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Abstract. In his seminal work Calabi established the foundation on the study of

holomorphic isometries from a Kähler manifold with real analytic local potential func-

tions into complex space forms, e.g., Fubini-Study spaces. This leads to interior extension

results on germs of holomorphic isometries between bounded domains. General results

on boundary extension were obtained by Mok under assumptions such as the rationality

of Bergman kernels, which applies especially to holomorphic isometries between bounded

symmetric domains in their Harish-Chandra realizations. Because of rigidity results in

the cases where the holomorphic isometry is defined on an irreducible bounded symmet-

ric domain of rank ≥ 2, we focus on holomorphic isometries defined on the complex unit

ball Bn, n ≥ 1. We discuss results on the construction, characterization and classification

of holomorphic isometries of the complex unit ball into bounded symmetric domains and

more generally into bounded homogeneous domains. Furthermore, in relation to the

study of the Hyperbolic Ax-Lindemann Conjecture for not necessarily arithmetic quo-

tients of bounded symmetric domains, such holomorphic isometric embeddings play an

important role. We also present some differential-geometric techniques arising from the

study of the latter conjecture.

The subject of holomorphic isometries between Kähler manifolds is a classical

topic in complex differential geometry going back to Bochner and Calabi. Espe-

cially, starting from the seminal work of Calabi [Ca53], in which questions of ex-

istence, uniqueness and analytic continuation of holomorphic isometries of Kähler

manifolds into space forms such as the Euclidean and the Fubini-Study spaces

were systematically studied, tools have been developed, notably using normalized

potential functions called diastases defined in [Ca53], for the study of germs of

holomorphic isometries between Kähler manifolds. The author was led to con-

sider such questions especially for bounded symmetric domains equipped with the

Bergman metric, in part to answer questions concerning commutants of modu-

lar correspondences on such domains raised by Clozel-Ullmo [CU03], who reduced

rigidity problems in this context to questions in complex differential geometry

including one on holomorphic isometries. These questions led the author to sys-

tematically study germs of holomorphic isometries between bounded domains in

Euclidean spaces. Embedding a bounded domain by means of an orthonormal ba-

sis of the Hilbert space H2(U) of square integrable holomorphic functions into the
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Fubini-Study space P∞ of countably infinite dimension, analytic continuation of

germs of holomorphic isometries with respect to scalar multiples of the Bergman

metric already follows from Calabi [Ca53], and the author has been focusing on

boundary behavior of such analytic continuation as the domain of definition tra-

verses the boundary of bounded domains under the assumption that Bergman

kernels are rational.

In [Mo11] the author wrote a survey article “Geometry of holomorphic isometries

and related maps between bounded domains”, giving a historical account starting

with Calabi [Ca53], explaining the motivation of the author’s works in the subject

area, and posing a number of open questions. There the related maps include

holomorphic measure-preserving maps from a bounded symmetric domain into a

Cartesian power of the domain in the terminology of Clozel-Ullmo [CU03]. In

recent years the author has continued to work on various problems on the exis-

tence, uniqueness, characterization and classifications on holomorphic isometries

especially between bounded symmetric domains (and sometimes more generally

bounded homogeneous domains) with respect to scalar multiples of the Bergman

metric. While the reader would benefit from reading the current article in conjunc-

tion with [Mo11], we note that the current article is not a survey on the subject,

but rather an annotated account of the overall structure of works of the author

and collaborators in the years since [Mo11] in the research area, focusing on the

topic of holomorphic isometries between bounded symmetric domains and leaving

aside other types of related holomorphic mappings. Statements of our principal

results will be given together with brief discussions on the context, motivation and

methodology, while we will mention recent developments on the topic from other

researchers, and refer the reader to consult their original articles. As such the cur-

rent article serves more as a Leitfaden on the author and his collaborators’ recent

works on the topic, together with an excursion on possible future links of the study

of holomorphic isometries with other domains of research, notably with the theory

of geometric structures and substructures, functional transcendence theory and the

geometry of flag domains. For a discussion in those direction we refer the reader

to §6 on “Perspectives and concluding remarks” and to the last two paragraphs of

§5.

1. Introduction, first examples and background results

Given complex manifolds (X,ωX) and (Y, ωY ) equipped with respective Kähler

forms, a holomorphic mapping f : X → Y is a holomorphic isometry if and only

if f ∗ωY = ωX . If there exist global potential functions so that ωX =
√
−1∂∂ϕX

and ωY =
√
−1∂∂ϕY , then the holomorphic map f : X → Y is an isometry if

and only if
√
−1∂∂(ϕX − f ∗ϕY ) = 0, i.e., h(x) := ϕ(x) − ϕY (f(x)) is a plurihar-

monic function, equivalently locally the real part of a holomorphic function. This

simplification applies when we consider Bergman metrics on bounded domains U ,

since by definition there are global potential functions given by the log(kU), where

kU(x) = KU(x, x) for the Bergman kernel KU(z, w) on U . To verify that f is a

holomorphic isometry it is sufficient to check that ϕX−f ∗ϕY is a constant, and this
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applies to give first examples of nonstandard holomorphic isometries from disks to

polydisks. Equip the upper half-plane H with the Poincaré metric ds2
H = Re dτ⊗dτ

(Imτ)2

of constant Gaussian curvature −1 and H 2 with the product metric. Then, the

proper holomorphic map f : H → H 2 given by f(τ) =
(√

τ , i
√
τ
)

is a holo-

morphic isometric embedding. More generally, we have the p-th root map given

by

Proposition 1.1. (Mok [Mo12a]) Let p ≥ 2 be a positive integer and γ = e
πi
p .

Then, the proper holomorphic mapping f : (H , ds2
H )→ (H , ds2

H )
p

defined by

f(τ) =
(
τ

1
p , γτ

1
p , . . . , γp−1τ

1
p
)

is a holomorphic isometric embedding.

Proposition 1.1 results simply from the fact that we have for p ≥ 2 the trigono-

metric identity sin θ sin
(
π
p

+ θ
)
· · · sin

(
(p−1)π

p
+ θ
)

= cp sin(pθ) for some positive

constant cp.

For a positive integer g denote by Ms(g,C) the complex vector space of sym-

metric g-by-g matrices, and write Hg ⊂ Ms(g,C) for the Siegel upper half-plane

of genus g defined by Hg =
{
τ ∈ Ms(g,C) : Im(τ) > 0

}
. Another early example

of a nonstandard holomorphic isometric embedding is given by the following map

of the upper half-plane H into H3, together with a verification that it does not

arise from p-th root maps. From now on for a domain U ⊂ Cn biholomorphic to a

bounded domain, we will denote by ds2
U the Bergman metric on U . Note that when

U is a homogeneous domain (U, ds2
U) is Kähler-Einstein and its Ricci curvatures

are equal to −1.

Proposition 1.2. (Mok [Mo12a]) For ζ = ρeiϕ, ρ > 0, 0 < ϕ < π, n a

positive integer, we write ζ
1
n := ρ

1
n e

iϕ
n . Then, the holomorphic mapping G : H →

Ms(3,C) defined by

G(τ) =

 e
πi
6 τ

2
3

√
2e−

πi
6 τ

1
3 0√

2e−
πi
6 τ

1
3 i 0

0 0 e
πi
3 τ

1
3


maps H into H3, and G : (H , 2ds2

H )→
(
H3, ds

2
H3

)
is a holomorphic isometry.

In what follows for an integer p ≥ 2 we write ρp : H → H p for the p-th root

map as given by f(τ) in Proposition 1.1. We denote by ι : H p →Hp the standard

inclusion of H p into the Siegel upper half-plane Hp of genus p as a set of diagonal

matrices given by ι(τ1, · · · , τp) = diag(τ1, · · · , τp).

