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Abstract Recently Mok and Zhang introduced the notion of admissible pairs (X0, X) of rational homogeneous

spaces of Picard number 1 and prove rigidity of admissible pairs (X0, X) of the subdiagram type whenever X0 is

nonlinear. It remains unsolved whether rigidity holds when (X0, X) is an admissible pair not of the subdiagram

type of nonlinear irreducible Hermitian symmetric spaces such that (X0, X) is nondegenerate for substructures.

In this article we provide sufficient conditions for confirming rigidity of such an admissible pair. In a nutshell

our solution consists of an enhancement of the method of propagation of sub-VMRT structures along chains of

minimal rational curves as is already implemented in the proof of the Thickening Lemma of Mok-Zhang. There

it was proven that, for a sub-VMRT structure $ : C (S)→ S on a uniruled projective manifold (X,K) equipped

with a minimal rational component and satisfying certain conditions so that in particular S is “uniruled” by

open subsets of certain minimal rational curves on X, for a “good” minimal rational curve ` emanating from

a general point x ∈ S, there exists an immersed neighborhood N` of ` which is in some sense “uniruled” by

minimal rational curves. By means of the Algeraicity Theorem of Mok-Zhang (2019), S can be completed to

a projective subvariety Z ⊂ X. By the author’s solution of the Recognition Problem for irreducible Hermitian

symmetric spaces of rank > 2 (2008) and under Condition (F), which symbolizes the fitting of sub-VMRTs into

VMRTs, we further prove that Z is the image under a holomorphic immersion of X0 into X which induces

an isomorphism on second homology groups. By studying C∗−actions we prove that Z can be deformed via

a one-parameter family of automorphisms to converge to X0 ⊂ X. Under the additional hypothesis that all

holomorphic sections in Γ(X0, TX |X0
) lift to global holomorphic vector fields on X, we prove that the admissible

pair (X0, X) is rigid. As examples we check that (X0, X) is rigid when X is the Grassmannian G(n, n) of n-

dimensional complex vector subspaces of W ∼= C2n, n > 3, and when X0 ⊂ X is the Lagrangian Grassmannian

consisting of Lagrangian vector subspaces of (W,σ) where σ is an arbitrary symplectic form on W .
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1 Introduction

The prototype of geometric structures are G-structures over smooth manifolds. Riemannian manifolds on

an m-dimensional smooth manifold gives a smooth reduction from GL(m;R) to O(m), a Kähler metric on

a complex n-dimensional complex manifold X underlies a smooth U(n) structure on X, which is further

reduced to an SU(n) structure in case the Kähler metric is Ricci flat.

In the case of holomorphic geometry, a holomorphic conformal structure on an n-dimensional complex

manifold gives a holomorphic reduction of the holomorphic frame bundle from GL(n;C) to C∗ ·O(n;C),

where O(n;C) is the complex orthogonal group of invertible n-by-n matrices A with coefficients in C
satisfying AAt = In. For p, q > 2, a (pq)-dimensional manifold is said to admit a holomorphic Grassmann

structure modeled on the Grassmannian G(p, q) if and only if the holomorphic frame bundle can be

reduced from GL(pq;C) to the image L ⊂ GL(pq;C) of the group homomorphism Φ : GL(p;C)×GL(q;C)

in GL(pq;C) defined by Φ(A,B)(Z) = BZAt. (Here in Harish-Chandra coordinates G(p, q) is taken to

be a compactification of the complex vector space M(q, p;C) of q-by-p matrices with coefficients in C.)

Thus, a Grassmann structure on a complex manifold is an isomorphism TX ∼= U ⊗ V as holomorphic

vector bundles in which U and V are holomorphic vector bundles on X of rank > 2. The hyperquadric

is endowed with a flat holomorphic conformal structure, and a Grassmannian of rank > 2 with a flat

Grassmann structure. Here and henceforth, without explicitly mentioning it, G-structures on complex

manifolds are understood to be holomorphic.

In Riemannian geometry there is the Riemannian curvature tensor, and the flat Euclidean space is

characterized locally as the underlying manifold of a Riemannian manifold with vanishing curvature

tensor. In holomorphic geometry one can characterize the hyperquadric locally as the underlying complex

manifold of a holomorphic conformal structure with vanishing Bochner-Weyl tensor. For each G-structure

defined by a reductive linear subgroup G ⊂ GL(m;R) Guillemin [Gu65] introduced a finite number of

curvature-like tensors with the property that a flat model of the G-structure is characterized by the

vanishing of the totality of such tensors, and the same applies to holomorphic geometry for reductive

linear subgroups G ⊂ GL(n;C).

Specializing to Fano manifolds, as one of the first results from our work on geometric structures modeled

on VMRTs (varieties of minimal rational tangents), Hwang-Mok [HM97] characterized irreducible n-

dimensional Hermitian symmetric spaces X of rank > 2 as the unique uniruled projective manifolds

which admit irreducible G-structures for some reductive linear subgroups G ( GL(V ), V ∼= Cn. Here a

G-structure is said to be irreducible if and only if G acts irreducibly on V .

When one considers X as an ambient manifold underlying a G-structure, in analogy to the study

of (germs of) Riemannian submanifolds on Riemannian manifolds it is natural to consider (germs of)

complex submanifolds on X which in some sense inherit geometric structures from X. This type of

problems appeared in the first instance in the works of Bryant [Br01] and Walters [Wa97] on the question

of Schur rigidity for smooth Schubert cycles X0 on a Hermitian symmetric space X, where X0 ⊂ X is

said to be Schur rigid if and only if for any positive integer r the only cycles Z ⊂ X homologous to r·X0

must necessarily be of the form γ1X0 + · · ·+γrX0 for some γ1, · · · , γr ∈ Aut(X), In their works, in which

among other things the problem was solved for certain sub-Grassmannians, a crucial step in the solution

was a proof of Schubert rigidity for the pair (X0, X). Here (X0, X) is said to be Schubert rigid if, given

any connected open subset U ⊂ X and any complex submanifold S ⊂ U , dim(S) = dim(X0), such that

for any x ∈ S, S is tangent at x to γx(X0) for some γx ∈ Aut(X), S must necessarily be an open subset

of γX0 for some γ ∈ Aut(X). The problem of Schur rigidity for smooth Schubert varieties on irreducible

Hermitian symmetric spaces of the compact type was settled by Hong [Ho07], and the analogous problem

for singular Schubert cycles on Grassmannians were in part solved by Hong [Ho05]. In Robles-The [RT12],

a complete solution for Schur rigidity for Schubert cycles was obtained. We note that in all of the works

cited in the above, a crucial part of the arguments relies on the study of cohomology groups associated

to Lie algebras.

From a completely different perspective, as an outgrowth of the geometric theory of uniruled projective

manifolds modeled on VMRTs of one of the authors with J.-M. Hwang, Hong-Mok [HoM10] and Hong-
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Park [HoP11] studied via VMRT geometry the characterization of smooth Schubert cycles X0 ⊂ X on

a rational homogeneous space X of Picard number 1. In [HoM10] we introduced the notion of VMRT-

respecting germs of holomorphic maps and also the method of parallel transport of VMRTs along minimal

rational curves. For instance, for a pair (X0, X) of nonlinear rational homogeneous spaces of Picard num-

ber 1 of the subdiagram type, by [HoM10] and [HoP11] the image of any VMRT-respecting holomorphic

immersion i : (X0; 0) → (X; 0) must necessarily extend holomorphically to γX0 for some γ ∈ Aut(X).

In [HoM10] we introduced the notion of nondegeneracy for holomorphic mappings for pairs of VM-

RTs expressible in terms of projective second fundamental forms and established non-equidimensional

Cartan-Fubini extension for VMRT-respecting germs of holomorphic immersions between uniruled pro-

jective manifolds of Picard number 1 under such an assumption of nondegeneracy. In Hong-Mok [HoM13]

using VMRT structures we established the multiplicity-free case of Schur rigidity for nonlinear smooth

Schubert cycles on rational homogeneous spaces of Picard number 1.

In Mok-Zhang [MZ19] we introduced the notion of admissible pairs (X0, X) of rational homogeneous

spaces of Picard number 1 and prove rigidity of admissible pairs (X0, X) of the subdiagram type whenever

X0 is nonlinear. In the case of the subdiagram type this recovers Schubert rigidity in the symmetric

case by a different method and extends the result to the general case of rational homogeneous spaces.

Let W ⊂ X be an open subset of a uniruled projective manifold X equipped with a minimal rational

component and S ⊂ W be a complex submanifold such that, defining C (S) := C (X) ∩ PT (S), the

canonical map $ : C (S)→ S is dominant and it defines a sub-VMRT structure in some precise sense, we

show that S is saturated with respect to open subsets of minimal rational curves of X lying on S under a

condition of nondegeneracy of substructures expressible in terms of projective second fundamental forms

and an additional condition, called Condition (T), concerning the intersection C (S) := C (X) ∩ PT (S),

and prove that S can be extended to a projective subvariety Z ⊂ X. In the case where S ⊂W inherits a

sub-VMRT structure modeled on (X0, X) for some admissible pair (X0, X) of rational homogeneous space

of Picard number 1, the Condition (T), which is the condition Tα(C̃x(S)) = Tx(C̃[α](X))∩Tx(S), holds for

any point x ∈ S and a general member α ∈ Cx(S) (where for a complex vector space V and for a subset

E ⊂ PV , E ⊂ V −{0} denotes its affinization). We proved in [MZ19] that for an admissible pair (X0, X)

of the subdiagram type, 0 ∈ X0 ⊂ X, the pair (C0(X0),C0(X)) is nondegenerate for substructures if and

only if it is nondegenerate for mappings, and conclude with the proofs of [HoM10] and [HoP11] that the

pair (X0, X) is rigid whenever (X0, X) is of the subdiagram type and X0 is nonlinear.

