a compact operator from B(Ỹ ) to itself. And there exists one

and only one invariant probability measure on (Ỹ ,Σ), denoted as π, satisfying,

sup
x∈Ỹ

∣

∣

∣
In∆tφ(x)−

∫

φ(x)π(dx)
∣

∣

∣
≤ K||φ||L∞

e−ρn, ∀φ ∈ B(Ỹ ), (19)

where ρ > 0, K > 0 are independent of φ(x).

Proof. We shall verify that the transition kernel associated with the numerical scheme (12)

satisfies the assumptions required by the Theorem 3.3.1 (see the page 199 in [3]). First

in the Rn space, the integration process associated with the numerical scheme (12) can be

expressed as a Markov process with the transition kernel,

K∆t

(

(p, q), (P,Q)
)

=

1

2πσ2∆t
exp

(

−

(

P − p+ f(q)∆t
)2

+
(

Q− q − g
(

p− f(q)∆t
)

∆t
)2

2σ2∆t

)

, (20)

where (p, q) is the current solution and (P,Q) is the solution obtained by applying the

numerical integrator (12) on (p, q) with time step ∆t.

Then using the periodicity of f(x) and g(x), we extend (20) directly to the torus space

Ỹ as

K̃∆t

(

(p, q), (P,Q)
)

=
∑

i,j∈Z

1

2πσ2∆t
·

exp

(

−

(

P + i− p+ f(q)∆t
)2

+
(

Q+ j − q − g
(

p− f(q)∆t
)

∆t
)2

2σ2∆t

)

. (21)
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One can see that if 0 < ∆t ≪ 1, then K̃ is smooth and is essentially bounded above zero,

i.e., essn K̃ > 0, ∀
(

(p, q), (P,Q)
)

∈ Ỹ × Ỹ . Thus, the operator I∆t is compact since it is an

integral operator with a smooth kernel. Then applying the Theorem 3.3.1 in [3], we prove

the assertion of the Proposition 4.1.

Now, we state a corollary that is a simple conclusion of exponential decay property proved

in Proposition 4.1. It will be useful in the proof of the main results of this paper.

Corollary 4.2. Given that the assumptions in Proposition 4.1 are satisfied and φ ∈ B(Ỹ ),

we have

lim
n→∞

1

n

n
∑

i=1

Eφ(Xi) =

∫

Ỹ

φπ(dx). (22)

Before we close this subsection, we prove a convergence result for the inverse of operator

sequences, which will be useful in our analysis.

Proposition 4.3. Let X, Y denote two Banach spaces. Assume Tn, T are bounded linear

operators from X to Y , satisfying limn→∞ ||Tn − T ||B(X,Y ) = 0, and T−1 ∈ B(Y,X). Then,

given f ∈ Y with ’enough’ invertibility (i.e. T−1f and T−1
n f , n = 1, 2, ... exist), we have

lim
n→∞

||(T−1
n − T−1)f || = 0 (23)

Proof. After some simple calculations, we get

T−1
n − T−1 = T−1(T − Tn)T

−1
n

= T−1(T − Tn)T
−1 + T−1(T − Tn)(T

−1
n − T−1). (24)

Now applying T−1
n − T−1 on f , we get

||(T−1
n − T−1)f || ≤||T−1||2 · ||T − Tn|| · ||f ||

+ ||T−1|| · ||T − Tn|| · ||(T−1
n − T−1)f || (25)

Since limn→∞ ||Tn − T || = 0, we assume for n ≥ N0, ||Tn − T || · ||T−1|| < 1
2
, then,

||(T−1
n − T−1)f || ≤ 2||T−1||2 · ||T − Tn|| · ||f ||, ∀n ≥ N0, (26)

Eq.(23) follows if we take the limit as n → ∞ on both sides.

4.2. A discrete-type cell problem

In the Eulerian framework, the periodic solution of the cell problem (5) and the corresponding

formula for the effective diffusivity (4) play a key role in studying the behaviors of the chaotic

and stochastic flows. In the Lagrangian framework, we shall define a discrete analogue of the

cell problem that enables us to compute the effective diffusivity. Let Xn = (pn, qn) denote

the state generated by our scheme (12), i.e.,

{

pn = pn−1 − f(qn−1)∆t + σNp
n−1

qn = qn−1 + g
(

pn−1 − g(qn−1)∆t
)

∆t + σN q
n−1,

(27)
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where Np
n−1, N

q
n−1 ∼

√
∆tN (0, 1) are i.i.d. normal random variables.