Proposition 1.3. (Mok [Mo12a]) The two holomorphic isometric embeddings

F,G : (H , 2ds2
H ) ↪→ (H3, ds

2
H3

), F := ι ◦ ρ3, are not congruent to each other. In

fact, for any holomorphic isometric embedding h : H ↪→ H ×H ×H , and for

H := ι ◦ h, the two holomorphic embeddings G,H : (H , 2ds2
H ) ↪→ (H3, ds

2
H3

) are

incongruent to each other.
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Here two holomorphic isometries f, g : (D,λds2
D) → (Ω, ds2

Ω) are said to be

congruent to each other if and only if there exist ϕ ∈ Aut(D) and ψ ∈ Aut(Ω)

such that g = ψ ◦ f ◦ ϕ.

The main result of Mok [Mo12a] is the following theorem on the analytic contin-

uation of germs of holomorphic isometries with respect to multiples of the Bergman

metric under the assumption that Bergman kernels of both the domain and the

target are rational.

Theorem 1.1. (Mok [Mo12a]) Let D b Cn and Ω b CN be bounded domains.

Let λ > 0 and f : (D,λ ds2
D;x0)→ (Ω, ds2

Ω; y0) be a germ of holomorphic isometry

with respect to Bergman metrics up to a normalizing constant. Assume that the

Bergman metrics on D and Ω are complete, that the Bergman kernel KD(z, w)

on D extends to a rational function in (z, w), and that analogously the Bergman

kernel KΩ(ξ, η) extends to a rational function in (ξ, η). Then, f extends to a

proper holomorphic isometric embedding F : (D,λ ds2
D) ↪→ (Ω, ds2

Ω). Moreover,

Graph(f) ⊂ D × Ω extends to an affine-algebraic subvariety V ⊂ Cn × CN .

Note that if in Theorem 1.1 we weaken the hypothesis to assuming that KD(z, w)

extends to a meromorphic function in (z, w) to a neighborhood of D × D′ and

likewise KΩ(ξ, η) extends to a meromorphic function in (ξ, η) to a neighborhood

of Ω×Ω′, where for a Euclidean domain G ⊂ Cn we write G′ =
{
z ∈ Cn : z ∈ G

}
,

Theorem 1.1 holds for the germ of holomorphic isometry f when the last sentence

is replaced by the statement that Graph(f) ⊂ D×Ω extends to a complex-analytic

subvariety on some neighborhood of D × Ω.

Consider the special case where D and Ω are complete circular domains, e.g.,

bounded symmetric domains in their Harish-Chandra realizations, and let f :

(D,λ ds2
D; 0)→ (Ω, ds2

Ω; 0) be a holomorphic isometry. From f(0) = 0 and the in-

variance of the Bergman kernels KD and KΩ under the circle group action, expand-

ing in Taylor series at 0 ∈ D we have actually the equality logKΩ(f(z), f(z)) =

λ logKΩ(z, z) + a for some constant a, and hence by polarization the holomorphic

functional identities (Iw0) logKΩ(f(z), f(w0)) = λ logKΩ(z, w0)+a in z for any w0

belonging to a sufficiently small neighborhood of 0 ∈ D. If KD and KΩ are rational

as assumed then differentiating the identities (Iw0) one can remove the logarithm

and equivalently consider an infinite system (Jw0) of algebraic holomorphic identi-

ties. If now we replace f(z) by the complex variables ζ = (ζ1, · · · , ζN), we obtain

for each w0 ∈ U a subset Vw0 ⊂ Cn × CN consisting of all (z, ζ) satisfying (Jw0),

then the common zero set V :=
⋂
{Vw0 : w0 ∈ U} ⊂ Cn×CN is an affine-algebraic

subvariety containing Graph(f), and the difficulty was to prove that Graph(f) ⊂ V

is an open subset, so that V ⊃ Graph(f) yields the desired extension, and that

was precisely what was established in [Mo12a]. The same argumentation applies

after modification to the general situation in Theorem 1.1 where D and Ω need

not be circular domains and where x0 ∈ D and y0 ∈ Ω are arbitrary base points

to yield a proof of the theorem.

We note that in the special case concerning commutants of modular correspon-

dences raised in Clozel-Ullmo [CU03], the unsolved case was when D = Bn, n ≥ 2,
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and Ω = Bn × · · · × Bn (with p factors), and the germ of holomorphic isometry

up to scaling factors is given f = (f 1, · · · fp), fk : (Bn; 0) → (Bn; 0), such that

det(dfk) 6≡ 0. In that case the corresponding special case in Theorem 1.1 is much

easier, and was already obtained by the author in Mok [Mo02] with the stronger

conclusion that each fk, 1 ≤ k ≤ p extends to an automorphism of Bn, an assertion

that follows after analytic continuation of each fk across ∂Bn has been established

by means of Alexander’s theorem [Al70].

2. Existence and classification results

With reference to Theorem 1.1, the extension theorem for germs of holomorphic

isometries, we will now specialize to the case where D b Cn and Ω b CN are

bounded symmetric domains in their Harish-Chandra realizations. As mentioned,

in these cases the Bergman kernel KD(z, w) resp.KΩ(ξ, η) is a rational function

in (z, w) resp. (ξ, η). A bounded symmetric domain is always of nonpositive holo-

morphic bisectional curvature. If we restrict to the case where D is irreducible,

as observed in Clozel-Ullmo [CU03], it follows from the proofs of Mok [Mo87]

and [Mo89] on Hermitian metric rigidity that any germ of holomorphic isometry

f : (D, ds2
D;x0)→ (Ω, ds2

Ω; y0) must necessarily be totally geodesic whenever D is

of rank ≥ 2. Thus, the interesting case is where D ∼= Bn is the n-dimensional com-

plex unit ball, n ≥ 2, in which case (Bn, ds2
Bn) is of strictly negative holomorphic

bisectional curvature. The first examples were holomorphic isometric embeddings

of the Poincaré disk into bounded symmetric domains, and for some time it was

unknown whether nonstandard holomorphic isometries could exist when n ≥ 2.

This was raised as Problem 5.1.3 in [Mo11]. When Ω is itself a complex unit

ball BN , it follows from Umehara [Um87] that any germ of holomorphic isometry

f : (Bn, λds2
Bn ;x0) →

(
BN , ds2

BN ; y0

)
must necessarily be totally geodesic. In fact

it was proven in [Um87] that any germ of Kähler-Einstein complex submanifold

on
(
BN , ds2

BN
)

must necessarily be totally geodesic. For the case where Ω is an

irreducible bounded symmetric domain of rank ≥ 2, a priori we have the follow-

ing restriction on the maximal dimension of a holomorphically and isometrically

embedded complex unit ball. Here for the formulation we normalize the scalar

multiple of the Bergman metric, which is Kähler-Einstein, such that minimal disks

are of constant Gaussian curvature −2. The canonical Kähler-Einstein metric on

Ω chosen this way will be denoted by h, and those on a complex unit ball Bm will

be denoted by g, or by gn when the dimension n is important for the discussion.

Theorem 2.1. (Mok [Mo16a]) Let Ω ⊂ Σ be the Borel embedding of an irre-

ducible bounded symmetric domain Ω into its dual Hermitian symmetric manifold

Σ of the compact type, where Pic(Σ) ∼= Z, generated by the positive line bundle

O(1). Let g resp.h be the canonical Kähler-Einstein metric on Bn resp. Ω nor-

malized so that minimal disks on Bn resp. Ω are of constant Gaussian curvature

−2. Let p = p(Ω) be the nonnegative integer such that K−1
Σ
∼= O(p + 2). Sup-

pose F : (Bn, g)→ (Ω, h) is a holomorphic isometry (which is necessarily a proper

holomorphic isometric embedding). Then n ≤ p+ 1.
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For a uniruled projective manifold X equipped with a minimal rational compo-

nent K and for a standard minimal rational curve ` (assumed smooth for con-

venience) belonging to K we have the Grothendieck decomposition T (X)|` ∼=
O(2) ⊕ O(1)p ⊕ Oq for some p ≥ 0 independent of the choice of `. From the

deformation theory of rational curves, for a general point x ∈ X and denoting by

Cx(X) the variety of minimal rational tangents (VMRT) of (X,K) at x, i.e., the

variety of projectivizations of tangents to minimal rational curves passing through

x (cf. Mok [Mo16b]), p is exactly the dimension of Cx(X). When X is of Picard

number 1 and K pertains to a uniruling by rational curves of degree 1, as is the

case of irreducible Hermitian symmetric spaces Σ of the compact type, we have

K−1
X
∼= O(p + 2). Since Σ is in particular homogeneous, the positive integer p in

Theorem 2.1 is exactly the dimension of the VMRT at any point of Σ. We have

also

Theorem 2.2. (Mok [Mo16a]) Let n ≥ 1, λ > 0, and F : (Bn, λ g) → (Ω, h)

be a holomorphic isometry such that F (Bn) ∩ Reg(∂Ω) 6= ∅. Then, λ = 1 and

n ≤ p+ 1.