On the other hand admissible pairs (X0, X) need not be of the subdiagram type. Specializing to

the case where X0 and X are of the Hermitian type, we have the prototypical examples of pairs of

hyperquadrics (Qm, Qn), 3 6 m 6 n, where Qm ⊂ Qn are embedded in the standard way, and the case of

(GIII(n, n), G(n, n)) of the standard embedding of the Lagrangian Grassmannian into the Grassmannian,

n > 3. The pair (Qm, Qn)) is degenerate for substructures, but (GIII(n, n), G(n, n)) is nondegenerate

for substructures for n > 3. In [Zh14, Main Theorem 2] admissible pairs (X0, X) not of the subdiagram

type of nonlinear irreducible Hermitian symmetric spaces of the compact type were classified, and it was

determined which of them are nondegenerate for substructures. It was shown by explicit examples that

(X0, X) is not rigid whenever (X0, X) is degenerate for substructures.

It remains unsolved whether rigidity holds when (X0, X) is an admissible pair not of the subdiagram

type of nonlinear irreducible Hermitian symmetric spaces such that (C0(X0),C0(X)) is nondegenerate

for substructures. In this article we provide a sufficient conditions for confirming rigidity of such an

admissible pair. In a nutshell our solution consists of an enhancement of the method of propagation of

sub-VMRT structures along chains of minimal rational curves as is already implemented in the proof of the

Thickening Lemma of Mok-Zhang [MZ19, Proposition 6.1]. There it was proven that, for a sub-VMRT

structure $ : C (S) → S on a uniruled projective manifold (X,K) equipped with a minimal rational

component and satisfying certain conditions so that in particular S is “uniruled” by open subsets of

certain minimal rational curves of X, for a “good” minimal rational curve ` emanating from a general

point x ∈ S, there exists an immersed neighborhood N` of ` which is in some sense “uniruled” by minimal

rational curves.

We return now to the case of sub-VMRT structures modeled on an admissible pair (X0, X) of nonlinear
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Hermitian symmetric spaces of the compact type. In this case X is uniruled by projective lines, the VMRT

C0(X) ⊂ PT0(X) is linearly nondegenerate, the “collar” N` ⊃ ` may be taken to be embedded, and we

deduce from the “Algebraicity Theorem” [MZ19, Main Theorem 2] that S ⊂ Z for some projective

subvariety Z ⊂ X such that dim(Z) = dim(S). On the one hand, there is a unique dominant component

C (N`) of C 0(N`) := C (X) ∩ PT (N`) obtained by tangential intersection, and the canonical projection

$′ : C (N`) → N` serves as a candidate for the analytic continuation of $ : C (S) → S from S to the

collar N` of `. On the other hand, making use of the deformation of minimal rational curves Λ ⊂ N` and

the explicit construction of such collars N`, where X0 is endowed with a flat L0-structure for a reductive

linear subgroup L0 ( GL(T0(X0)), which is equivalently the identity component of the stabilizer subgroup

of C0(X0) ⊂ C0(X), we obtain by parallel transport of relative projective second fundamental forms of

(Cx(S) ⊂ Cx(X)) along tautological liftings Λ̂ of minimal rational curves Λ ⊂ N`, and conclude from

the method of parallel transport of Mok [Mo08b] the existence of an L0-structure C (N`) ⊂ PT (N`)

on N` extending the germ of L0-structure on S at an initial point x0 ∈ S, which is necessarily flat by

analytic continuation in view of the characterization of flatness of G-structures for proper reductive linear

subgroups G as given by Guillemin [Gu65].

While at the initial point x0, all minimal rational curves emanating from x0 and tangent to N` are

“good”, this is not obvious for Cz(N`) ⊂ Cz(X) at a point z ∈ N` obtained by propagation of sub-

VMRTs. Modulo a property which we call Condition (F), which suggests the fitting of sub-VMRTs,

(Cz(N`) ⊂ Cz(X)) is projectively equivalent to (C0(X0) ⊂ C0(X)), and every minimal rational curve

emanating from z and tangent to N` is a “good” minimal rational curves, and the argument of parallel

transport can be iterated to allow us to show that Z ⊂ X is an immersed projective manifold such

that the normalization Z̃ of Z, which is nonsingular, is endowed with a flat L0-structure. Hence, the

rationally connected and hence simply connected projective manifold Z̃ is biholomorphically equivalent

to the model manifold X0, and Z ⊂ X is the image of X0 under a holomorphic immersion h : X0 → X

of degree 1 into X.

Cirtical to our proofs of the main results is the use of deformation theory on the cycle Z, dim(Z) =: s.

First of all, by means of a C∗-action on X with an isolated fixed point x0 which is a smooth point of Z, we

can deform Z by flattening at x0 to the sum of a model submanifold which is translate of X0 together with

an s-cycle A at infinity with respect to a choice of Harish-Chandra coordinates. Then we show that A = ∅
by a calculation of volumes based on the fact that aforementioned holomorphic immersion h : X0 → X is

of degree 1, which implies that, modulo a global automorphism, Z is a local deformation of X0. From the

local rigidity of X0 ⊂ X we conclude that Z is itself a translate of X0 provided that small deformations

of X0 are induced by global automorphisms of X, which introduces for us a second condition, viz., the

surjectivity of the restriction map r : Γ(X,TX) → Γ(X0, TX |X0
) defined by r(η) = η|X0

. In principle

this property and Condition (F) can be checked case-by-case from the classification of admissible pairs

of nonlinear irreducible Hermitian symmetric spaces of the compact type of Zhang [Zh14], but we will

leave that aside and end the article for the purpose of illustration of applications of the Main Theorem

with the examples of Lagrangian Grassmannians GIII(n, n) in Grassmannians G(n, n), n > 3 (where the

admissible pair (GIII(n, n), G(n, n)) is nondegenerate for substructures), and those of hyperquadrics Qm

in hyperquadrics Qn, 3 6 m 6 n (where the admissible pair (Qm, Qn) is degenerate for substructures).

2 Background materials

We collect first of all basic definitions and results concerning VMRTs and sub-VMRTs relevant to the

study of admissible pairs (X0, X) of Hermitian symmetric spaces of the compact type. These are taken

from Hwang-Mok [HM97], Mok [Mo08b] and Mok-Zhang [MZ19]. We also refer the reader to Hwang-Mok

[HM99] and Mok [Mo08a] as general references on the geometric theory of VMRTs, and to the more recent

survey article Mok [Mo16] for an exposition on VMRT theory incorporating the study of sub-VMRTs.

Theorem 2.1 (Hwang-Mok [HM97, Main Theorem]). Let V be a finite dimensional complex vector

space and G ⊂ GL(V ) be an irreducible faithful representation of a connected reductive complex Lie
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group G. Let X be a uniruled projective manifold endowed with a holomorphic G-structure. Then, the

holomorphic G-structure is flat. Moreover, if G ( GL(V ), then X is biholomorphically equivalent to an

irreducible Hermitian symmetric space of the compact type and of rank > 2.

Theorem 2.2 (Special case of [Mo08b, Main Theorem]). Let S be a Hermitian symmetric space of

the compact type. For a reference point 0 ∈ S, let C0(S) denote the variety of minimal rational tangents

on S. Let M be a Fano manifold of Picard number 1 and K be a minimal rational component on M .

Suppose the variety of K-rational tangents at a general point x ∈ X is isomorphic to C0(S) as a projective

subvariety. Then, M is biholomorphic to S.

Definition 2.1 ([MZ19, Definition 1.1]). Let X0 and X be rational homogeneous spaces of Picard

number 1, and i : X0 ↪→ X be a holomorphic embedding equivariant with respect to a homomorphism of

complex Lie groups Φ : Aut0(X0) → Aut0(X). We say that (X0, X; i) is an admissible pair (of rational

homogeneous spaces of Picard number 1) if and only if (a) i induces an isomorphism i∗ : H2(X0,Z)
∼=−→

H2(X,Z), and (b) denoting by O(1) the positive generator of Pic(X) and by ρ : X ↪→ P(Γ(X,O(1))∗) =:

PN the first canonical projective embedding of X, ρ ◦ i : X0 ↪→ PN embeds X0 as a (smooth) linear

section of ρ(X).

Definition 2.2 ([MZ19, Definition 1.2]). Let (X0, X) be an admissible pair of rational homogeneous

spaces of Picard number 1, W ⊂ X be a connected open subset in the complex topology, and S ⊂ W

be a complex submanifold. Consider the fibered space π : C (X) → X of varieties of minimal rational

tangents on X. For every point x ∈ S define Cx(S) := Cx(X) ∩ PTx(S) and write $ : C (S) → S

for $ = π
∣∣
C (S)

, $−1(x) := Cx(S) for x ∈ S. We say that S ⊂ W inherits a sub-VMRT structure

modeled on (X0, X) if and only if for every point x ∈ S there exists a neighborhood U of x on S and

a trivialization of the holomorphic projective bundle PTX |U given by Φ : PTX |U
∼=−→ U × PT0(X) such

that (1) Φ(C (X)|U ) = U × C0(X) and (2) Φ(C (S)|U ) = U × C0(X0).

A central concept in our study of admissible pairs (X0, X) of rational homogeneous spaces of Picard

number 1 is the notion of rigidity on such pairs, as defined in [MZ18], as follows.

Definition 2.3. An admissible pair (X0, X) of rational homogeneous spaces of Picard number 1 is

said to be rigid if and only if for any connected open subset W ⊂ X, any complex submanifold S ⊂ W

inheriting a sub-VMRT structure modeled on (X0, X) must necessarily be an open subset of γ(X0) ⊂ X
for some γ ∈ Aut(X). We also say equivalently that sub-VMRT structures modeled on (X0, X) are rigid.

In [MZ19] the general notion of sub-VMRT structures was introduced for a uniruled projective manifold

(X,K) equipped with a minimal rational component. Denote by Q the irreducible component of the Chow

space of X whose general member is a minimal rational curve on X belonging to K. By the bad locus

of (X,K) we mean the smallest subvariety B ( X such that all elements of Q not contained in B must

necessarily be a minimal rational curve. By the enhanced bad locus B′ ⊃ B we mean the smallest

subvariety of X outside which the (pointwise) tangent maps are birational morphisms.