We will show that the solution obtained using the scheme (27) has a bounded expectation.

Taking expectation of the first equation of (27) on both sides, we obtain

Epn = Epn−1 −∆tEf(qn−1) = Ep0 −∆t
n−1
∑

k=0

Ef(qk). (28)

Applying the Proposition 4.1 and using the fact that f is a periodic function, we know that

|Ef(qk)| ≤ e−ρn||f ||∞. Hence

Epn ≤ |Ep0|+ C1||f ||∞, (29)

where C1 does not depend on n. Using the same approach, we know that Eqn is also bounded.

Now we are in the position to define the discrete-type cell problem. We first define

f̂(x) = −∆t

∞
∑

n=0

E[f(Xn)|X0 = x], x ∈ Ỹ . (30)

Then, we shall show that f̂(x) satisfies the following properties.

Lemma 4.4. Assume that f is a periodic function with zero mean on Ỹ . Then, f̂(x) is the

unique solution in B0(Ỹ ) such that,

f̂(X0) + ∆tf(X0) = E[f̂(X1)|X0]. (31)

Moreover, f̂ is smooth.

Proof. Throughout the proof, we shall use the fact that if x, y are random processes and y

is measurable under a filtration F , then with appropriate integrability assumption,

E[xy] = E
[

E[xy|F ]
]

= E
[

E[x|F ]y
]

. (32)

Some simple calculations will give that

f̂(X0) + ∆tf(X0) =∆tE[
∞
∑

m=0

−f(Xm)|X0] + ∆tf(X0) = −∆tE[
∞
∑

m=1

f(Xm)|X0]

=−∆tE
[

E[
∞
∑

m=1

f(Xm)|X1]|X0

]

= E[f̂(X1)|X0]. (33)

Recall the definition of the operator (17), Eq.(33) implies that

(I∆t − Id)f̂ = I∆tf̂ − f̂ = ∆tf, (34)

where Id is the identity operator. Moreover, since f is smooth and the mapping of the

operator I∆t on bounded functions will generate smooth functions, so f̂ is smooth.

According to Proposition 4.1, the invariant measure of I∗∆t is unique, i.e. dimN (I∗∆t −
Id) = 1. By the Fredholm alternative, we arrive at the conclusion that the solution f̂

to Eq.(34) is unique in B(Ỹ ) up to a constant and it smoothly depends on f , given the

assumption that
∫

Ỹ
f = 0.
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When the flow is time-independent, we obtain

E[f̂(Xn+1)|Xn]− f̂(Xn) = ∆tf(Xn), a.s. ∀n ∈ N. (35)

Remark 4.1. For the second component of the solution, i.e., qn, we can define the discrete

cell problem in the same manner. Specifically, we define

ĝ(x) = ∆t
∞
∑

n=0

E[g(X ′

n)|X0 = x], x ∈ Ỹ , (36)

where X ′
n = Xn −∆tf(Xn). There is no substantial difficulties in carrying out the analysis

for ĝ(x). Because under the assumption that the drift terms f and g in (9) are smooth

enough, the leading order term of g(X ′
n) is g(X̃n) and other terms are small perturbations.

The Proposition 4.1 and the Lemma 4.4 are very general results. In the remaining part

of this paper, we only need the result that f̂ is unique in an Hölder space C
p,α
0 (Ỹ ) ( B(Ỹ ).

To be precise, given a smooth drift function f , f̂ shall be in C
p,α
0 (Ỹ ), where p ≥ 6, 0 < α < 1

and the subscript index 0 indicates that it is a subspace with zero-mean functions. Since

I∆t is an integral operator with a smooth kernel, to prove it is a compact operator from

C
p,α
0 (Ỹ ) to itself, we only need to verify that it is a bounded linear operator and then use

compact embedding theorem. The uniqueness can also be approached by maximum principle.

However, we do not want to complicate the presentation by pursuing this avenue.