The basis of both Theorem 2.1 and Theorem 2.2 lies in the structure of ∂Ω

(cf. Wolf [Wo72]). Writing G0 = Aut0(Ω) and r := rank(Ω), ∂Ω decomposes

into r disjoint union of G0-orbits Ei, 1 ≤ i ≤ r, such that Ek+1 ⊂ Ek. E1

is the same as the smooth part Reg(∂Ω), which is foliated by maximal complex

submanifolds of dimension N − p − 1. Consider the strictly plurisubharmonic

function ϕΩ(z) := 1
p+2

logKΩ(z, z), where KΩ(z, w) stands for the Bergman kernel

on Ω. Then, ϕΩ = − log(−ρΩ) where ρΩ is a real-analytic defining function of ∂Ω

at any point on Reg(∂Ω).

By Theorem 1.1, for any holomorphic isometry F from the complex unit ball Bn
to Ω with respect to scalar multiples of the Bergman metric, Graph(F ) must neces-

sarily extend to an affine-algebraic variety V ⊂ Cn×CN . From the assumptions in

either Theorem 2.1 or Theorem 2.2 one can deduce that for a general point a ∈ ∂Bn
there exists an open neighborhood G of a in Cn such that F |G∩Bn extends holo-

morphically to a holomorphic embedding F ] of G onto an n-dimensional complex

submanifold Z ⊂ U of some open neighborhood U of b = f(a) ∈ Reg(∂Ω). (For

b sufficiently general the embedding can be chosen such that (F ])∗ρΩ is a defining

function of Bn at a (i.e., it has nonzero gradient at a) although this fact need not

be used in what follows.) From the strict pseudoconvexity of Bn it follows that

the nonnegative Levi form
√
−1∂∂ρΩ|T 1,0

b (Z∩∂Ω) has n− 1 positive eigenvalues, and

the dimension estimate n ≤ p + 1 follows from the foliated structure of Reg(∂Ω)

described in the last paragraph, proving both Theorem 2.1 and Theorem 2.2.

Note that for a local strictly pseudoconvex domain U with smooth boundary de-

fined by ρ < 0, where dρ is nowhere zero and ρ is strictly plurisubharmonic, letting

θ be the Kähler metric with Kähler form
√
−1∂∂(− log(−ρ)), by a computation of

Klembeck [Kl78] (U, θ) is asymptotically of constant holomorphic sectional curva-

ture −2 along the real hypersurface ρ = 0.



7

Going in the opposite direction we proved in [Mo16a] the existence of nonstan-

dard holomorphic isometric embeddings of the (p + 1)-dimensional complex unit

ball into Ω.

Theorem 2.3. (Mok [Mo16a]) Let Ω b CN be an irreducible bounded sym-

metric domain of rank ≥ 2 and denote by Σ the irreducible Hermitian symmet-

ric manifold of the compact type dual to Ω. Denoting by δ ∈ H2(Σ,Z) ∼= Z
the positive generator of the second integral cohomology group of Σ, we write

c1(Σ) = (p + 2)δ. Then, there exists a nonstandard proper holomorphic isomet-

ric embedding F :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω). More precisely, letting Ω ⊂ Σ be

the Borel embedding of Ω into its dual Hermitian symmetric space of the com-

pact type Σ, and denoting by Vx the union of all minimal rational curves on Σ

passing through a point x ∈ Σ, for any smooth boundary point q ∈ Reg(∂Ω),

the intersection Vq := Vq ∩ Ω is the image of a holomorphic isometric embedding

Fq :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω).

The proof of Theorem 2.3 is geometric, and it follows from the aforementioned

computation of Klembeck [Kl78] on asymptotic curvature behavior along strictly

pseudoconvex boundary points. The bounded symmetric domain Ω b CN in its

Harish-Chandra realization is a complete circular domain such that, given any

complex line ` passing through 0 ∈ Ω, ` ∩ Ω is a disk centered at 0 ∈ ` of radius

between 1 and
√
r, r := rank(Ω), and it is of radius 1 if and only if [T0`] ∈ C0(Σ).

Consider V0 = V0 ∩ Ω. Then V0 = V0 ∩ BN , and thus ∂V0 ⊂ V0 is a strictly

pseudoconvex real hypersurface. When r ≥ 2, V0 is smooth except for the isolated

singularity at 0. By Klembeck [Kl78], the normalized Bergman metric h := 1
p+2

ds2
Ω

is asymptotically of constant holomorphic sectional curvature −2 along ∂V0. Fix

any line `0 passing through 0 such that [T0(`0)] ∈ C0(Σ), pick any boundary

point q of the minimal disk ∆0 := `0 ∩ Ω, and consider a real one-parameter

subgroup
{

Φt : t ∈ R
}

of transvections in Aut0(Ω) fixing ∆0 as a set such that

Φt(0), t ≥ 0, traverses a geodesic ray and converges to q in the Euclidean topology

as t → ∞. Then, Φt(V0) = VΦt(0) and VΦt(0) converges to Vq as subvarieties as

t → ∞. As a Kähler submanifold of (Ω, h), the local differential geometry of

(Vq, h|Vq) is identical to the asymptotic geometry of
(
V0, h|Reg(V0)

)
, hence (Vq, h|Vq)

is of constant holomorphic sectional curvature −2, and it must be the image of

a holomorphic isometry of (Bp+1, g) into (Ω, h) by Theorem 1.1. (In this case it

already follows from Calabi [Ca53]). Since dsBp+1 = (p + 2)g and dsΩ = (p + 2)h,

we have equivalently that F :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω) is a holomorphic isometric

embedding.

After constructing examples of holomorphic isometric embeddings from com-

plex unit balls into irreducible bounded symmetric domains Ω as in Theorem

2.3, and given the dimension estimates on the complex unit balls on which such

isometries may be defined, it is natural to study the set of all holomorphic isome-

tries from (Bp+1, g) into (Ω, h). For this reason the author proposes an approach

which reduces the problems to questions in the theory of geometric substructures

(VMRT-substructures) on projective manifolds uniruled by projective lines. We

note that this approach, which will be discussed in §3, applies in principle to
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all irreducible bounded symmetric domains excepting those of type IV, i.e., the

n-dimensional Lie spheres DIV
n , n ≥ 3, and for that reason for some time it

was not clear whether one should expect nonstandard holomorphic isometries of

F :
(
Bn−1, ds2

Bn−1

)
↪→ (DIV

n , ds2
DIVn

) other than those defined by cones of minimal

rational curves as given in Theorem 2.3. It turns out that such examples do exist.

In fact, by a manipulation of polarized forms of functional equations arising from

equating potential functions for Kähler metrics as in [Mo12a], Chan-Mok [CM17a]

was able to completely classify and describe all holomorphic isometries of complex

unit balls into DIV
n as given in the following theorem and its corollary.

The irreducible bounded symmetric domain in Cn, n ≥ 3, of type IV is given by

DIV
n =

{
(z1, . . . , zn) ∈ Cn :

n∑
j=1

|zj|2 < 2,
n∑
j=1

|zj|2 < 1 +
∣∣∣12 n∑

j=1

z2
j

∣∣∣2}
and the Kähler form corresponding to the Bergman metric ds2

DIVn
onDIV

n is given by

ωds2
DIVn

= −n
√
−1∂∂ log

(
1−

∑n
j=1 |zj|2 +

∣∣∣12 ∑n
j=1 z

2
j

∣∣∣2). We have h = 1
n
ds2

DIVn
.