Definition 2.4 ([MZ19, Definition 5.1]). Let X be a uniruled projective manifold, and K be a minimal

rational component on X, B′ ( X be the enhanced bad locus of (X,K. Let π : C (X) → X be the

underlying VMRT structure of (X,K). Let W ⊂ X − B′ be a connected open subset in the complex

topology, and S ⊂W be a complex submanifold. For every point x ∈ S define Cx(S) := Cx(X)∩PTx(S)

and write $ : C (S)→ S for $ = π
∣∣
C (S)

, $−1(x) := Cx(S) for x ∈ S. We say that $ := π|C (S) : C (S)→
S is a sub-VMRT structure on (X,K) if and only if (a) the restriction of $ to each irreducible component

of C (S) is surjective; (b) at a general point x ∈ S and for any irreducible component Γx of Cx(S), we

have Γx 6⊂ Sing( Cx(X)); (c) for some positive integer m the fiber Cx(S) of $ : C (S)→ S has exactly m

of irreducible components for every point x on S; and (d) for each irreducible component Γk,x of Cx(S),

1 6 k 6 m, $ : C (S)→ S is a holomorphic submersion at a general point χk of Γk,x.

Definition 2.5 ([MZ19, Definition 5.4]). Let $ : C (S) → S, C (S) := C (X) ∩ PT (S), be a sub-

VMRT structure on S ⊂ W ⊂ X−B′. For a point x ∈ S, and [α] ∈ Reg(Cx(S)) ∩ Reg(Cx(X)), we

say that (Cx(S), [α]), or equivalently (C̃x(S), α), satisfies Condition (T) if and only if Tα(C̃x(S)) =
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Tα(C̃x(X)) ∩ Tx(S). We say that $ : C (S) → S satisfies Condition (T) at x if and only if (C̃x(S), [α])

satisfies Condition (T) for a general point [α] of each irreducible component of Reg(Cx(S))∩Reg(Cx(X)).

We say that $ : C (S) → S satisfies Condition (T) if and only if it satisfies the condition at a general

point x ∈ S.

In Mok-Zhang [MZ19] the notion of nondegeneracy for substructures for sub-VMRT structures was

introduced. For our purpose we need the notion only for the special case where the ambient manifold

is a rational homogeneous space X, and $ : C (S) → S is a sub-VMRT structure modeled on an

admissible pair of rational homogeneous spaces (X0, X) of Picard number 1. Write D ⊂ TX for the

distribution linearly spanned at a general point x ∈ X by the affinized variety of minimal rational

tangents C̃x(X) ⊂ Tx(X)− {0}. We have

Definition 2.6 ([MZ19, Definition 3.2]). Let (X0, X) be an admissible pair of rational homogeneous

spaces of Picard number 1. Let 0 ∈ X0 ⊂ X be a reference point and α ∈ C̃0(X0) be arbitrary. Write

Pα = Tα(C̃0(X)), and denote by σα : S2Pα → T0(X)
/
Pα the second fundamental form of C̃0(X) ⊂

T0(X) − {0} at α with respect to the flat connection on T0(X) as a Euclidean space. Denote by να :

T0(X)
/
Pα → T0(X)

/
(Pα + (D0 ∩ T0(X0))) the canonical projection. Writing τα := να ◦ σα, so that

τα : S2Pα → T0(X)
/

(Pα + (D0 ∩ T0(X0))), define

Ker τα( · , Tα(C̃0(X0))) :=
{
η ∈ Tα(C̃0(X)) : τα(η, ξ) = 0 for every ξ ∈ Tα(C̃0(X0)) = Pα ∩ T0(X0).

}
.

We say that (C0(X0),C0(X)) is nondegenerate for substructures if and only if for a general point α ∈
C̃0(X0) we have Ker τα( · , Tα(C̃0(X0))) = Tα(C̃0(X0)), which is the same as Pα ∩ T0(X0).

We also say that (X0, X) is nondegenerate for substructures to mean that (C0(X0),C0(X)) is nonde-

generate for substructures.

For the study of sub-VMRT structures $ : C (S) → S, we have the following preparatory result

relating the pointwise hypothesis concerning (C0(X0),C0(X)) and the family of sub-VMRTs Cx(S) =

Cx(X))PTx(S) as x varies over points x on S.

Lemma 2.1 ([MZ19, Lemma 1.1]). Let (X0, X) be an admissible pair of rational homogeneous spaces

of Picard number 1, W ⊂ X be a connected open subset, and S ⊂ W be a complex submanifold. Define

C (S) := C (X) ∩ PT (S) and write $ : C (S)→ S for the canonical projection, $−1(x) =: Cx(S) for any

point x ∈ S. Suppose (Cx(S) ⊂ PTx(X)) is projectively equivalent to (C0(X0) ⊂ PT0(X)) for any point

x ∈ S. Then, $ : C (S)→ S is a holomorphic submersion.

By the same type of arguments as in Lemma 2.1 we have the following well-known result for holomor-

phically fibered spaces with irreducible nonsingular compact fibers which we state for easy reference.

Lemma 2.2. Let α : Z → ∆ be a proper holomorphic map over the unit disk ∆ such that for any base

point t ∈ ∆ the fiber Zt := α−1(t) is connected, nonsingular and reduced. Then, α : Z → ∆ is a regular

family of compact complex manifolds.

For a uniruled projective manifold (X,K) and a locally closed complex submanifold S ⊂ X inheriting

a sub-VMRT structure, we say that S is K-saturated or just rationally saturated (when the choice of K is

implicitly understood) if and only if for every K-rational curve ` ⊂ X passing through some point x0 ∈ S
and tangent to S at x0, (` ∩ S;x0) must necessarily agree with the germ of curve (`;x0).

Theorem 2.3 ([MZ19, Theorem 1.4]). Let (X,K) be a uniruled projective manifold X equipped with a

minimal rational component K with associated VMRT structure given by π : C (X) → X. Assume that

at a general point x ∈ X, the VMRT Cx(X) is irreducible. Write B′ ⊂ X for the enhanced bad locus of

(X,K). Let W ⊂ X−B′ be a connected open subset, and S ⊂ W be a complex submanifold such that,

writing C (S) := C (X)|S ∩ PT (S) and $ := π
∣∣
C (S)

, $ : C (S) → S is a sub-VMRT structure satisfying

Condition (T). Suppose furthermore that for a general point x on S and for each of the irreducible

components Γk,x of Cx(S), 1 6 k 6 m, the pair (Γk,x,Cx(X)) is nondegenerate for substructures. Then,

S is rationally saturated with respect to (X,K).

By a distribution D on a complex manifold M we mean a coherent subsheaf of the tangent sheaf T (M).
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D is said to be bracket generating if and only if, defining inductively D1 = D , Dk+1 = Dk +[D ,Dk], for a

general point x ∈M , we have Dm|U = T (U) on some neighborhood U of x for m sufficiently large. Here

and in what follows we say that a Fano manifold X of Picard number 1 is uniruled by (projective) lines

if it is equipped with a minimal rational component K such that the homology class of each member of

K is a generator of the second Betti group Hx(X;Z) ∼= Z.

Theorem 2.4 ([MZ19, Main Theorem 2]). In Theorem 2.3 suppose furthermore that (X,K) is a pro-

jective manifold of Picard number 1 uniruled by lines and that the distribution D on S defined by

Dx := Span(C̃x(S)) is bracket generating. Then, there exists an irreducible subvariety Z ⊂ X such

that S ⊂ Z and such that dim(Z) = dim(S).

The hypothesis that D := Span(C̃x(S)) is bracket generating is trivially satisfied when Dx ⊂ T0(S)

is linearly nondegenerate for a general point x ∈ S. This is in particular the case when we deal with

sub-VMRT structures $ : C (S) → S modeled on an admissible pair (X0, X) of nonlinear Hermitian

symmetric spaces of the compact type, which are our main objects of study in the current article. Of

crucial importance for our argumentation is the following proposition also called the Thickening Lemma

which allows us to construct collars around certain minimal rational curves which are compactifications

of holomorphic curves lying on the support S of a sub-VMRT structure.

Proposition 2.1 ([MZ19, Proposition 6.1]). Let (X,K) be a uniruled projective manifold equipped with

a minimal rational component, dim(X) =: n, and $ : C (S)→ S be a sub-VMRT structure as in Theorem

1.1, dim(S) =: s. Let [α] ∈ C (S) be a smooth point of both C (S) and C (X) such that $ : C (S) → S

is a submersion at [α], $([α]) =: x, and [`] ∈ K be the minimal rational curve assumed smooth at x

such that Tx(`) = Cα, and f : P` → ` be the normalization of `, P`
∼= P1. Suppose (Cx(S), [α]) satisfies

Condition (T). Then, there exists an s-dimensional complex manifold E`, P` ⊂ E`, and a holomorphic

immersion F : E` → X such that F |P` ≡ f and F (E`) contains a neighborhood of x on S.

Let now X be an irreducible Hermitian symmetric space of the compact type and of rank > 2. Write

X = G/P , where G = Aut0(X), P ⊂ G denotes some maximal parabolic subgroup defining X, i.e.,

P ⊂ G is the isotropy subgroup at some point 0 ∈ X, P = KC ·M− for a Levi decomposition of P

in the standard notation of the Harish-Chandra decomposition, where KC ⊂ P is a Levi factor, and

M− ⊂ P is the unipotent radical (which is a normal subgroup). Then, defining Φ : P → GL(T0(X))

by Φ(γ) = dγ(0) we have M− = Ker(Φ), and Φ induces a group isomorphism of KC ≡ P/M− onto a

reductive linear subgroup L ⊂ GL(T0(X)). Thus X admits a holomorphic G-structure with a reduction

of the holomorphic frame bundle from GL(T0(X)) to the reductive linear group G = L ( GL(T0(X)).

L is precisely the identity component of the stablilizer subgroup of the VMRT C0(X) ( PT0(X). (If we

replace G by Aut(X), which has possibly more than one but at most finitely many connected components,

define Φ on Aut(X; 0) analogously and denote by L̃ ( GL(T0(X)) the image of Aut(X; 0) under Φ,

then L̃ ⊂ GL(T0(X)) is precisely the stabilizer subgroup of C0(X)). We will be considering admissible

pairs (X0;X) of rational homogeneous manifolds of Picard number 1 and of the Hermitian symmetric

type. When a locally closed complex submanifold S ⊂ X inherits a sub-VMRT structure modeled on

the pair (X0, X), then S inherits a G-structure where G = L0 ⊂ GL(T0(X0)), where the definition

L0 ⊂ GL(T0(X0)) is analogous to that of L ⊂ GL(T0(X)), replacing X = G/P by X0 = G0/P0 in an

obvious way, etc.