4.3. Convergence estimate of the discrete-type cell problem

After defining the discrete-type cell problem (e.g., Eq.(34)) and proving the existence and

uniqueness of the solution f̂ , we shall prove that f̂ converges to the solution of a continu-

ous cell problem in certain subspace, e.g., C6,α
0 (Ỹ ). To start with, we define the following

continuous cell problem

Lχ1 = f, (37)

where the operator L is defined in (14). Given f is smooth enough and periodic, the Eq.(37)

admits a solution χ1 in C6,α(Ỹ ). This is a standard result of the elliptic PDEs in Hölder

space (see, e.g., the Theorem 6.5.3 in [15]). From the Eq.(37), some calculations will give

exp(∆tL)χ1 − χ1 = f∆t +O(∆t2) := ∆tf̄ , (38)

where f̄ = f +O(∆t). Combining Eqns.(34) and (38), we obtain

(

exp(∆tL)− Id
)

(χ1 − f̂) =
(

I∆t − exp(∆tL)
)

f̂ +∆t(f̄ − f). (39)

Eq.(39) shows the connection between χ1 and f̂ . We rewrite it as

L̃1(χ1 − f̂) = L̃2f̂ + (f̄ − f), (40)

where

L̃1 :=

(

exp(∆tL)− Id
)

∆t
, L̃2 :=

I∆t − exp(∆tL)
∆t

. (41)
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To estimate the convergence rate between f̂ and χ1, we need to study the operators L̃1 and

L̃2 in the Eq.(40).

We first show that the inverse of L̃1 is a continuous bijection between subspace of in-

vertible operator and subspace of its inversion. We can easily verify that in the space of

bounded linear operators from C6,α(Ỹ ) to C4,α(Ỹ ) and we have the strong convergence in

the operator norm,

L̃1 → L as ∆t → 0. (42)

Applying the convergence result of the Proposition 4.3, for the inverse of the operator L̃1,

we get

lim
∆t→0

f̂ = lim
∆t→0

L̃−1
1 f = L−1f = χ1. (43)

Then, we study the operator L̃2. Using the BCH formula(16), we obtain

L̃2f̂ →
exp

(

∆t2

2

(

[L3, L2] + [L2, L1] + [L3, L1]
)

+O(∆t3)
)

− Id

∆t
· exp(∆tL)

→∆t

2

(

[L3, L2] + [L2, L1] + [L3, L1]
)

+O(∆t2). (44)

Combining Eqns. (40)(43) and (44), we know that if ∆t is small enough (does not depend

on the total computational time T , but may depend on estimate of f , g and σ), the following

convergence estimate holds

χ1 − f̂ = O(∆t). (45)

Finally, we summarize the above convergence estimate result into a Lemma as follows.

Lemma 4.5. When ∆t → 0, the solution f̂ to the discrete-type cell problem converges to

the solution to cell problem χ1 in C
p,α
0 , at the rate of O(∆t), where p ≥ 6 and 0 < α < 1.

4.4. Convergence estimate for the effective diffusivity

We shall show the main estimates in this section. We first prove that the second-order

moment of the solution obtained by using our numerical scheme has an (at most) linear

growth rate. Secondly, we provide the convergence analysis of our method in computing the

effective diffusivity.

Theorem 4.6. Let X∆t
n = (pn, qn) denote the solution obtained by using our numerical

scheme with time-step ∆t. With general assumptions mention before, the second moment of

the solution X∆t
n (a discrete Markov process) is at most linear growth, i.e.,

max
n

{

E
||X∆t

n ||2
n

}

is bounded. (46)

Proof. We first estimate the second-order moment of the first component of X∆t
n = (pn, qn),

since the other one can be estimated in the same manner. Simple calculations show that

E[p2n|(pn−1, qn−1)] = E
(

pn−1 − f(qn−1)∆t + σNp
i−1

)2

= Ep2n−1 +∆t
(

σ2 − 2E[pn−1f(qn−1)]
)

+∆t2Ef 2(qn−1). (47)
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We should point out that the term E[pn−1f(qn−1)] corresponds to the convection enhanced

level of the diffusivity. Our goal is to prove that the term E[pn−1f(qn−1)] is bounded over

n, though it may depend on f , g and σ. We now directly compute the contribution of the

term E[pn−1f(qn−1)] to the effective diffusivity with the help of Eq.(35), i.e.,

∆t

n−1
∑

i=0

E[pif(qi)] =

n−1
∑

i=0

E
[

pi
(

E[f̂(Xi+1)|Xi]− f̂(Xi)
)]