For v ∈ M(1, n;C) we write Vv ⊆ Cn for the affine-algebraic subvariety defined

by
∑n

j=1 vjzj −
1
2

∑n
j=1 z

2
j = 0, and we write Σv := Vv ∩ DIV

n . Manipulating the

functional equations as in Mok [Mo12a] relating Bergman kernels KBm(z, w) and

KDIVn
(ξ, η) via holomorphic isometries F : (Bm, λds2

Bm) ↪→ (DIV
n , ds2

DIVn
), ξ :=

F (z), η = F (w), we were able to completely classify holomorphic isometries from

complex unit balls into type-IV domains with respect to scalar multiples of the

Bergman metric, as follows.

Theorem 2.4. (Chan-Mok [CM17a]) Let F : (Bm, λds2
Bm) ↪→ (DIV

n , ds2
DIVn

)

be a holomorphic isometric embedding, where n ≥ 3 and m ≥ 1 are integers. Then,

either λ = n
m+1

or λ = 2n
m+1

and we have the following.

1) If λ = n
m+1

, then 1 ≤ m ≤ n − 1 and F = f̃ ◦ ρ for some holomorphic

isometric embedding f̃ : (Bn−1, gn−1) ↪→ (DIV
n , h) and some totally geodesic

holomorphic isometric embedding ρ : (Bm, gm) ↪→ (Bn−1, gn−1).

2) If λ = n
m+1

and m = n−1, then F is congruent to a nonstandard holomorphic

isometric embedding F̂c : (Bn−1, gn−1) ↪→ (DIV
n , h) such that F̂c(Bn−1) is the

irreducible component of Σc containing 0 for some c ∈ M(1, n;C) satisfying

cct = 1. In addition, F is congruent to Fq :
(
Bn−1, ds2

Bn−1

)
↪→
(
DIV
n , h

)
for

q ∈ Reg(∂Ω) (as given in Theorem 2.3) if and only if F is congruent to F̂c

for some c satisfying cct = 0.

3) If λ = 2n
m+1

, then m = 1 and F : (∆, nds2
∆) ↪→

(
DIV
n , ds2

DIVn

)
is totally

geodesic.

Corollary 2.1. (Chan-Mok [CM17a]) Let F : (Bm, gm) ↪→ (DIV
n , h) be a

holomorphic isometric embedding, where 1 ≤ m ≤ n − 2 and n ≥ 3. Then F is

induced by some holomorphic isometric embedding f̃ : (Bn−1, gn−1) ↪→ (DIV
n , h) via

slicing of Bn−1. More precisely F = f̃ ◦ ρ for some totally geodesic holomorphic

isometric embedding ρ : (Bm, gm) ↪→ (Bn−1, gn−1).
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Upmeier-Wang-Zhang [UWZ17] and Xiao-Yuan [XY16] have independently ob-

tained the classification result in Theorem 2.4 (on type-IV domains) for the case of

m = n− 1 and they give explicit parametrizations of the maps. Functional equa-

tions were made use of in [XY16] while in [UWZ17] the authors studied operators

on Hilbert spaces induced by holomorphic isometries and made use of Jordan al-

gebras. Moreover, for an arbitrary bounded symmetric domain Ω of rank ≥ 2 they

gave an interesting characterization in terms of Jordan algebras of the holomorphic

isometric embedding Fq :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω), as defined in Theorem 2.3,

among all holomorphic isometric embeddings of Bp+1 into Ω, where p = p(Ω).

Finally, we state a result with a sketch of the proof concerning bounded homo-

geneous domains which can be established along the lines of argument of Theorem

2.3. The proof of the latter theorem involves an argument ascertaining the con-

vergence of a sequence of subvarieties which are the images of V0 = V0 ∩ Ω by a

sequence of automorphisms, thereby obtaining in the limit a complex submanifold

Vq which reflects the asymptotic geometry of V0 near strictly pseudoconvex bound-

ary points. For this type of argument to work on a bounded symmetric domain Ω,

it is sufficient to have from the very beginning a local complex submanifold Z ⊂ U

on a neighborhood of a smooth boundary point b ∈ ∂U such that Z intersects ∂Ω

transversally along Z ∩∂Ω, Z ∩Ω ⊂ Z is strictly pseudoconvex along Z ∩∂Ω, a se-

quence of points xn ∈ Z, n ≥ 1, converging to b, and a sequence of automorphisms

Φn ∈ Aut(Ω) such that Φn(xn) = x0, where x0 ∈ Ω is some fixed base point. It

then follows from the fact that (Z∩Ω, g|Z∩Ω) is asymptotically of holomorphic sec-

tional curvature −2 that Zn := Φn(Z ∩Ω) ⊂ Φn(U ∩Ω) converges as a subvariety

to some Kähler submanifold Z∞ ⊂ Ω of constant holomorphic sectional curvature

−2. Now the same set-up can be applied to the class of bounded homogeneous

domains. These are bounded domains biholomorphic to homogeneous Siegel do-

mains of the first or second kind constructed by Pyatetskii-Shapiro [Py69], which

are biholomorphic to bounded domains via canonical isomorphisms (cf. Xu [Xu05])

and the description in Mok [Mo14b, §5]). A bounded homogeneous domain D is

weakly pseudoconvex and there is in a canonical realization D ⊂ CN a dense sub-

set of smooth boundary points in the semi-algebraic boundary ∂D . Moreover, the

Bergman kernel KD(ξ, η) is a rational function in (ξ, η), from which one deduces

from the aforementioned “rescaling” argument the existence of proper holomor-

phic isometric embeddings of the complex unit ball whose dimension is equal to

the number of positive eigenvalues of the Levi form of a smooth defining function

on the complex tangent spaces at such points. We have

Theorem 2.5. Let D b CN be a canonical realization of a bounded homogeneous

domain. Let b0 ∈ Reg(∂D) and let ρ be a smooth local defining function of D on a

neighborhood of b ∈ CN . Suppose for b lying on some neighborhood of b0 on ∂D the

Levi form
√
−1∂∂ρ restricted to the complex tangent space T 1,0

b (∂D) has exactly s

positive eigenvalues. Then, there exists a proper holomorphic isometric embedding

F : (Bs+1, g) ↪→ (D , h) with respect to the normalized canonical Kähler-Einstein

metric g resp.h on Bs+1 resp. D such that Graph(F ) ⊂ Cs+1 × CN extends to an

affine-algebraic subvariety.
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Here as before (Bs+1, g) is normalized so that minimal disks are of constant

Gaussian curvature −2. On the other hand, (D , h) is normalized so that the

Kähler form ωh is given by ωh =
√
−1∂∂(− log(−ρ′)) where ρ′ is a smooth defining

function of D at a general point of ∂D .

Regarding the very first examples of holomorphic isometric embeddings from

the unit disk into polydisks, viz., the p-th root maps and maps obtained from

them by means of composition, those maps remain the only known holomorphic

isometric embeddings. It is a tempting yet challenging problem to ask whether

the p-th root maps are in a certain sense the generators of the set HI(∆,∆p) of

all holomorphic isometric embeddings of the unit disk into polydisks. This was

Problem 5.1.2 of Mok [Mo11] which remains unsolved. For the more accessible

problem of characterization the p-th root map, we have recently the work of Chan

[Ch16] which completed a partial result of Ng [Ng10] solving the problem for p = 2

and for p odd, settling in the affirmative a characterization problem for the p-th

root map in terms of sheeting numbers.

Theorem 2.6. (Chan [Ch16], Ng [Ng10] for p = 2 and for p odd) Let

p ≥ 2 be an integer. If f : (∆, ds2
∆) ↪→ (∆p, ds2

∆p) is a holomorphic isometric

embedding with sheeting number n = p, then f is the p-th root embedding up to

reparametrization.