3 Statement of Results

For the formulation of the results we will introduce a property, called Condition (F) for the pair

(C0(X0),C0(X)) of VMRTs associated to an admissible pair (X0, X) of rational homogeneous spaces

of Picard number 1, as follows. The name Condition (F) refers to the way that the pair (Cy(S),Cy(X))

is fitted to the model pair (C0(X0),C0(X)), after Cx(S) is propagated by parallel transport from x ∈ S
to a point y /∈ S lying on a minimal rational curve ` emanating from x whose germ (`;x) at x lies on

(S;x). It is thus a condition on the fitting of sub-VMRTs to the model.
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Definition 3.1. Let (X0, X) be an admissible pair of rational homogeneous spaces of Picard number

1, and denote by C (X0) ⊂ PTX0 resp. C (X) ⊂ PTX the VMRT structure on X0 resp.X defined by

the minimal rational component of projective lines with respect to the minimal canonical projective

embedding i0 : X0 ↪→ PΓ(X0,O(1))∗ resp. i : X↪→ PΓ(X,O(1))∗). Let 0 ∈ X0 ⊂ X be a reference point.

We say that (C0(X0),C0(X)) satisfies Condition (F) if and only if the following holds. Let λ : C0(X0) ↪→
C (X) be an arbitrary holomorphic embedding such that, denoting by PVλ ⊂ PT0(X) the projective linear

span of λ(C0(X0)), we have λ(C0(X0)) = PVλ∩C0(X) and the inclusion (λ(C0(X0)) ⊂ PVλ) is projectively

equivalent to the inclusion (C0(X0) ⊂ PT0(X0)). Then, there exists a projective linear automorphism

Λ : PT0(X)
∼=−→ PT0(X) such that Λ|C0(X) : C0(X)

∼=−→ C0(X) and such that Λ|C0(X0) ≡ λ.

The following intermediate result is a key step towards proving the main result of this paper concerning

rigidity of certain admissible pairs (X0, X) of rational homogeneous manifolds of the Hermitian symmetric

type. Here and in what follows on a Fano manifold Y of Picard number 1 we will denote by O(1) the

positive generator of Pic(Y ) ∼= Z.

Proposition 3.2. Let (X0, X) be an admissible pair of irreducible Hermitian symmetric spaces of the

compact type of rank > 2, 0 ∈ X0 ⊂ X. Suppose the pair of VMRTs (C0(X0),C0(X)) is nondegenerate for

substructures and it satisfies Condition (F). Let W ⊂ X be an open subset in the complex topology, and

S ⊂ W be a complex submanifold such that, defining C (S) := C (X) ∩ PT (S) by tangential intersection,

the canonical projection $ : C (S) → S defines a sub-VMRT structure modeled on (X0, X). Then,

there exists a projective subvariety Z ⊂ X such that S ⊂ Z and dim(Z) = dim(S). Moreover, writing

ν : Z̃ → Z for the normalization, there is a biholomorphism Φ : X0

∼=−→ Z̃, and for any choice of such a

biholomorphism Φ the holomorphic map h := ν ◦ Φ : X0 → X is of degree 1, i.e., h∗(O(1)) ∼= O(1).

From Proposition 3.1 we will deduce the following main result on the rigidity of certain admissible

pairs of rational homogeneous manifolds.

Main Theorem Let (X0, X) be an admissible pair of irreducible Hermitian symmetric spaces of the

compact type of rank > 2, 0 ∈ X0 ⊂ X. Suppose the pair of VMRTs (C0(X0),C0(X)) is nondegenerate for

substructures and it satisfies Condition (F). Assume furthermore that the restriction map r : Γ(X,TX)→
Γ(X0, TX |X0) defined by r(η) = η|X0 is surjective. Then, (X0, X) is rigid.

The same conditions as in Main Theorem apply in the case where (X0, X) is degenerate for substruc-

tures to show that a sub-VMRT structure $ : C (S) → S modeled on (X0, X) is a translate γX0 of X0

by some γ ∈ Aut(X) provided that S is by assumption saturated by open subsets of minimal rational

curves of X. In this direction a first evidence of such a result was obtained by Zhang [Zh14, Theorem 5.1]

in which it was shown that this holds for the pair (Qm, Qn), 3 6 m < n, by means of explicit computa-

tion. From the proof of Main Theorem we have immediately the following generalization characterizing

X0 ⊂ X as the unique linearly saturated sub-VMRT structure modeled on (X0, X) modulo translation by

global automorphisms of X, under certain assumptions on the admissible pair of rational homogeneous

spaces (X0, X) of the Hermitian symmetric type. As we will check, the conditions are satisfied in the

case of the pair (Qm, Qn), 3 6 m < n, by which we obtain an alternative and more conceptual proof of

the aforementioned rigidity result of Zhang [Zh14].

Theorem 3.1. Let (X0, X) be an admissible pair of irreducible Hermitian symmetric spaces of the com-

pact type of rank > 2, 0 ∈ X0 ⊂ X. Suppose the pair of VMRTs (C0(X0),C (X0)) satisfies Condition (F),

and assume furthermore that the restriction map r : Γ(X,TX) → Γ(X0, TX |X0) defined by r(η) = η|X0

is surjective. Let now W ⊂ X be an open subset in the complex topology and assume that S ⊂ W

inherits by tangential intersection a sub-VMRT structure $ : C (S) → S modeled on (X0, X), where

C (S) := C (X) ∩ PT (S). Assume that S ⊂ W is saturated with respect to open subsets of minimal

rational curves tangent to S. Then, there exists γ ∈ Aut(X) such that S is an open subset of γX0.
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4 Proof of Proposition 3.1

Proof of Proposition 3.1. Recall that in the statement of Proposition 3.1 (X0, X) is an admissible pair of

rational homogeneous spaces of the Hermitian symmetric type. Let W ⊂ X be a connected open subset in

the complex topology, and S ⊂W be a complex submanifold such that, defining Cx(S) := Cx(X)∩PTx(S)

for x ∈ S, the inclusion (Cx(S) ⊂ Cx(X)) is transformed to the inclusion (C0(X0) ⊂ C0(X)) by [Λx] for

some linear isomorphism Λx : Tx(X)
∼=−→ T0(X). For later use note that since Aut0(X) acts transitively

on X and since L̃ ⊂ GL(T0(X)) is precisely the stabilizer subgroup of C0(X), we may take Λx = dϕx for

some ϕx ∈ Aut0(X) that ϕx(x) = 0.

Let x ∈ S. Let Hx ⊂ P(GL(Tx(X)) be the identity component of the stabilizer subgroup of Cx(X) ∼=
C0(X). Since X is of Hermitian symmetric type, hence of long-root type, Hx acts transitively on Cx(X).

Let Jx ⊂ P(GL(Tx(S)) be the stabilizer subgroup of Cx(S) ∼= C0(X0). Since again X0 is of Hermitian

symmetric type, Jx acts transitively on Cx(S). In particular, Cx(X) is nonsingular, and Cx(S) ⊂ Cx(X)

is a projective submanifold. From the transitivity of Jx on Cx(S) it follows that the Thickening Lemma

(Proposition 2.1) applies to any [α] ∈ Cx(S) and hence to any minimal rational curve ` ⊂ X emanating

from x such that [Tx(`)] := [α] ∈ Cx(S). Note that the germ (`;x) of ` at x ∈ S lies on the germ (S;x) of

S at x, i.e., the connected component of `∩W containing x must lie on S. Since the minimal embedding

i : X ↪→ PΓ(X,O(1))∗ embeds and hence identifies X as a projective submanifold uniruled by projective

lines, ` ⊂ X is nonsingular, and the normalization f : P` → ` is an isomorphism. By Proposition 2.1,

writing s := dim(S), there exists an s-dimensional complex manifold E`, P` ⊂ E`, and a holomorphic

immersion F : E` → X such that F |P` ≡ f and F (E`) contains a neighborhood of x on S. From the

facts that F : E` → X is an immersion and that f : P`
∼= `, by shrinking E` we may actually take

F : E` → X to be an embedding and hence identify E` with F (E`) =: N`.

By the process of adjunction of minimal rational curves and the fact that Cx(S) ⊂ PTx(S) is linearly

nondegenerate it follows by Theorem 2.4 that there exists an irreducible projective subvariety Z ⊂ X,

dim(Z) = dim(S) = s such that S ⊂ Z. We claim that Z ⊂ X is an immersed submanifold, i.e., denoting

by ν : Z̃ → Z the normalization of Z, Z̃ is a projective manifold and ν : Z̃ → Z ⊂ X is a generically

injective holomorphic immersion. The key idea is the propagation of VMRT structures along chains of

rational curves, as already implicit in the solution of the Recognition Problem for irreducible Hermitian

symmetric spaces of rank > 2 given in Theorem 2.2. There we have an ambient uniruled projective

manifold (Z,K) equipped with a minimal rational component. In contrast, here we start with a germ

of complex submanifold (S;x0) ⊂ (X;x0) and we need to construct the immersed complex submanifold

Z ⊂ X. For this purpose we will retrace the construction of Z in our special situation. For the proof of

Proposition 3.1 we will only make use of C (S) := C (X) ∩ PT (S), which equips S with a holomorphic

L0-structure modeled on the irreducible Hermitian symmetric space X0 of rank > 2 for a reductive linear

subgroup L0 ( GL(T0(X0)) as defined in §2.

Here the propagation of the VMRT structure along a minimal rational curve has to be coupled with

the proof of the Thickening Lemma. Starting with any point x ∈ S, take any minimal rational curve `

on X emanating from x such that [Tx(`)] = [α] ∈ Cx(S) = Cx(X) ∩ PTx(S), so that (`;x) ⊂ (S, x), and

write N` ⊃ ` for a collar around ` as defined in the last paragraph. In what follows we will describe the

construction of N` as given in the proof of the Thickening Lemma. The construction will allow us to

propagate the L0-structure on S to N`.