. (48)

Let Fi denote the filtration generated by the solution process until Xi. Notice that pi ∈ Fi,

for the Eq.(48), we have

RHS =

n−1
∑

i=0

E
[

pi
(

f̂(Xi+1)− f̂(Xi)
)]

=
n
∑

i=1

E
[

f̂(Xi)(pi−1 − pi)
]

− f̂(X0)p0 + E[f̂(Xn)pn]

=

n
∑

i=1

E
[

f̂(Xi)
(

f(pi−1)∆t− σNp
i−1

)]

− f̂(X0)p0 + E[f̂(Xn)pn]. (49)

Hence,

1

n
E
[

p2n|(p0, q0)
]

=
1

n
p20 +∆tσ2 − 2∆t

1

n

n−1
∑

i=0

E[pif(qi)] + (∆t)2
1

n

n−1
∑

i=0

Ef 2(qi)

=
1

n
p20 +∆tσ2 + (∆t)2

1

n

n−1
∑

i=0

Ef 2(qi)−
2

n

n
∑

i=1

E
[

f̂(Xi)
(

f(qi−1)∆t− σNp
i−1

)]

− 2

n

(

f̂(X0)p0 −E[f̂(Xn)pn]
)

. (50)

Recall the fact that Xn = (pn, qn) converges to the uniform measure in distribution. So given

any continuous periodic function f ∗, the Corollary 4.2 implies

lim
n→∞

Ef ∗(Xn) =

∫

Ỹ

f ∗(x)dx. (51)

Furthermore, we have the estimate

lim sup
n→∞

1

n

n
∑

i=0

f ∗(Xn) < ∞. (52)

Applying the Cauchy-Schwarz inequality for the term 2
n

∑n

i=1E
[

f̂(Xi)
(

f(qi−1)∆t− σNp
i−1

)]

in (50) and replacing f ∗ by f 2 and f̂ 2 in (52), we can prove that 1
n
E
[

p2n|(p0, q0)
]

is bounded.

Repeat the same trick, we know that 1
n
E
[

q2n|(p0, q0)
]

is also bounded. Thus, the assertion in

(46) is proved.
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In our numerical scheme (12), we first fix the time-step ∆t and use the scheme (12) to

compute the effective diffusivity until the result converges to a constant, which may depend

on ∆t. Then, we shall prove that the limit of the constant converges to the exact effective

diffusivity of the original passive tracer model as ∆t approaches zero. Namely, we aim to

prove that our numerical scheme (12) is robust in computing the effective diffusivity.

Theorem 4.7. Let pn, n = 0, 1, .... be the numerical solution of the first component of the

scheme (12) and ∆t denote the time-step. We have the convergence estimate of the effective

diffusivity as

lim
n→∞

Ep2n
n∆t

= σ2 − 2

∫

T2

χ1f +O(∆t), (53)

where the constant in O(∆t) only depends on f .

Proof. We divide both sides of the Eq.(50) by ∆t and obtain

1

n∆t
E[p2n|(p0, q0)] =

1

n∆t
p20 + σ2 +

∆t

n

n−1
∑

i=0

Ef 2(qi)

− 2

n∆t

n
∑

i=1

E
[

f̂(Xi)
(

f(qi−1)∆t− σNp
i−1

)]

− 2

n∆t

(

f̂(X0)p0 − E[f̂(Xn)pn]
)

(54)

First, we notice that for a fixed ∆t, the terms 1
n∆t

p20 and 2
n∆t

f̂(X0)p0 converge to zero as

n → ∞, where we have used the fact f̂(X0) is bounded. Then, for a fixed ∆t, we have

lim
n→∞

2

n∆t

∣

∣E[f̂(Xn)pn]
∣

∣ ≤ lim
n→∞

2√
n∆t

||f̂ ||∞E| pn√
n
| ≤ lim

n→∞

1√
n∆t

||f̂ ||∞E[
p2n
n

+ 1] = 0, (55)

where the term E[p
2
n

n
] is bounded due to the Theorem 4.6 and ||f̂ ||∞ → ||χ1||∞ due to the

Lemma 4.5.

Therefore, we only need to focus on the estimate of terms in the second line of (54).