Here by Theorem 1.1 Graph(f) extends to an irreducible subvariety V ⊂ P1 ×
(P1)

p
, and the sheeting number n is by definition the sheeting number of the

canonical projection π : V → P1 onto the first factor. By a reparametrization of f

we mean the composition ψ ◦ f ◦ ϕ, where ϕ ∈ Aut(∆) and ψ ∈ Aut(∆p) (which

includes permutations of the components). On top of Theorem 2.6, HI(∆,∆p) is

now completely determined for p ≤ 4 (Ng [Ng10] for p = 2, 3 and Chan [Ch17a]

for p = 4).

Concerning holomorphic isometries of the complex unit ball into irreducible

bounded symmetric domains Ω, other than the rank-1 case Ω ∼= Bn, in which case

all such maps are totally geodesic, and the case of Lie spheres Ω ∼= DIV
n , n ≥ 3,

where there is a complete classification given by Theorem 2.4, other than some

examples (as given in §1) not much is known about the set HI(Bm,Ω) of holo-

morphic isometries up to normalizing constants from the complex unit ball to Ω.

On the existential side by considering holomorphic isometries of ∆ × Bm into Ω

for Ω of rank ≥ 2 not biholomorphic to a Lie sphere Chan and Yuan [CY17] have

now obtained new examples of maps from complex unit balls into Ω incongruent

to those obtained by restriction from Fq : Bp+1 ↪→ Ω as given in Theorem 2.3

constructed from cones of minimal rational curves.

3. Structural and uniqueness results

Following up on the discussion on holomorphic isometries of the complex unit

ball into irreducible bounded symmetric domain Ω in §2, Chan and Mok [CM17a]

have obtained the following general results on bona fide holomorphic isometric

embeddings of the complex unit ball into Ω, i.e., for holomorphic isometries with
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respect to the Bergman metric or with respect to the normalized canonical Kähler-

Einstein metrics (subject to the requirement that minimal disks are of constant

Gaussian curvature −2) without normalizing constants, in which we consider Ω ⊂
Σ canonically as an open subset of its dual Hermitian symmetric space Σ of the

compact type by the Borel embedding.

Theorem 3.1. (Chan-Mok [CM17a]) Let f : (Bn, gn) ↪→ (Ω, h) be a holo-

morphic isometric embedding, where n ≥ 1 and Ω b CN is an irreducible bounded

symmetric domain of rank ≥ 2 in its Harish-Chandra realization. Let Ω ⊂ Σ be

the Borel embedding of Ω into its dual Hermitian symmetric space of the com-

pact type Σ. Denote by ι : Σ ↪→ P
(
Γ(Σ,O(1))∗

)
the minimal canonical projective

embedding of Σ. Then, f(Bn) is an irreducible component of a complex-analytic

subvariety V ⊆ Ω satisfying ι(V ) = P ∩ ι(Ω) for some projective linear subspace

P ⊂ P
(
Γ(Σ,O(1))∗

)
.

For HI1(Bm,Ω), i.e., bona fide holomorphic isometric embeddings from Bp+1

into Ω, p = p(Ω), our belief is that Fq : Bp+1 ↪→ Ω of Theorem 2.3 are the only

holomorphic isometries whenever Ω is not biholomorphic to a Lie sphere, which

we confirm in the rank-2 cases, as follows.

Theorem 3.2. (Mok-Yang [MY18]) Let Ω ⊂ Σ be the Borel embedding of

an irreducible bounded symmetric domain Ω of rank 2 not biholomorphic to any

type-IV domain DIV
n , n ≥ 3. Let F :

(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω) be a holomorphic

isometric embedding, p := p(Ω), and write Z := f(Bp+1). Then, there exists q ∈
Reg(∂Ω) such that Z = Vq ∩ Ω, where Vq ⊂ Σ is the union of minimal rational

curves on Σ passing through q, and F :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω) is congruent

to the holomorphic isometric embedding Fq :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω) given in

Theorem 2.3.

Recall here that p is given by c1(Σ) = (p + 2)δ and equivalently by p =

dim(Cx(Σ)) for the VMRT Cx(Σ) at any point x ∈ Σ.

Theorem 3.2 covers the case where Ω is a type-I domain DI(2, q), q ≥ 3 (which is

dual to the Grassmannian G(2, q)), the type-II domain DII(5, 5) (which is dual to

the 10-dimensional orthogonal Grassmannian GII(5, 5)) and the 16-dimensional ex-

ceptional domain DV (which is of type E6). The analogous uniqueness results when

Ω is a type-I domain DI(3, q), q ≥ 3, or when Ω is the 27-dimensional exceptional

domain DV I (which is of type E7) have also been established, cf. Yang [Ya17]. The

first open case is that of the type-III domain DIII(3, 3) (which is biholomorphic to

the Siegel upper half-plane H3 and dual to the 6-dimensional Lagrangian Grass-

mannian GIII(3, 3)), the only remaining irreducible bounded symmetric domain of

rank 3.

Here is a sketch of an approach that the author has proposed for proving

uniqueness up to reparametrization of nonstandard holomorphic isometries F :

(Bp+1; g) ↪→ (Ω, h), p = p(Ω), for irreducible bounded symmetric domains Ω of

rank ≥ 2 not biholomorphic to a type-IV domain DIV
n , n ≥ 3. Recall that Ω ⊂ Σ

is the Borel embedding, and that for x ∈ Σ, Vx is a union of minimal rational
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curves (i.e., projective lines on Σ with respect to the first canonical embedding

ν : Σ ↪→ P(Γ(Σ,O(1))∗)). Vx has an isolated singularity x, and Vx is homogeneous

under the stabilizer H ⊂ Aut(Σ) of Vx. Thus, for y1, y2 ∈ Vx −
{
x
}

, there exists

ϕ ∈ Aut(Σ) such that ϕ(y1) = ϕ(y2) and such that dϕ(Ty1(Vx)) = Ty2(Vx). Given

Z = F (Bp+1), the author proposed to show that at a general point z ∈ Z, the in-

clusion (Tz(Z) ⊂ Tz(Σ)) is transformed to (Ty(Vx) ⊂ Ty(Σ)) for a smooth point y

on Vx by dψ for some ψ ∈ Aut(Σ) such that ψ(z) = y. Our strategy consists more

precisely of (a) identifying the isomorphism class of the inclusion (Tz(Z) ⊂ Tz(Σ))

under the action of Aut(Σ) as described; (b) reconstructing Z as an open subset

of some Vx, and (c) proving that x = q ∈ ∂Ω.

The approach turns out to work for the rank-2 cases in Theorem 3.2 and the

rank-3 cases in Yang [Ya17]. Step (a) was established using methods of local

differential geometry based on the Gauss equations for the holomorphic isometry

F :
(
Bp+1, ds2

Bp+1 ;
)
↪→ (Ω, ds2

Ω). Step (b) is implemented by means of techniques of

reconstructing germs of complex submanifolds (S;x0) equipped with sub-VMRT

structures (cf. Mok-Zhang [MZ118]) modeled on certain uniruled projective subvari-

eties of classical Fano manifolds of Picard number 1. In general such reconstruction

consists of proving linear saturation (i.e., the property that the germ of a projec-

tive line (`;x) tangent to S at x ∈ S must necessarily lie on (S;x0)) by verifying

certain nondegeneracy conditions expressed in terms of second fundamental forms,

followed by a process of adjunction of minimal rational curves, as introduced in

Mok-Zhang [MZ118] and discussed in the expository article Mok [Mo16b]. In the

case at hand the models are the Schubert subvarieties Vx ⊂ Σ which are uniruled

by projective lines outside the isolated singularity x ∈ Vx (with the exception of

Lagrangian Grassmannians for which the method does not apply). Once we have

identified Z as an open subset of some Vx, it follows from Theorem 1.1 that x /∈ Ω

since Z ⊂ Ω must be nonsingular. From the identity theorem for real-analytic

functions it follows easily that x ∈ Reg(∂Ω).