Let T (N`|` ∼= O(2)⊕O(1)a⊕Ob be the Grothendieck decomposition of the tangent bundle T (N`) over

`. Then, dim(Cx(S)) = a. The positive part P` := O(2) ⊕O(1)a ⊂ T (N`)|` is well defined independent

of the choice of the Grothendieck summands. Shrinking S if necessary let Z ⊂ S be a b-dimensional

complex submanifold, Z ∼= ∆b, passing through x such that Tx(Z ) is transverse to P`,x. Parametrize

Z by holomorphic coordinates t = (t1, · · · , tb) ∈ ∆b, and write x(t) ∈ Z for the point corresponding to

t ∈ ∆b, x(0) = x. Without loss of generality we may assume that there exists a holomorphic family of

minimal rational curves {`(t) : t ∈ ∆b} on X such that (a) `(0) = ` and such that for every t ∈ ∆b we

have (b) x(t) ∈ `(t), (c) [Tx(t)(`(t))] ∈ Cx(t)(S) and (d) Z is transverse to P`(t),x(t) (where the latter is

defined in analogy to P`,x = P`(0),x(0)). From (c) and Theorem 2.3 we have for all t ∈ ∆b the inclusion
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(`(t);x(t)) ⊂ (S;x(t)) between germs of subvarieties. We may also assume that `(t)∩ `(t′) = ∅ whenever

t 6= t′, so that L :=
⋃{

`(t) : t ∈ ∆b
}
⊂ X is an embedded (b + 1)-dimensional locally closed complex

submanifold. There is a canonical projection λ : L → ∆b defined by the property z ∈ `(λ(z)). Z ⊂ L

is the image of a holomorphic section of λ : L → ∆b. Without loss of generality we may assume that

there exists a holomorphic section of λ with image Z ′ =
{
x′(t) : t ∈ ∆b

}
such that Z ∩ Z ′ = ∅. For

0 < ε < 1 we write L (ε) := λ−1(∆b(ε)). For t ∈ ∆b define now Vt :=
⋃{

`[αt] : [αt] ∈ Cx(t)(S)
}

to be

the cone of minimal rational curves on X passing through x(t) whose germs at x(t) lie on (S;x(t)), and

V ′t :=
⋃{

`[α′t] : [α′t] ∈ Cx′(t)
}

to be the cone of minimal rational curves on X passing through x′(t) whose

germs at x′(t) lie on (S;x′(t)).

For each x(t) ∈ Z we have [α(t)] := [Tx(t)(`(t))] ∈ C(x(t)(S). Write A :=
{

[α(t)] : t ∈ ∆b
}

. Similarly

for each x′(t) ∈ Z ′ we have [α′(t)] := [Tx′(t)(`(t))] ∈ Cx′(t)(S), and we write A′ :=
{

[α′(t)] : t ∈ ∆b
}

. Let

{Om : m ∈ N} be a decreasing sequence of neighborhoods of the complex submanifold A ⊂ C (S)|Z such

that
⋂
{Om : m ∈ N} = A. Similarly let {O ′m : m ∈ N} be a decreasing sequence of neighborhoods of the

complex submanifold A′ ⊂ C (S)|Z ′ such that
⋂
{O ′m : m ∈ N} = A′. For 0 < ε < 1 and m ∈ N, write

V(ε) :=
⋃{
Vt : t ∈ ∆b(ε)

}
and V(ε,m) :=

⋃{
`[βt] : t ∈ ∆b(ε), [βt] ∈ Om

}
. We have V(ε) ⊃ V(ε,m) and⋂

{V(ε,m) : m ∈ N} = L (ε). Similarly, V ′(ε) and V ′(ε,m) are analogously defined with Vt being replaced

by V ′t and Om being replaced by O ′m. We have V ′(ε) ⊂ V ′(ε,m) and
⋂
{V ′(ε,m) : m ∈ N} = L (ε).

For 0 < ε < 1 and m ∈ N write N`(ε,m) := V(ε,m) ∪ V ′(ε,m). Note that N`(ε,m) is connected

since both V(ε,m) and V ′(ε,m) contain the rational curve `. From the proof of the Thickening Lemma

(Proposition 2.1 here), for ε0 > 0 sufficiently small and m0 ∈ N sufficiently large, N`(ε0,m0) is a collar

around ` extending S. Since ` ⊂ X is embedded, for simplicity and without loss of generality we assume

that for such pairs (ε0,m0) the collar N(ε0,m0) is embedded in X. (Note that irrespective of how

two (embedded) collars N1
` and N2

` of ` are constructed, their germs along ` are the same in view of

the Identity Theorem for holomorphic functions.) In other words dim N`(ε0,m0) = dim(S) = s and

N`(ε0,m0) contains a neighborhood of x on S. Fix such a positive real number ε0 and such a natural

number m0, and write N` for N`(ε0,m0). Since ` ⊂ N` is a standard minimal rational curve, and the

latter property is an open condition in the complex topology, without loss of generality we will further

assume that all minimal rational curves (projective lines) of X lying on N` are standard.

We have N` = V(ε0,m0) ∪ V ′(ε0,m0). Removing Z (ε0) :=
{
xt : t ∈ ∆b(ε0)

}
from V(ε0,m0) and

Z ′(ε0) :=
{
x′t : t ∈ ∆b(ε0)

}
from V ′(ε0,m0) , and defining W := V(ε0,m0)−Z (ε0), W ′ := V ′(ε0,m0)−

Z ′(ε0), we may write N` =W∪W ′ and regard N` as being covered by two coordinate chartsW andW ′.
More precisely, noting that V (resp.V ′) is the image of a holomorphic P1-bundle under a tautological map

which collapses a distinguished section into Z (resp. Z ′),W (resp.W ′) is the total space of a holomorphic

C-bundle, and, shrinking Z , Z ′ and ε0 > 0 if necessary we may assumeW ∼= Ω×C, W ′ ∼= Ω′×C, where

Ω and Ω′ are Euclidean domains and where the fibers ∼= C are mapped under the implicit isomorphisms

onto affine lines.

Define now C 0(N`) = C (X) ∩ PT (N`). Thus, for x ∈ S we have C 0
x (N`) = Cx(S) ∩ PT (N`). Let now

C (N`) ⊂ C 0(N`) be the unique irreducible component containing C (S). To prove Proposition 3.1 we

will show first of all that the canonical projection $ : C (N`)→ N` defines on N` an L0-structure which

is moreover flat. (Shrinking N` if necessary we may assume the latter to be simply connected, and the

flatness of the L0-structure $ : C (N`) → N` implies that N` can be identified with an open subset of

the model Hermitian symmetric space X0 of the compact type and of rank > 2.)

From now on Λ will denote a minimal rational curve of X such that either Λ = `[βt] for some [βt] ∈ Om0

lying over t ∈ ∆b(ε0), or Λ = `[β′t] for some [β′t] ∈ O ′m0
lying over t ∈ ∆b(ε0), and denote the set of all

such minimal rational curves by A(ε0,m0). Thus, by assumption Λ ⊂ N` (when Λ ∈ A(ε0,m0)). For

convenience we may assume that S is a complex submanifold on an open subset W ⊂ X where W is a

complex ball in a Harish-Chandra coordinate chart. By the convexity of the complex ball any nonempty

intersection of a minimal rational curve on X with W must be connected. Since the subvariety S ⊂ W

contains a nonempty open subset of the connected set Λ ∩W , we have Λ ∩ S ⊂ Λ ∩W is a subvariety

of the same dimension, hence Λ ∩ S = Λ ∩W is connected. Consider the restriction C (X)|Λ. There is a

tautological lifting Λ̂ of Λ to C (X)|Λ where z ∈ Λ is lifted to [Tz(Λ)] ∈ Cz(X) and moreover any point
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x ∈ Λ ∩ S is lifted to [Tx(Λ)] ∈ Cx(X) ∩ PTx(S) = Cx(S).

We are going to argue by the method of parallel transport along minimal rational curves on N` that

$ : C (N`)→ N` defines an L0-structure. From the hypothesis defining sub-VMRT structures modeled on

(X0, X) it follows readily that for a general point z ∈ N`, (Cz(N`) ⊂ PTz(N`)) is projectively equivalent

to (Cx(N`) ⊂ PTx(N`)) for any point x ∈ S. For Λ ∈ A(ε0,m0) we will consider parallel transport

from Cx(N`) for x ∈ Λ ∩ S to an arbitrary point z ∈ Λ, and see that the key argument for parallel

transport in the proof of Theorem 2.2 still applies to show that the same remains true for an arbitrary

point z ∈ Λ. Recall that N` = W ∪W ′. The parallel transport argument will allow us to show that

C (N`)|W and C (N`)|W′ define holomorphic L0-structures, which implies that $ : C (N`)→ N` underlies

a holomorphic L0-structure. (The two L0-structures on the overlap W ∩W ′ agree by definition.)

The argument of parallel transport involves VMRTs, while C (N`) is defined by tangential intersection

(and throwing away irreducible components which do not cover N`). Thus for z ∈ N`, Cz(N`) may be

interpreted as potential VMRTs of a geometric substructure, but we have to show that they are actually

VMRTs of an immersed complex submanifold uniruled by lines. For Λ ∈ A(ε0,m0) and Λ′ ∈ A′(ε0,m0)

to relate Cz(N`) with minimal rational curves we consider Λ ⊂ N` as minimal rational curves inside

the noncompact “uniruled” complex manifold N`. Although N` is noncompact, we can still study the

infinitesimal deformation of the minimal rational ` (of X) inside N`. ` ⊂ N` is a free rational curve. The

deformation of ` inside N` is unobstructed, and it defines a germ of complex manifold KN`
at [`] whose

points correspond to deformations of [`], and a germ of universal family ρ : UN`
→ KN`

which is a germ

at [`] of a holomorphic P1-bundle over KN`
. Shrinking KN`

if necessary we may assume without loss of

generality that all points of KN`
represent standard rational curves `′ on N`, i.e., free rational curves

such that TN`
|`′ ∼= O(2) ⊕ O(1)a ⊕ Ob. We may represent the germ KN`

at [`] by an actual complex

manifold bearing the same name so that A(ε0,m0) ⊂ KN`
(but KN`

also contains small deformations

of each Λ ∈ A(ε0,m0) fixing an arbitrary given point z ∈ Λ). Denote by µ : UN`
→ X the evaluation,

which is a holomorphic submersion since KN`
consists of free rational curves (cf. Hwang-Mok [HM98,

Proposition 4]). The tangent map τ : UN`
→ PTN`

is well-defined on UN`
. Since minimal rational curves

on N` are standard rational curves, the tangent map τ is a holomorphic immersion (cf. Mok [08a, Lemma

2]). Since these standard rational curves are furthermore projective lines on X, the tangent map τ is a

holomorphic embedding (cf. Mok [Mo08a, Lemma 3]), hence its image in PTN`
defines a germ of complex

submanifold C [(N`) along the lifting ̂̀ of ` to PTN`
.