Notice that f̂ ∈ C6,α, we compute the Ito-Taylor series approximation of f̂(Xi),

f̂(Xi) =f̂(Xi−1) + f̂p(Xi−1)
(

− f(qi−1)∆t+ σNp
i−1

)

+ f̂q(Xi−1)
(

g(pi−1)∆t + σN q
i−1

)

+
1

2

(

f̂pp(Xi−1) + f̂qq(Xi−1)
)

σ2∆t+O(∆t2). (56)

Since f̂ → χ1 in C
6,α
0 , the truncated term O(∆t2) in Eq.(56) is uniformly bounded when

∆t is small enough. Substituting the Taylor expansion of f̂(Xi) into the target term of our

estimate, we get

E[f̂(Xi)(f(qi−1)∆t− σNp
i−1)] = E

[(

f(qi−1)∆t− σNp
i−1

)

·
(

f̂(Xi−1) + f̂p(Xi−1)
(

− f(qi−1)∆t + σNp
i−1

)

+ f̂q(Xi−1)
(

g(pi−1)∆t+ σN q
i−1

)

+
1

2

(

f̂pp(Xi−1) + f̂qq(Xi−1)
)

σ2∆t+O(∆t2)
)]

.

(57)
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Combining the terms with the same order of ∆t, we obtain

E
[

f̂(Xi)
(

f(qi−1)∆t− σNp
i−1

)]

= ∆tE[f̂ (Xi−1)f(qi−1)− σ2f̂p(Xi−1)] +O(∆t2), (58)

where we have used the facts and Xi−1 ⊥ (Np
i−1, N

q
i−1), N

p
i−1 ⊥ N q

i−1 and E(Np
i−1)

2 = ∆t

. Finally, by using the Corollary 4.2 and noticing the invariant measure is the uniform

measure, we obtain from Eq.(54) that

lim
n→∞

1

n∆t
E[p2n|(p0, q0)] = σ2 − 2

∫

(f̂f − σ2f̂p) +O(∆t). (59)

Thus, the Eq.(53) is proved as a result of Lemma 4.5 and
∫

f̂p = 0.

4.5. Generalizations to high-dimensional cases

To show the essential idea of our probabilistic approach, we have carried out our conver-

gence analysis based on a two-dimensional model problem (9). In fact, the extension of

our approach to higher-dimensional problems is straightforward. Now we consider a high-

dimensional problem as follow,

dXt = v(Xt)dt+ ΣdWt, (60)

where X = (X1, X2, · · · , Xd)T ∈ Rd is the position of the particle, v = (v1, v2, · · · , vd)T ∈ Rd

is the Eulerian velocity field at position X , Σ is a d × d constant non-singular matrix, and

dWt is a d-dimension Brownian motion vector. In particular, we assume the vi does not

depend on X i, i = 1, ..., d. Thus, the incompressible condition for v(X) (i.e. ∇X · v(X) = 0)

is easily guaranteed.

For a deterministic and divergence-free dynamic system, Feng et. al. proposed a volume-

preserving method [8], which splits an n-dimensional problem into n − 1 subproblems with

each of them being volume-preserving. We shall modify Feng’s method (first order case) by

including the randomness as the last subproblem to take into account the additive noise, i.e.,































X1∗ = X1
0 +∆tv1(X1

0 , X
2
0 , X

3
0 , · · · , Xd−1, Xd

0 ),

X2∗ = X2
0 +∆tv2(X1∗

0 , X2
0 , X

3
0 , · · · , Xd−1, Xd

0 ),

· · · ,
Xd∗ = Xd

0 +∆tvd(X1∗
0 , X2∗

0 , X3∗
0 , · · · , X(d−1)∗, Xd

0 ),

X1 = X∗ + Σ(W1 −W0),

(61)

where W1 − W0 is represented by a d-dimensional independent random vector with each

component of the form
√
∆tN (0, 1).

The techniques of the convergence analysis for two-dimensional problem can be applied

to high-dimensional problems without much difficulty. For the high-dimensional problem

(60), the smoothness and strict positivity of the transition kernel in the discrete process can

be guaranteed if one assumes that the covariance matrix Σ is non-singular and the scheme

(61) is explicit. According to our assumption for the velocity field, the scheme (61) is
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volume-preserving. Thus, the solution to the first-order modified equation is divergence-free

and the invariant measure on torus (defined by Rd/Zd, when period is 1) remains uniform.