4. Boundary behavior of holomorphic isometries

Regarding the boundary behavior of holomorphic isometric embeddings of the

Poincaré disk into a bounded symmetric domain, we have proved the following

general result on the boundary behavior of locally closed holomorphic curves on a

bounded symmetric domain Ω when the holomorphic curves exit ∂Ω.

Theorem 4.1. (Chan-Mok [CM17b]) Let b0 ∈ ∂∆, U be an open neighbor-

hood of a point b0 in C, Ω b CN be a bounded symmetric domain in its Harish-

Chandra realization, and let µ : U ↪→ CN be a holomorphic embedding such that

µ(U∩∆) ⊂ Ω and µ(U∩∂∆) ⊂ ∂Ω. Then, µ is asymptotically totally geodesic at a

general point b ∈ U ∩∂∆. More precisely, denoting by σ(z) the second fundamental

form of µ(U ∩∆) in (Ω, ds2
Ω) at z = µ(w), for a general point b ∈ U ∩ ∂∆ we have

limw∈U∩∆, w→b‖σ(µ(w))‖ = 0.

Since by Theorem 1.1 the graph of any holomorphic isometry (with respect to

scalar multiples of the Bergman metric) between bounded symmetric domains in
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their Harish-Chandra realizations extends to an affine-algebraic variety, it follows

from Theorem 4.1 that we have the following result on holomorphic isometries

from the unit disk to bounded symmetric domains.

Theorem 4.2. Let f : (∆, λds2
∆) ↪→ (Ω, ds2

Ω) be a holomorphic isometric embed-

ding, where λ is a positive constant and Ω b CN is a bounded symmetric domain

in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a

general point b ∈ ∂∆.

As a consequence of Theorem 4.2, we have

Theorem 4.3. (Chan-Mok [CM17b], Clozel [Cl07] for the classical

cases) Let D and Ω be bounded symmetric domains, Φ : Aut0(D) → Aut0(Ω)

be a group homomorphism, and F : D → Ω be a Φ-equivariant holomorphic map.

Then, F is totally geodesic.

Theorem 4.1 was first proved by Mok [Mo14a] under the stronger assumption

that µ(U ∩ ∂∆) ⊂ Reg(∂Ω). In that case we obtained at the same time the

estimate that for a general point b ∈ U ∩ ∂∆, there exists a relatively compact

open neighborhood U0 of b in U and a constant C ≥ 0 such that the estimate

‖σ(µ(w))‖ ≤ C(1 − ‖w‖) holds for w ∈ U0 ∩ ∆. The proof in Mok [Mo14a] is

direct and elementary. Although it is tempting to generalize the arguments of

[Mo14a] to the general situation where µ(U ∩∆) exits an arbitrary stratum of the

boundary (in its decomposition into Aut0(Ω)-orbits), the problem is more delicate

than it appears, and in Chan-Mok [CM17b]) we presented instead an indirect

proof involving rescaling and the use of the Poincaré-Lelong equation adopting a

methodology which is of independent interest in its own right.

The proof in [CM17b], which is sketched below, is by argument by contradiction,

and that is the reason why an asymptotic estimate of ‖σ‖ is lacking in general.

Write Z = µ(U ∩ ∆) and Z] = µ(U). For a general point b ∈ U , Z] is smooth

at µ(b) and the restriction of the Bergman metric of Ω on Z is of asymptotically

constant Gaussian curvature at µ(b). Suppose for the sake of argument by con-

tradiction that µ is not asymptotically totally geodesic at b. By rescaling one

extracts a holomorphic mapping F of the Poincaré disk which reflects the asymp-

totic behavior of µ at b. In particular F is a holomorphic isometric embedding

since µ is asymptotically of constant Gaussian curvature. We may further rescale

F if necessary and assume that the holomorphic isometry F is as “uniform” as one

desires (e.g., we may require that the norm of the second fundamental form to be

constant), and we obtain a contradiction to the existence of a certain “rescaled”

hypothetical and nonstandard holomorphic isometric embedding of the Poincaré

disk by reducing it to the case where Z ′ := F (∆) lies on a tube domain of rank

s ≤ r := rank(Ω), and where nonzero vectors tangents to Z ′ are of rank s, and by

applying the Poincaré-Lelong equation to the logarithm of the (constant) norm of

some “tautological” section of an Aut(Ω)-homogeneous holomorphic line bundle

over Z ′ (cf. [CM17b]). In the case of type-III domains (which are biholomorphic

to Siegel upper half-planes) the tautological section is a “twisted determinant” on

tangents to the curve when tangent vectors are identified with symmetric matrices.
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Theorem 4.2 should be contrasted with the existence result Theorem 2.3. There,

for Ω an irreducible bounded symmetric domain of rank ≥ 2 and for q ∈ Reg(∂Ω)

the holomorphic isometric embedding Fq :
(
Bp+1, ds2

Bp+1

)
↪→ (Ω, ds2

Ω) such that

Fq(Bp+1) = Vq = Vq ∩ Ω is never asymptotically totally geodesic.

5. Zariski closures of images of algebraic sets under uniformization

For a bounded symmetric domain Ω denote by Ω b CN ⊂ Σ the standard inclu-

sions incorporating both the Harish-Chandra embedding Ω b Cm into a Euclidean

space and the Borel embedding Ω ⊂ Σ into its dual Hermitian symmetric space

of the compact type. A subvariety S ⊂ Ω is said to be an irreducible algebraic

(sub)set if and only if it is an irreducible component of the intersection V ∩Ω for

some projective subvariety V ⊂ Σ. An algebraic subset S ⊂ Ω is by definition the

union of a finite number of irreducible algebraic subsets of Ω. In the case where

Ω = Bn, n ≥ 2, note that a totally geodesic complex submanifold of Bn is precisely

a non-empty intersection of the form Π ∩ Bn, where Π ⊂ Pn is a projective linear

subspace of Pn.

Any totally geodesic complex submanifold Ξ ⊂ Ω is an open subset of its dual

Hermitian symmetric space of the compact type Θ, Θ ⊂ Σ, so that Ξ ⊂ Ω is an

example of an algebraic subset. In connection with problems on a “dual” projective

geometry on quotients XΓ := Bn/Γ of the complex unit ball by a torsion-free lattice

Γ ⊂ Aut(Bn), the author was led first of all to study Zariski closures of images

of totally geodesic complex submanifolds S ⊂ Ω under the uniformization map

π : Bn → XΓ := Bn/Γ. From a geometric perspective the same problem can

be raised when Bn is replaced by a bounded symmetric domain Ω. It transpires

that similar questions were raised in number theory and functional transcendence

theory. In fact, it was conjectured that the Zariski closure of the image of an

algebraic subset S ⊂ Ω under the uniformization map π : Ω → XΓ := Ω/Γ must

necessarily be a totally geodesic subset when the lattice Γ is arithmetic. The

latter is known as the Hyperbolic Ax-Lindemann Conjecture, and it is one of the

two components for giving an unconditional proof of the André-Oort Conjecture

following the scheme of proof of Pila-Zannier [PZ08]. (See last two paragraphs of §5
for more details.) Here XΓ is equipped with a canonical quasi-projective structure

as given by Baily-Borel [BB66]. From a purely geometric perspective there is no

reason why one needs to restrict to arithmetic lattices, although assuming Ω to be

irreducible by Margulis [Ma84] nonarithmetic lattices Γ ⊂ Aut(Ω) only occur in

the rank-1 cases, i.e., in the cases of Ω = Bn, n ≥ 1. Focusing on the rank-1 cases

and using methods of complex differential geometry we have proven the following

theorems.

Theorem 5.1. (Mok [Mo17a]) Let n ≥ 2 be an integer and let Γ ⊂ Aut(Bn)

be a torsion-free lattice. Denote by XΓ := Bn/Γ the quotient manifold, of finite

volume with respect to the canonical Kähler-Einstein metric ds2
XΓ

induced from the

Bergman metric ds2
Bn. Let π : Bn → XΓ be the universal covering map and denote

by S ⊂ Bn an irreducible algebraic subset. Then, the Zariski closure Z ⊂ XΓ of

π(S) in XΓ is a totally geodesic subset.
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Theorem 5.2. (Mok [Mo17a]) Let A be any set of indices and Σα ⊂ XΓ,

α ∈ A, be a family of closed totally geodesic subsets of XΓ of positive dimension.