Since τ : UN`
→ PTN`

is a holomorphic embedding, by abuse of notation we will also denote by

µ : C [(N`)→ N` the canonical projection, which is a holomorphic submersion. Note that C [(N`) ⊂ PTN`

is only defined as a germ of complex submanifold along ̂̀, but we may represent the germ C [(N`)

along ̂̀ by an actual locally closed complex submanifold bearing the same name which contains the

tautological lifting Λ̂ for any Λ ∈ A(ε0,m0). Restricting to such minimal rational curves Λ on N`, we

have µ|Λ : C [(N`)|Λ → Λ. Denote by σ := σ|C [(N`)|PTN`
the fiberwise projective second fundamental

form of C [(N`) ⊂ PTN`
with respect to the canonical projection π|Λ : PTN`

→ Λ. Thus, for z ∈ Λ

and [γ] ∈ Cz(N`), σ([γ]) is the projective second fundamental at [γ] of Cz(N`) ⊂ PTz(N`), and it takes

value in the normal space N[γ] := TPTz(N`),[γ]/TCz(N`),[γ]. Consider now [γ] = [Tz(Λ)]. Varying z over Λ

the normal spaces N[Tz(Λ)] put together constitute the relative normal bundle NΛ̂ of C [(N`) ⊂ PT (N`)

along Λ̂ with respect to π|Λ : PT (N`)|Λ → Λ, and we have now the relative second fundamental form

σΛ̂ : S2Tπ|Λ̂ → NΛ̂.

By the same proof of Theorem 2.2 (from Mok [Mo08b]), Hom(S2Tπ|Λ̂, NΛ̂) ∼= O
ba(a+1)

2 is a trivial

holomorphic vector bundle, and hence σΛ̂ is a parallel section with respect to the flat connection on

O
ba(a+1)

2 . (As a consequence for instance dim(Ker(σΛ̂([Tz(Λ))) is independent of z ∈ Λ.) Since now

C [(N`) contains Λ̂ we may also take C [(N`) as being well-defined as a germ of complex submanifold

along Λ̂. For x ∈ S, we have Cx(S) = Cx(N`). Note that the germ of Cx(N`) at [Tx(Λ)] agrees with

C [
x(N`) as a germ at [Tx(Λ)], hence by analytic continuation the same holds true when x ∈ Λ ∩ S

is replaced by an arbitrary point z ∈ Λ. (Here recall that in general Cz(S) is defined by tangential

intersection C 0
z (S) = Cz(X) ∩ PTz(N`) and by removing irrelevant irreducible components.) We have
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thus proven by parallel transport along Λ ∈ A(ε0,m0) that for any z ∈ N`, (Cz(N`) ⊂ PTz(N`)) is

projectively equivalent to (Cx(N`) ⊂ PTx(N`)) for x ∈ S and hence to (C0(X0) ⊂ PT0(X0) for the model

Hermitian symmetric space X0 of the compact type and of rank > 2, and we can conclude by Lemma 2.1

that $ : C (N`)→ N` underlies a holomorphic L0-structure.

We claim that the holomorphic L0-structure $ : C (N`)→ N` is flat. At each point z ∈ N`, there is a

nonempty open subset Uz ⊂ Cz(N`) such that for each [γ] ∈ Uz, denoting by Λ[γ] the unique projective

line on X passing through z such that Tz(Λ[γ]) = Cγ, we have Λ[γ] ⊂ N`. In the proof of Theorem

2.1 (from Hwang-Mok [HM97]) the flatness of the G-structure modeled on an irreducible Hermitian

symmetric space of the compact type of rank > 2 is obtained by proving the vanishing of curvature-like

tensors (cf. Guillemin [Gu65]) along minimal rational curves, and deducing from linear algebra that this is

sufficient for proving the vanishing of the curvature-like tensors. For the argument to work, by the identity

theorem for analytic functions, in place of proving the vanishing of curvature-like tensors along all minimal

rational curves it is sufficient to prove, for any z ∈ N`, the same for a nonempty open set of minimal

rational curves passing through z. (Actually it is sufficient to prove the latter for a nonempty open set

of points z on N`.) Since the proof in Hwang-Mok [HM97] of the vanishing of curvature-like tensors on

a Fano manifold X admitting L0-structure relied only on the fact that the splitting of the holomorphic

tangent bundle TX over a minimal rational curve ` is of the standard type, i.e., TX |` ∼= O(2)⊕O(1)p⊕Oq
for some nonnegative integers p and q, the same argument for a nonempty open set of minimal rational

curves passing through z ∈ N`, for any z ∈ N` implies by the aforementioned use of the identity theorem

for analytic functions that the relevant curvature-like tensors of Guillemin [Gu65] vanish identically on

N`. From this observation we have proven that C (N`) defines a flat L0-structure on N`.

Recall that (X,K) is the ambient Hermitian symmetric space of the compact type equipped with the

minimal rational component K of projective lines on X with respect to the minimal canonical projective

embedding, i.e., the embedding defined by Γ(X,O(1)). For z ∈ X denote by K(z) ⊂ K the smooth cycle

consisting of projective lines passing through z. Let now x0 ∈ S be any base point. Write V0 := {x0}.
Define V1 :=

⋃
{` ∈ K(x0) : [Tx0(`)] ∈ Cx0(S)}.

For any x1 ∈ V1 other than x0, there is a unique minimal rational curve `1 joining x0 to x1, and

there exists an embedded collar N`1 ⊃ `1 such that N`1 also contains a nonempty open neighbor-

hood of x0 on S. At x1 ∈ `1 by the method of parallel transport we have defined Cx1
(N`1) such that

(Cx1
(N`1) ⊂ PTx1

(N`1)) is projectively equivalent to (C0(X0) ⊂ PT0(X0)). By Condition (F), the under-

lying projective linear isomorphism extends to a projective linear isomorphism γx : PTx1
(X)

∼=−→ PT0(X)

such that ϕx|Cx1 (X) : Cx1
(X)

∼=−→ C0(X). (Actually there exists an automorphism ϕx ∈ Aut(X) such

that ϕx(x) = 0 and such that dϕx(x) = γx.) It follows that $ : C (N`1)→ N`1 is a sub-VMRT structure

modeled on (X0, X). In particular, the pair (Cx1(N`1),Cx1(X)) is nondegenerate for substructures and it

satisfies Condition (T). Define now V2 :=
⋃
{` ∈ K(x1) : x1 ∈ V1 − {x0}, [Tx1

(`)] ∈ Cx1
(S)}. Any point

x2 ∈ V2 − V1 is the end-point of an ordered triple (x0, x1, x2) of distinct points linked by an ordered

pair (`1, `2) of minimal rational curves, so that x0, x1 ∈ `1 and T[x0](`1) ∈ Cx0(N`1) = Cx0(S), while

x1, x2 ∈ `2 and T[x1](`2) ∈ Cx1(N`2).

The construction of V2 yields by iteration an inductive construction of projective varieties Vk, k ∈ N
such that for some natural number m < dim(S) we have V0 ⊂ V1 ( · · · ( Vk ( · · · ( Vm while

Vm = Vm+1 = · · · · · · . For 1 6 k 6 m each point xk ∈ Vk − Vk−1 is the end-point of an ordered (k + 1)-

tuple (x0, · · · , xk) of distinct points linked by an ordered k-tuple of minimal rational curves (`1, · · · , `k).

We will call `k the last leg of a chain of minimal rational curves linking (x0, · · · , xk), and denote by L (xk)

the set of all possible such last legs of chains of minimal rational curves for various choices of x1, · · · , xk−1

and (`0, · · · , `k) linking (x0, · · · , xk). From the proof of Theorem 2.4 we have S ⊂ Z where Z ⊂ X is a

projective subvariety and dim(Z) = dim(S), and where Z = Vm. For 0 6 k 6 m− 1 let now Lk denote

the set of all lines belonging to
⋃{
K(xk) : xk ∈ Vk − Vk−1 : Txk(`k) ∈ C[xk](N`k) for some `k ∈ L (xk)

}
,

and define L := L1 ∪ · · · ∪ Lm. Then, Z = Vm =
⋃
{` : ` ∈ L}. We have also Z =

⋃
{N` : ` ∈ L}. By

compactness of Z and Heine-Borel there exist a finite number of minimal rational curves Λ1, · · · ,Λs and

their corresponding embedded collars NΛi , 1 6 i 6 s such that Z = NΛ1
∪ · · · ∪NΛs . Thus Z ⊂ X is an
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immersed submanifold, and its normalization ν : Z̃ → Z is nonsingular and projective. By construction

Z is rationally connected by projective lines, thus Z̃ is a rationally connected projective manifold, hence

simply connected (cf. Debarre [De01]). It follows that Z̃ is biholomorphically equivalent to the model

Hermitian symmetric space X0 of the compact type and of rank > 2. The proof of Proposition 3.1 is

complete. �

5 Proof of Main Theorem

Proof of Main Theorem. From the classification of admissible pairs (X0, X) of Hermitian symmetric

spaces of the compact type and of rank > 2 there exist a Harish-Chandra coordinate chart onW ⊂ X such

that the intersection W ∩X0 is given by a linear subspace in the chart. At the origin 0 of the coordinate

chart, 0 ∈ X0 ⊂ X, in terms of the chosen Harish-Chandra coordinates the scalar multiplications Tt(z) =

tz, t ∈ C∗, defines a C∗-action such that 0 is an isolated fixed point. Let now W ⊂ X be an open

neighborhood of 0 in the complex topology, and S ⊂ W be a complex submanifold which underlies a

sub-VMRT structure modeled on (X0, X). Let now h : X0 → X be a holomorphic immersion such that

Z := h(X0) is the immersed complex submanifold of X giving an analytic continuation of S, and we may

assume without loss of generality that 0 ∈ S and that 0 lies on the smooth locus of Z. By assumption

(C0(S) ⊂ C0(X)) is projectively equivalent to (C0(X0) ⊂ C0(X)). C0(X) ⊂ PT0(X) underlies a reductive

L-structure in the notation of the last paragraph of §2. In this case any projective linear transformation

on PT0(X) preserving C0(X) must necessarily belong to L. Hence, applying a linear transformation

belonging to L ⊂ GL(T0(X)) (cf.§2), without loss of generality we may assume that C0(S) = C0(X0).