Finally, the convergence of cell problem can be achieved by using the BCH formula (16) with

d + 1 stage splitting. Therefore, our numerical methods are robust in computing effective

diffusivity for high-dimensional problems, which will be demonstrated through the three-

dimensional chaotic flow problems in the Section 5.

5. Numerical Examples

The aim of this section is two-fold. First, we shall design challenging numerical examples to

verify the convergence analysis proposed in this paper, especially the Theorem 4.7. Secondly,

we shall investigate the existence of residual diffusivity for several chaotic velocity fields.

Without loss of generality, we compute the quantity E[p(T )2]
2T

, which is used to approximate

DE
11 in the effective diffusivity matrix (4).

5.1. Verification of the convergence rate

We first consider a passive tracer model where the velocity field is given by a chaotic cellular

flow with oscillating vortices. Specifically, the flow is generated by a Hamiltonian defined as

H(p, q) =
1

2π
exp(sin(2πp))− 1

4π
exp(cos(4πq + 1)). (62)

The motion of a particle moving in this chaotic cellular flow is described by the SDE,

{

dp = sin(4πq + 1) exp(cos(4πq + 1))dt+ σdW1,

dq = cos(2πp) exp(sin(2πp))dt+ σdW2,
(63)

where σ =
√
2× 0.01, dWi are independent Brownian motions, and the initial data (p0, q0)

follows uniform distributions in [−0.5, 0.5]2.

In our numerical experiments, we use Monte Carlo samples to discretize the Brownian

motions dW1 and dW2. The sample number is denoted by Nmc. We choose ∆tref = 0.001

and Nmc = 640, 000 to solve the SDE (63) and compute the reference solution, i.e., the

“exact” effective diffusivity, where the final computational time is T = 12000 so that the

calculated effective diffusivity converges to a constant. It takes about 20 hours to compute

the reference solution on a 64-core server (Gridpoint System at HKU). The reference solution

for the effective diffusivity is D11 = 0.12629.

In Fig.1a, we plot the convergence results of the effective diffusivity using our method

(i.e., E[p(T )2]
2T

) with respective to different time-step ∆t at T = 6000 and T = 12000. In

addition, we show a fitted straight line with the slope 1.04, i.e., the convergence rate is about

(∆t)1.04. Meanwhile, by comparing two sets of data in the Figs.1a and 1b, corresponding to

the numerical effective diffusivity obtained at different computational times, we can see that

error does not grow with respect to time, which justifies the statement in Theorem 4.7.

To further study the adaptability and robustness of our numerical method in solving high-

dimensional problems, we consider a 3D Kolmogorov-type flow. Let (p, q, r) ∈ R3 denote
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(a) 2D chaotic cellular flow, fitted slope ≈ 1.04
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(b) 3D Kolmogorov-type flow, fitted slope ≈ 1.27

Figure 1: Error of DE

11
in different computational times and flows with different time-steps.

the position of a particle in the 3D Cartesian coordinate system. The motion of a particle

moving in the 3D Kolmogorov-type flow is described by the following SDE,











dp = cos(4πr + 1) exp(sin(4πr + 1))dt+ σdW1,

dq = cos(6πp+ 2) exp(sin(6πp+ 2))dt+ σdW2,

dr = cos(2πq + 3) exp(sin(2πq + 3))dt+ σdW3,

(64)

where dWi are independent Brownian motions. This is inspired by the so-called Kolmogorov

flow [9] (see Eq.(66)). The Kolmogorov flow is obtained from the Arnold-Beltrami-Childress

(ABC) flow with A = B = C = 1 and with cosines taken out. Behaviors of classic Kolmogrov

flow will be discussed later.

In our numerical experiments, we choose ∆tref = 0.001 and Nmc = 6, 400, 000 to solve

the SDE (64) and compute the reference solution, i.e., the “exact” effective diffusivity. After

some numerical tests, we find that the passive tracer model will enter a mixing stage if the

computational time is set to be T = 2400. It takes about 56 hours to compute the reference

solution on the server and the reference solution for the effective diffusivity is D11 = 0.13106.

In Fig. 1b, we plot the convergence results of the effective diffusivity using our method

with respect to different time-step ∆t. In addition, we show a fitted straight line with the

slope 1.27, i.e., the convergence rate is about (∆t)1.27. This numerical result also agrees with

our error analysis.