Write E :=
⋃{

Σα : α ∈ A
}

. Then, the Zariski closure of E in XΓ is a union of

finitely many totally geodesic subsets.

For a possibly nonarithmetic lattice Γ ⊂ Aut(Bn), XΓ in the above is endowed

a canonical quasi-projective structure defined by a compactification result of Mok

[Mo12b]. The latter result is deduced from L2-estimates of ∂ and from the com-

pactification theorem of Siu-Yau [SY82] yielding a Moishezon compactification of

complete Kähler manifolds of finite volume and of pinched strictly negative sec-

tional curvature.

Proposition 5.1. (Mok [Mo12b]) Writing X for XΓ in the notation of the

preceding theorems, there exists a projective variety Xmin such that X = Xmin−{
p1, · · · , pm

}
, where each pi, 1 ≤ i ≤ m, is a normal isolated singularity of Xmin.

In [Mo17a] we introduce a new framework into problems for functional transcen-

dence on not necessarily arithmetic finite-volume quotients of bounded symmetric

domains, although the methods were only applied there to the rank-1 case. In

what follows let Ω b CN be any possibly reducible bounded symmetric domain,

G0 be the identity component of Aut(Ω), Γ ⊂ G0 be a torsion-free lattice, and

Ω ⊂ Σ be the Borel embedding. Write G for the identity component of Aut(Σ).

Let now V ⊂ Σ be an irreducible subvariety and S ⊂ Ω be an irreducible alge-

braic subset, dim(S) =: s, which is an irreducible component of V ∩ Ω, and for

the ensuing discussion assume for convenience that the reduced subvariety V ⊂ Σ

corresponds to a smooth point of some irreducible component K of the Chow space

Chow(Σ) of Σ. Let ρ : U → K, µ : U → Σ be the universal family of K, and

write µ0 : U0 := U |µ−1(Ω) → Ω be the restriction of U over Ω. Then G acts on

U0 and by restriction G0 acts on U0.

Write XΓ := Ω/Γ, which is equipped with a canonical quasi-projective struc-

ture, πΓ : Ω → XΓ for the uniformization map and define Z ⊂ π(S)
Z ar

for the

Zariski closure of π(S) in XΓ, which admits a canonical quasi-projective structure.

µ0 : U0 → Ω descends to XΓ to give a locally homogeneous holomorphic fiber

bundle µΓ : UΓ → XΓ. In case Γ ⊂ G0 is cocompact, then µΓ : UΓ → XΓ is projec-

tive. When Γ ⊂ G0 is a nonuniform lattice, by the differential-geometric method

of compactification of Mok-Zhong [MZ289] we have a quasi-projective compactifi-

cation µΓ : UΓ → XΓ. In this context the meromorphic foliation F on U defined

by tautological liftings of W ⊂ Σ (of members W belonging to K) extends mero-

morphically to UΓ. (The proof of the extension was only written for the rank-1

case, but can be strengthened using [MZ289] to the general case.) The simplifying

assumption that V corresponds to a smooth point of K implies that F is holo-

morphic at a general point of V . We take the Zariski closure of the tautological

lifting S ⊂ UΓ to obtain Z = S
Z ar ⊂ UΓ and we have Z = µΓ(Z ). We proved

in [Mo17a] that Z is saturated with respect to the foliation F . Let now Z̃ ⊂ Ω be

an irreducible component of π−1
Γ (Z). From the saturation of Z under F it follows

that Z̃ is in a neighborhood of a general point x ∈ S the union of an analytic family
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Φ of (connected open subsets of) members of K, and the union of the members

of Φ then contains the germ of an s-dimensional complex submanifold Ξ of Σ at

b0 ∈ ∂Z̃.

Now we restrict to the rank-1 situation covered by Theorem 5.1 and Theorem

5.2. At a general point b ∈ ξ ∩ ∂Bn, Ξ ∩ Bn ⊂ Ξ is strictly pseudoconvex at b, and

from a computation of Klembeck [Kl78] Z̃ is asymptotically of constant negative

holomorphic sectional curvature. By a comparison with curvatures of (Bn, g) we

conclude that Z̃ ⊂ Bn is asymptotically totally geodesic. Now Z = Z̃/Γ′ for some

infinite subgroup Γ′ ⊂ Γ. In case Γ ⊂ G0 is cocompact let U b Z̃ be an open

relatively compact subset such that π(U) = Z. From strict pseudoconvexity of Z̃

at b there exists a sequence of elements γn ∈ Γ′ such that γn(x) converges to b for

any x ∈ U , and we conclude that Z̃ ⊂ Bn is totally geodesic, which gives Theorem

5.1 and Theorem 5.2 in the cocompact case. For the modification in this last step

to the case of a nonuniform lattice Γ ⊂ G0 we refer the reader to [Mo17a].

Here we get the total geodesy of Z̃ b Bn directly. A slight reformulation of

this last step makes it applicable to the higher rank situation, in the event that

Z̃ happens to be strictly pseudoconvex at b, as follows. From the asymptotic

curvature property of Z̃ at b we conclude that Z̃ is the image of a holomorphic

isometry F : Bs → Ω with respect to multiples of the Bergman metric. By Mok

[Mo12b], Z̃ ⊂ Ω is algebraic. In other words, both the domain and the target of the

covering map πΓ|Z̃ : Z̃ → Z are algebraic. If the lattice Γ ⊂ G0 is arithmetic, then

we can conclude that Z̃ ⊂ Ω and Z ⊂ XΓ are totally geodesic, by Ullmo-Yafaev

[UY11]. Without the arithmeticity assumption but using the special property that

Z̃ is strictly pseudoconvex at a general point of ∂Z̃, one can easily show that Z̃

is homogeneous under an algebraic subgroup of G0. Since Z̃ admits a quotient of

finite volume, this implies that Z̃ is a holomorphic isometric copy of a bounded

symmetric domain, and hence totally geodesic by Chan-Mok [CM17b, Theorem

5.19].

For the reader who may like to see how complex differential geometry could in-

teract with questions in diophantine geometry and functional transcendence, here

is a digression around the Hyperbolic Ax-Lindemann Conjecture. We start with

a special case of Ax’s Theorem (Ax [Ax71]) on Cn, with Euclidean coordinates

(z1, · · · zn). Let V ⊂ Cn be anm-dimensional irreducible affine algebraic subvariety.

Assume that 0 is a smooth point on V and that (z1, · · · , zm) serve as holomorphic

local coordinates on V at 0. For 1 ≤ k ≤ n define fk = 2πizk|V . Define π : Cn →
(C∗)n by π(z1, · · · , zn) = (e2πiz1 , · · · , e2πizn). Then, by [Ax71] the transcendence

degree of the field of functions on V generated by
{
f1, · · · , fn; ef1 , · · · , efn

}
is equal

to n + m unless V lies on a Q-hyperplane of Cn, i.e., unless π(V ) is contained in

an algebraic torus, equivalently a totally geodesic subvariety of (C∗)n with respect

to the Kähler metric on (C∗)n induced from the (translation-invariant) Euclidean

metric ds2
euc on Cn by the uniformization map π. In particular, when the n com-

ponent functions of π|V are algebraically dependent, it follows readily that the

Zariski closure of π(V ) ⊂ (C∗)n is an algebraic torus T ( (C∗)n. This gives the

Ax-Lindemann Theorem for the exponential map.
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If for Ax-Lindemann we replace Cn by a bounded symmetric domain and denote

now by π : Ω → Ω/Γ =: XΓ the uniformization map for a torsion-free arithmetic

lattice Γ ⊂ Aut(Ω), and replace V ⊂ Cn by an algebraic subset S ⊂ Ω, the

analogous conjectural statement was that the Zariski closure of π(S) in XΓ is nec-

essarily a totally geodesic subset, commonly called the Hyperbolic Ax-Lindemann

Conjecture. Pila-Zannier [PZ08] adopted a strategy for conjectures regarding spe-

cial points. For the André-Oort Conjecture regarding Zariski closures of sets of

special points on Shimura varieties it led to a reduction of the conjecture into two

components, a number-theoretic component concerning lower bounds for the sizes

of Galois orbits and a geometric component which is precisely the Hyperbolic Ax-

Lindemann Conjecture, a conjecture by now confirmed by Ullmo-Yafaev [UY14]

in the cocompact case, by Pila-Tsimerman [PT14] for Ag, and by Klingler-Ullmo-

Yafaev [KUY16] in the general case. A crucial ingredient is o-minimal geome-

try, especially counting arguments on rational points of Pila-Wilkie [PW06] in a

model-theoretic context (cf. also Bombieri-Pila [BP89]), and methods of Peterzil-