Now for t 6= 0 define Zt := T 1
t
(Z) = {w : tw ∈ Z}. As t → 0, Zt ∩W ⊂ W converges as a subvariety to

X0 ∩W inside the Harish-Chandra coordinate chart W ∼= Cs. We claim that actually Zt converges as a

subvariety to X0 as t→ 0.

Let ω be a Kähler form on X such that minimal rational curves are of unit volume. Recall that

h : X0 → X, h(X0) = Z, is a holomorphic immersion such that minimal rational curves are mapped

biholomorphically onto minimal rational curves on X. It follows that minimal rational curves on X0 are

also of unit volume with respect to h∗ω. Since Pic(X0) ∼= Z, the two Kähler forms ω|X0
and h∗ω are

cohomologous, hence

Volume(X0, h
∗ω) =

∫
X0

(h∗ω)s

s!
=

∫
X0

ωs

s!
= Volume (X0, ω|X0) .

We have Volume(X0, h
∗ω) = Volume(Reg(Z), ω|Reg(Z)). On the other hand, the subvarieties Zt, t ∈ C∗,

are deformations of each other, in particular of Z1 = Z, so that

Volume(Reg(Zt), ω|Reg(Zt)) = Volume(Reg(Z), ω|Reg(Z))

= Volume(X0, h
∗ω) = Volume (X0, ω|X0

) .

The subvarieties {Zt ⊂ X : |t| < 1} all have the same volume with respect to ω, and, for any sequence

{tn}n>0 such that tn → 0, there exists a subsequence {tσ(n)}n>0 for some strictly monotonically increasing

function σ : N → N such that Ztσ(n)
converges as subvarieties to some subvariety Z] ⊂ X. From the

above, for any n ∈ N,

Volume(Z], ω) = Volume(Ztσ(n)
, ω).

On the other hand, Zt ∩W converges as subvarieties to X0 ∩W, hence as a cycle Z] = X0 + V , where

V is an s-dimensional cycle with support lying inside the divisor D = X −W. From Volume(X0, ω) =

Volume(Zt(σn), ω) it follows that Volume(V, ω) = 0, i.e., V = ∅. Since this works for any sequence {tn}
on the unit disk ∆ converging to 0, we conclude that Zt → X0 as t→ 0.

We claim that Z ⊂ X is actually a complex submanifold. In other words, in the notation of Proposition

3.1, the holomorphic immersion h = ν ◦ Φ : X0 → X is actually a holomorphic embedding. Recall

that Z = h(X0) and that Zt := T 1
t
(Z) = {w : tw ∈ Z}, where in terms of the chosen Harish-Chandra
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coordinates chart U ⊂ Z with the origin at some smooth point a ∈ Z, with Harish-Chandra coordinates

z, for λ ∈ C∗ we have Tλ(z) = λz on U . For any t ∈ C∗, Sing(Zt) = T 1
t
(Sing(Z)). We have proven that

Zt → X0 as subvarieties of X as t → 0. Suppose now Sing(Z) 6= ∅, and let p be any point on Sing(Z).

Writing pn := Tn(z) for any positive integer n and letting q be any limit point of {pn}n>1, by the lower

semicontinuity property of Lelong numbers for a convergent family of closed positive currents, we have

ν([X0]; q) > lim sup
n→∞

ν
([
Z 1

n

]
; pn
)

= lim sup
n→∞

ν
(
(Tn)∗[Z];Tn(p)

)
= ν([Z]; p) > 2,

where ν(S;x) denotes the Lelong number of a closed positive (k, k)-current S on X at a point x and

where [V ] denotes the integral current of a pure (n−k)-dimensional complex-analytic subvariety V ⊂ X.

The inequality ν([X0]; q) > 2 gives a plain contradiction to the smoothness of X0 ⊂ X, proving our claim

that Z ⊂ X is a complex submanifold. In other words, h : X0 → X, Z = h(X0), is a holomorphic

embedding.

Write Z0 := X0. Define now Z ′ :=
{

(t, z) : t ∈ ∆, z ∈ Zt
}
⊂ ∆ × X. Z ′ ⊂ ∆ × X is a complex-

analytic subvariety. Let α : Z ′ → ∆ be the canonical projection onto the first factor. Then, all fibers

{t}×Zt, t ∈ ∆, are equidimensional smooth and reduced subvarieties of ∆×X. By Lemma 2.2, α : Z ′ → ∆

is a regular family of projective submanifolds. To prove Main Theorem it remains to establish.

Lemma 5.1. Let α : Z ′ → ∆, Z ′ ⊂ ∆×X, Z ′t := α−1(t), be regular family of projective submanifolds

of ∆×X such that Z ′t = {t}×Zt for t ∈ ∆, where Z0 := X0. Suppose the restriction map r : Γ(X,TX)→
Γ(X0, TX |X0

) given by r(η) = η|X0
is surjective. Then, for ε > 0 sufficiently small, there exists a

holomorphic map γ : ∆(ε) → Aut0(X) such that γ(0) = idX and such that Zt = {t} × γt(X0) for every

t ∈ ∆(ε).

Proof. Let Q be an irreducible component of the Chow scheme Chow(X) which contains the point

[X0] representing the multiplicity-free s-dimensional cycle with support X0. Let O ⊂ Chow(X) be the

subscheme consisting of the orbit of [X0] under the action of G = Aut0(X), i.e., the set of all translates

[γX0] as γ runs over G. We claim that O ⊂ Q. (This needs a justification since there may a priori exist

two components Q and Q′ such that [X0] ∈ Q and [X0] ∈ Q′.) To see this note that [X0] ∈ O is the

limit of a sequence of points [Wm] ∈ Q, m > 1, where each [Wm] is a smooth point of Chow(X). For

each m > 1 the orbit G·[Wm] must lie on the unique irreducible component Q of Chow(X) containing

[Wm]. Hence, for every γ ∈ G, γ · [X0] = limm→∞ γ · [Wm] ∈ Q since Q ⊂ Chow(X) is closed, and we

have proven the claim that O ⊂ Q. Hence, dim O 6 dim Q. Here and in what follows dimensions are

complex dimensions. The dimension of Q at [X0] satisfies

dim Q 6 dim Γ(X0, NX0|X) ,

where NX0|X = TX |X0
/TX0

denotes the holomorphic normal bundle on X0 for the inclusion X0 ⊂ X.

Denote by H ⊂ G the subgroup which fixes X0 ⊂ X as a subset, and by Q ⊂ H the normal subgroup

which fixes every point on X0. The identity component of H/Q agrees with G0, so that dimH =

dim Γ(X0, TX0) + dimQ. Note that the kernel of the restriction map r : Γ(X,TX) → Γ(X0, TX |X0)

consists of holomorphic vector fields on X which vanish identically on X0. Thus, Ker(r) agrees with

the Lie algebra q of Q, so that dim Γ(X,TX) = dim Γ(X0, TX |X0
) + dimQ from the hypothesis that r is

surjective. Noting this, for the orbit O = G·[X0], we have

dim O = dimG/H = dim Γ(X,TX)− dimH

= (dim Γ(X0, TX |X0) + dimQ)− (dim Γ(X0, TX0)) + dimQ)

= dim Γ(X0, TX |X0
)− dim Γ(X0, TX0

) .

From the tangent sequence

0 −→ TX0 −→ TX |X0 −→ NX0|X −→ 0 ,

its associated long exact sequence and from H1(X0, TX0) = 0 (cf. Calabi-Vesentini [CV60]) we obtain a

short exact sequence of vector spaces

0 −→ Γ(X0, TX0) −→ Γ(X0, TX |X0) −→ Γ(X0, NX0|X) −→ 0 ,
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so that dim Γ(X0, TX |X0)− dim Γ(X0, TX0)) = dim Γ(X0, NX0|X), hence

dim O = dim Γ(X0, TX |X0
)− dim Γ(X0, TX0

)

= dim Γ(X0, NX0|X) > dim Q > dim O .

As a consequence, we have

dim O = dim Q = dim Γ(X0, NX0|X) ,

implying that Q = O = G·[X0]. Lemma 5.1 follows immediately. �

Proof of Main Theorem cont. By Lemma 5.1, for t ∈ ∆ sufficiently small, we have T 1
t
Z =: Zt = γtX0

for some γt ∈ G = Aut0(X). It follows that Z = Tt(γtX0) = (Tt ◦ γt)(X0), for t sufficiently small, is a

translate of X0 by an element of G, as desired. �
Proof of Theorem 3.1. The same proof as that of Main Theorem yields Theorem 3.1, when the linear

saturation of the given sub-VMRT structure $ : C (S) → S is taken as a hypothesis in case (X0, X) is

degenerate for substructures. �

6 Examples

(6.1) In this final section we examine examples of admissible pairs of rational homogeneous manifolds

not of the sub-diagram type for which Main Theorem and Theorem 3.1 apply. We consider first of all

the admissible pairs (GIII(n, n), G(n, n)), n > 3, in the standard embedding of the Lagrangian Grass-

mannian GIII(n, n) into the Grassmannian G(n, n). (GIII(n, n), G(n, n)) is an admissible pair of ra-

tional homogeneous spaces not of the sub-diagram type. By Zhang [Zh14, Theorem 4.14], for n > 3

the pair (GIII(n, n), G(n, n)) is nondegenerate for substructures. When n = 2, the admissible pair

(GIII(2, 2), G(2, 2)) is equivalently the pair (Q3, Q4), which is degenerate for substructures. We defer

to (4.2) the discussion on the admissible pairs of hyperquadrics (Qm, Qn), 3 6 m < n.