5.2. Investigation of the diffusion enhancement phenomenon

We first investigate convection-enhanced diffusion phenomenon in the classical ABC flow

with our symplectic stochastic integrators. The ABC flow is a three-dimensional incom-

pressible velocity field which is an exact solution to the Euler’s equation. It is notable as

a simple example of a fluid flow that can have chaotic trajectories. The particle is trans-

ported by the velocity field (A sin(r) +C cos(q), B sin(p) +A cos(r), C sin(q) +B cos(p)) and
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perturbed by an additive noise. The associated passive tracer model reads











dp = (A sin(r) + C cos(q))dt+ σdW1,

dq = (B sin(p) + A cos(r))dt+ σdW2,

dr = (C sin(q) +B cos(p))dt+ σdW3,

(65)

where dWi are independent Brownian motions. In Fig.2, we show the relation between

DE
11 and D0. Recall that the parameter D0 = σ2/2. By setting A = B = C = 1, we

recover the same phenomenon as the Fig.2 in [4], for D0 ∈ [10−3, 10−1] and can extend to

D0 ∈ [10−5, 10−4]; see Fig.2. At the same time, we can see that the Euler method failed when

D0 is small, which is also confirmed in [29]. The Fig.2 shows that the DE
11 of the ABC flow

obtained by our symplectic method corresponds to upper-bound of (6), i.e. the maximal

enhancement, DE
11 ∼ O(1/D0). This maximal enhancement phenomenon may be attributed

to the ballistic orbits of the ABC flow, which was discussed in [20, 30].

10-5 10-4 10-3 10-2 10-1 100 101

D
0

100

101

102

103

104

105

Figure 2: Convection-enhanced diffusion with maximal enhancement in ABC flow: � for the symplectic

scheme, × for the Euler scheme, −− for reference line y = 1

D0

.

From Fig.3a we can see that diffusing time, i.e., the time that 〈p(t)2
2t

〉 approaches a con-

stant, increases as O(1/D0) when D0 → 0 in the symplectic scheme. To the best of our

knowledge, the O(1/D0) scale of the diffusion time of the ABC flow is not known before.

Moreover, Fig.3a shows that our numerical scheme is very robust in computing the effective

diffusivity for the ABC flow. However, the Euler scheme gives a wrong result in Fig.3b

since the time 〈p(t)2
2t

〉 approaching a constant does not agree with the expected diffusion time

O(1/D0). The statement that the Euler scheme will generate wrong results can also be found

in the Fig.2.
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(a) 〈p(t)22t 〉 of differentD0 in the symplectic scheme
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(b) 〈p(t)22t 〉 of different D0 in the Euler scheme

Figure 3: Calculated DE

11
in the ABC flow along time via two different schemes

We point out that the error estimate in Theorem 4.7 is just an upper bound. Fig.4 shows

that when D0 is 10
−3, the convergence rate is about O(∆t1.42). It is very expensive to study

the passive tracer model for the ABC flow since the diffusing time is extremely long. In our

numerical test for the Fig.4, we choose Nmc = 120, 000, ∆t = 0.001, and T = 12, 000. In

this setting, the error of the Monte Carlo simulation cannot be avoided, so there is a small

oscillation around the fitted slope.

0.01 0.020.03 0.06 0.1 0.2 0.3 0.6

 t

10-1

100

101

102

sym
fitted

Figure 4: Error of DE

11
in the ABC flow, the dashed line with � is for the symplectic scheme, and the slope

of the fitted is ≈ 1.42.

Finally, we investigate the diffusion enhancement phenomenon for another chaotic flow,

i.e., the Kolmogorov flow. The associated passive tracer model reads,










dp = sin(r)dt+ σdW1,

dq = sin(p)dt+ σdW2,

dr = sin(q)dt+ σdW3,

(66)
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where dWi are independent Brownian motions. In Fig.5, we show the relation between

DE
11 and D0. For each D0, we use Nmc = 120, 000 particles to solve the SDE (66) via the

symplectic method and the Euler method with ∆t = 0.1 . The final computational time is

T = 12, 000 so that the particles are fully mixed for D0 ≥ 10−6.