Starchenko [PS09] on tame complex analysis. Complex differential geometry en-

tered into play in [KUY16], where volume estimates of Hwang-To [HT02] on subva-

rieties on bounded symmetric domains were used in an essential way. Applications

of hyperbolic Ax-Lindemann to number theory are given in Ullmo [Ull14], and

uses of o-minimality in functional transcendence are expounded in Pila [Pi15]. For

the broader context of problems in arithmetic and geometry related to unlikely

intersection, we refer the reader to Zannier [Za12].

6. Perspectives and concluding remarks

In this article the author has been discussing various aspects of his recent works

in part with collaborators on the topic of holomorphic isometries in Kähler geom-

etry, together with some references to related recent results by other researchers.

Our discussion was on research problems intrinsic to complex differential geom-

etry and also on the use of holomorphic isometries in other contexts. To gauge

how research on the topic could develop in the future the author would venture

to examine it (a) from the point of view of a complex differential geometer, (b) in

connection with applications to other subject areas in mathematics and (c) with an

eye on identifying new directions of research. As is the flavor of this article, these

are only reflections from the author prompted by his own research involvement

and does not represent a comprehensive overview on the subject.

The study of holomorphic isometries on Kähler geometry is by its very definition

intrinsic to complex differential geometry, and the subject took shape from works of

Bochner and Calabi, notably the seminal work of Calabi [Ca53]. In the tradition of

classical differential geometry and focusing on bounded symmetric domains, recent

progress on the subject include existence and uniqueness results, structural and

characterization theorems and results on the asymptotic geometry of holomorphic

isometric embeddings into bounded symmetric domains. The structure of the full

set of holomorphic isometries between two given bounded symmetric domains is a

natural object of study, but so far only in very special cases are we in a position to
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classify such maps. For instance, in the case of maps from the Poincaré disk into

polydisks, while classical techniques involving functional identities arising from

diastases and the study of branched coverings of compact Riemann surfaces have

led to some neat classification results in low dimensions, the complexity of such

objects grows very fast with dimensions, and it appears that in this and other

characterization problems new tools are necessary for general results.

As an example, in the study of holomorphic isometries from complex unit balls

of maximal dimension into an irreducible bounded symmetric domain, the geomet-

ric theory of varieties of minimal rational tangents has been a source of methods

both for existence results and for structural results notably in the reconstruction

of images of holomorphic isometric embeddings via the method of geometric sub-

structures. Another new source of methods is the use of Jordan algebras and

operator theory on Hilbert spaces in Upmeier-Wang-Zhang [UWZ17]. It is for

instance tempting to study holomorphic isometric embeddings from the Poincaré

disk into polydisks via linear isometries between Hilbert spaces of functions, and

the methods developed could shed light on factorization problems especially the

question whether the p-th root maps are the “generators” of holomorphic isome-

tries between polydisks. The space of holomorphic isometries from the complex

unit ball into a bounded symmetric domain forms a real algebraic variety, and the

result that images of bona fide holomorphic isometries arise from linear sections

with respect to the minimal canonical embedding gives an effective bound on the

number of parameters for its description. From Chan [Ch17b]) one would expect

that the same is valid for holomorphic isometries with other normalizing constants,

and a confirmation of that belief in the general case would be a unifying result for

bounded symmetric domains.

The author was led to consider holomorphic isometries of Kähler manifolds

and related topics (such as holomorphic measure-preserving maps) in order to

answer questions concerning modular correspondences on finite-volume quotients

of bounded symmetric domains, notably questions in arithmetic dynamics raised

by Clozel-Ullmo [CU03] concerning commutants of such correspondences. Thus, it

was around bounded symmetric domains that the author started his investigation,

and it is gratifying to see that the study of holomorphic isometries from complex

unit balls into bounded symmetric domains finds its way into problems in func-

tional transcendence theory. A primary issue in functional transcendence theory

is the question of generating algebraic subsets from processes which are a priori

complex-analytic, and the use of holomorphic isometries provides such a means,

viz., from the algebraicity of such maps due to the rationality of Bergman kernels.

The link between holomorphic isometries with the uniformization map arises when

some strictly pseudoconvex complex tangential directions are picked up as complex-

analytic families of algebraic subsets traverse the boundary of bounded symmetric

domains, and the asymptotic curvature behavior is then recaptured through rescal-

ing arguments. Further input from complex differential geometry into problems

in functional transcendence theory could involve the study of asymptotic geomet-

ric behavior as complex-analytic families of algebraic subsets exit the boundary
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of bounded symmetric domains (or more generally flag domains, cf. second last

paragraph). In this regard, the work of Chan-Mok [CM17b] on the asymptotic

curvature behavior when holomorphic curves exit boundaries of bounded symmet-

ric domains is a step in this direction, and for the general question the fine structure

of boundaries of bounded symmetric domains in their Harish-Chandra realizations

(cf. Wolf [Wo72]) will enter into play.

In other directions holomorphic isometries in Kähler geometry are a source of

examples for further study in other areas of mathematics. In several complex vari-

ables they may give new examples of proper holomorphic maps exhibiting new

qualitative behavior (e.g., Chan-Xiao-Yuan [CXY17]). They may give algebraic

subsets of bounded symmetric domains admitting interesting geometric substruc-

tures (e.g., holomorphic isometries of complex unit balls into Lie spheres give rise to

possibly degenerate holomorphic conformal structures), and they are also related

to the study of some special Schubert varieties (cf. [Mo16a], [Mo17b]). The latter

examples could motivate differential-geometric characterizations of (open subsets

of) wider classes of Schubert varieties.

In the seminal paper of Calabi [Ca53] complex space forms endowed with pseudo-

Kähler metrics were already studied. Beyond bounded symmetric domains it would

be natural, both from the point of view of developing the theory of holomorphic

isometries in a pseudo-Kählerian context, and in connection with the study of func-

tional transcendence, to generalize to the study of quotients of large classes of flag

domains (cf. Fels-Huckleberry-Wolf [FHW06]), especially those admitting invariant

pseudo-Kähler metrics and compatible filtrations of the holomorphic tangent bun-

dles. These include the period domains for complex variations of Hodge structures,

but ought to be broader in scope, and it will be interesting to construct horizontal

algebraic subvarieties of such flag domains and to study horizontal holomorphic

isometries into such flag domains and their connection to various questions in

functional transcendence.

Finally, research on holomorphic isometries in Kähler geometry may have acted

as a catalyst to highlight the relevance of complex differential geometry in the

study of Shimura varieties which are by their very definition arithmetic quotients

of bounded symmetric domains. Years ago the author had harbored the hope

that Bergman metrics could be made use of in treating number-theoretic problems

on Shimura varieties. With the advance of methods from diophantine geometry

and model theory and the schematic reduction of outstanding problems on special

points to issues involving unlikely intersection, the hope is already reality. From the

point of view of complex differential geometry the study of holomorphic isometries

serves perhaps as a path through the fascinating territory of Shimura varieties

and their generalizations, and its proper role in tackling problems in functional

transcendence will depend on future interaction between analytic, algebraic and

model-theoretic perspectives in the study of such varieties.
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