Under such setting, we find that the dependency of DE
11 on D0 is quite different from

the chaotic and stochastic flows that we have studied in [29] and from the foregoing ABC

flow (maximal enhancement). The fitted slope within D0 ∈ [10−6, 10−5] is −0.13, which

indicates that DE
11 ∼ O(1/D0.13

0 ). This can be called sub-maximal enhancement, which may

be explained by the fact that the Kolmogrov flow is more chaotic than the ABC flow [9].

The chaotic trajectories in Kolmorogov flow enhance diffusion much less than channel like

structures such as the ballistic orbits of ABC flows [20, 30]. More studies on the diffusion

enhancement phenomenon of the ABC flow and the Kolmogrov flow, especailly the time-

dependent cases will be reported in our future work.

We also compare the performance of the symplectic scheme and Euler scheme in comput-

ing the effective diffusivity for the Kolmogrov flow. Specifically, we implement the symplectic

scheme and Euler scheme with time step ∆t = 0.1 and ∆t = 0.01, respectively. In Fig.5, we

find that (1) the symplectic scheme with ∆t = 0.1 and ∆t = 0.01 will give similar results

in computing the effective diffusivity; (2) the symplectic scheme and the Euler scheme with

∆t = 0.01 will give almost the same convergent results in computing the effective diffusivity,

which provides evidence that our statement on the Kolmogrov flow (i.e., the sub-maximal

enhancement phenomenon) is correct; (3) the Euler scheme with ∆t = 0.1 gives wrong

results but the symplectic scheme with ∆t = 0.1 gives acceptable results, which provides

evidence that the symplectic scheme is very robust in computing the effective diffusivity. In

this example, the symplectic scheme approximately achieves a 10× speedup over the Euler

scheme.

Fig.6a and Fig.6b show different behaviors of the numerical effective diffusivity 〈p(t)2
2t

〉
obtained using the symplectic scheme and the Euler scheme with respect to computational

time. Specifically, Fig.6a shows T = 12000 is quite enough for D0 ≥ 10−6. And in Fig.6b,

it seems that in Euler scheme, the diffusion time is much smaller. Our understanding is

that the numerical diffusion in Euler scheme helps reach its own diffusion time earlier. In

Fig.7, we also study the convergence rate of the symplectic scheme in computing the effective

diffusivity for the Kolmogorov flow (66). We find that the convergence rate is O(∆t1.3043) in

this example.

6. Conclusions

In this paper, we analyzed a robust numerical scheme to compute the effective diffusivity of

passive tracer models, especially for the three-dimensional ABC flow and the Kolmogorov

flow. Our scheme is based on the Lagrangian formulation of the passive tracer model, i.e.,

solving SDEs. We split the SDE problem into a deterministic sub-problem and a random

perturbation, where the former is discretized using a symplectic-preserving scheme while the

later is solved using the Milstein scheme. We provide a completely new error analysis for

our numerical scheme that is based on the probabilistic approach, which gives a sharp and
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Figure 5: Convection-enhanced diffusion with sub-maximal enhancement in Kolmogorov flow. “sym” means

the results for symplectic method and “em” means the results for Euler method. −− means the fitted line

for small D0 with slope ≈ −0.13.
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(a) 〈p(t)22t 〉 of different D0 using the symplectic

scheme
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Figure 6: Calculated DE

11
in the Kolmogorov flow via two different schemes.
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Figure 7: Error of DE

11
in the Kolmogrov flow. The slope of the fitted line is ≈ 1.30.

uniform in time error estimate for the numerical solution of the effective diffusivity. Finally,

we present numerical experiments to demonstrate the accuracy of the proposed method for

several typical chaotic flow problems of physical interests, including the Arnold-Beltrami-

Childress (ABC) flow and the Kolmogorov flow. We observed the maximal enhancement

phenomenon in the ABC flows model and the sub-maximal enhancement phenomenon in

the Kolmogorov flow, respectively.

There are two directions we plan to explore in our future work. First, we shall extend the

probabilistic approach to provide sharp convergence analysis in computing effective diffusiv-

ity for time-dependent chaotic flows, such as time-dependent ABC flows. In addition, we

shall investigate the convection-enhanced diffusion phenomenon for general spatial-temporal

stochastic flows [16] and develop convergence analysis for the corresponding numerical meth-

ods.
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