Let (W, s) be a complex (2n)-dimensional vector space W equipped with a symplectic form s. Choosing

an appropriate basis {e1, · · · , e2n} of W we may assume that s is represented by the matrix

[
0 In

−In 0

]
.

Denote by M(n) the complex vector space of n-by-n matrices Z with complex coefficients. Identifying

Z ∈ M(n) with the n-dimensional vector subspace ΠZ ⊂ W spanned by the n column vectors of

[
In

Z

]
,

we realize M(n) as an open subset of G(n, n). The Lagrangian Grassmannian GIII(n, n) ⊂ G(n, n) is

the complex submanifold consisting of n-dimensional isotropic subspaces with respect to s. In the chosen

basis, {e1, · · · , en} is an isotropic subspace of (W, s). Consider now Z ∈ M(n). Then, the n column

vectors of

[
In

Z

]
span an n-dimensional isotropic subspace of (W, s) if and only if

[In, Z
t]

[
0 In

−In 0

][
In

Z

]
= 0, i.e.,

[−Zt, In]

[
In

Z

]
= 0 i.e., Zt = Z.

GIII(n, n)∩M(n) is precisely the vector subspaceMs(n) ⊂M(n) consisting of symmetric n-by-n matrices

with complex coefficients. The standard C∗-action {Tt : t ∈ C∗} on G(n, n), when restricted to the big

Schubert cell M(n) ⊂ G(n, n), is given by Tt(Z) = tZ. Clearly Ms(n) and hence GIII(n, n) = Ms(n)

are preserved under the C∗-action {Tt}t∈C∗ .
We claim that the admissible pair (GIII(n, n), G(n, n)) satisfies Condition (F). Let λ : C0(GIII(n, n)) ↪→

C0(G(n, n)) be an arbitrary holomorphic embedding such that, denoting by PVλ ⊂ PT0(G(n, n)) the pro-

jective linear span of λ(C0(GIII(n, n))), the inclusion (λ(C0(GIII(n, n)) ⊂ PVλ) is projectively equivalent

to the inclusion (C0(GIII(n, n)) ⊂ PT0(GIII(n, n))).
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Let πE : E → G(n, n)) be the tautological vector bundle on the Grassmannian G(n, n). Thus, given

an n-dimensional vector subspace Π ⊂ W , we have E[Π] = Π ⊂ W . Write U := E∗. Denote by

W = W × G(n, n) the trivial complex vector bundle over G(n, n) of rank 2n with fibers identified with

W , and write U ′ := W/E. For the tangent bundle on the Grassmannian G(n, n) we have TG(n,n)
∼=

Hom(E,U ′) = E∗ ⊗ U ′ = U ⊗ U ′. We have C0(G(n, n)) = PU0 × PU ′0 ⊂ P(U0 ⊗ U ′0), where the inclusion

is given by the Segre embedding.

Over G(n, n) we have the short exact sequence 0 −→ E −→ W −→ U ′ −→ 0 of holomorphic vector

bundles. Restricted to the Lagrangian Grassmannian GIII(n, n) ⊂ G(n, n), for an n-dimensional vector

subspace Π ⊂ W isotropic with respect to the symplectic space (W, s) the symplectic form s induces

a linear isomorphism W/Π ∼= Π∗, i.e., U ′[Π]
∼= E∗[Π] = U[Π]. Thus over the Lagrangian Grassmannian

GIII(n, n) we have the canonical isomorphism U ′|GIII(n,n)
∼= U |GIII(n,n) induced by the symplectic form s

on W . In what follows we will restrict our attention to the Lagrangian Grassmannian GIII(n, n) and make

the identification of U ′ with U over GIII(n, n) by means of the aforementioned canonical isomorphism.

With this identification we have C0(GIII(n, n)) = ν(PU0) ⊂ P(S2U0), where ν : PU0 → P(S2U0) is the

Veronese embedding.

Denoting by π1 : PU0 × PU ′0 → PU0 and π2 : PU0 × PU ′0 → PU ′0 the canonical projections, we

have OP(U0⊗U ′0)(1)|P(U0)×P(U ′0)
∼= π∗1OPU0

(1) ⊗ π∗2OPU ′0(1), and ν∗
(
OP(U0⊗U ′0)(1)|P(U0)×P(U0)

)
= OPU0

(2).

By hypothesis (λ(C0(GIII(n, n)) ⊂ PVλ) is projectively equivalent to the inclusion (C0(GIII(n, n)) ⊂
PT0(GIII(n, n))). Hence, dim(Vλ) = dim(S2U0) = n(n+1)

2 > n, and λ∗
(
OP(U0⊗U0)(1)|P(U0)×P(U ′0)

)
=

OPU0
(2), i.e., OPU0

(2) ∼= λ∗π∗1OPU0
(1)⊗λ∗π∗2OPU ′0(1). It follows that either (a) λ∗π∗1OPU0

(1) ∼= λ∗π∗2OPU0
(1) ∼=

OPU0(1), or (b) we have a degenerate situation where one of the two scenarios below occurs: (i) λ∗π∗1OPU0(1) ∼=
OPU0(2) and λ∗π∗2OPU0(1) ∼= OPU0 ; (ii) λ∗π∗2OPU0(1) ∼= OPU0(2) and λ∗π∗1OPU0(1) ∼= OPU0 . In the degener-

ate cases (b) the projective linear span PVλ of λ(C0(GIII(n, n))) is of dimension 6 dim(PU0) = n−1, hence

dim(Vλ) 6 n, a plain contradiction. Thus only (a) occurs, in which case πi ◦ λ : C0(GIII(n, n)) → PU0

must be an isomorphism for i = 1, 2, which implies the existence of projective linear isomorphisms

Λ1 : PU0

∼=−→ PU0 and Λ2 : PU0

∼=−→ PU ′0 such that the embedding λ : C0(GIII(n, n) → C0(G(n, n)) is

induced by a linear embedding from S2U0 into U ⊗ U ′0, also denoted by λ, which is given by λ(u⊗ u) =

Λ1(u) ⊗ Λ2(u) and extended to S2U0 by polarization, verifying Condition (F) for the admissible pair

(GIII(n, n), G(n, n)).

Finally, to check that Main Theorem applies to (GIII(n, n), G(n, n)) it remains to show that the re-

striction map r : Γ(G(n, n), TG(n,n)) → Γ(GIII(n, n), TG(n,n)) defined by r(η) = η|GIII(n,n) is surjective.

Now in the notation above we have TG(n,n) = U ⊗ U ′ where U and U ′ are universal semipositive bun-

dles over the Grassmannian G(n, n). Note that G(n, n) = U(2n)/S(U(n) × U(n)), so that the isotropy

subgroup is isomorphic to U(1) × (SU(n) × SU(n)) and the universal bundle U over G(n, n) arises

from the standard representation ρ of U(n) (being U(1) × SU(n) where SU(n) is the first Cartesian

factor) on Cn (being the first tensor factor of Cn ⊗ Cn), up to a character on U(1). In what fol-

lows we restrict our attention to GIII(n, n) and denote the restriction U |GIII(n,n) by U too, recalling

also that U |GIII(n,n)
∼= U ′|GIII(n,n) canonically. We have the holomorphic direct sum decomposition

U ⊗U = S2U ⊕Λ2U of homogeneous holomorphic vector bundles on GIII(n, n), which up to a character

on U(1), corresponds to the decomposition of ρ ⊗ ρ on Cn ⊗ Cn into irreducible representations. Thus,

U ⊗ U = S2U ⊕ Λ2U is a direct sum decomposition into irreducible homogeneous holomorphic vector

bundles on GIII(n, n). Write G0 = Aut(GIII(n, n)) = PSp(n;C) and G = Aut0(G(n, n)) = PGL(n;C).

Note that the injective holomorphic group homomorphism G0 ↪→ G induces an injective homomorphism

g0 = Γ(GIII(n, n), TGIII(n,n)) ↪→ Γ(G(n, n), TG(n,n)) = g, so that g0 is contained in the image of the restric-

tion map r. To prove the surjectivity of the restriction map r : Γ(G(n, n), TG(n,n)) ∼= Γ(G(n, n), U⊗U ′)→
Γ(GIII(n, n), TG(n,n)) = Γ(GIII(n, n), S2U)⊕Γ(GIII(n, n),Λ2U) it suffices to check that (a) the projection

of the image of r to Γ(GIII(n, n),Λ2U) is nonempty and that (b) Γ(GIII(n, n),Λ2U) is irreducible under

the action of G0.

For the proof of (a) it suffices to observe that from the transitivity of G on G(n, n) that there exists a

holomorphic one-parameter family {γt : t ∈ ∆} ⊂ G such that γ0 = idG0
and 0 6= ∂γt

∂t

∣∣∣
t=0

mod TGIII(n,n) ∈
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Γ(GIII(n, n), NGIII(n,n)|G(n,n)); NGIII(n,n)|G(n,n)
∼= Λ2U.

The statement (b) follows from the Bott-Borel-Weil Theorem. More precisely, if E0 is an irreducible

P0-representation space, equivalently, if E = G0 ×P0
E0 is irreducible homogeneous vector bundle on

X0 = G0/P0, then the complex vector space Γ(X0,E ) of global holomorphic sections is irreducible as a

G-representation space by the Bott-Borel-Weil Theorem.

We are now ready to show

Theorem 6.1. For n > 3, the admissible pair (GIII(n, n), G(n, n)) is rigid. In other words, if S ⊂
G(n, n) is a complex submanifold of some open subset of G(n, n) inheriting a sub-VMRT structure modeled

on (C0(GIII(n, n)),C0(G(n, n)), i.e., (ν(Pn−1), ζ(Pn−1), where ν denotes the Veronese embedding and ζ

denotes the Segre embedding, then S is an open subset of a projective submanifold Z ⊂ G(n, n) and there

exists γ ∈ Aut(G(n, n)) such that Z = γ(GIII(n, n)).

Remark. In term of the universal rank-n semipositive vector bundles U and U ′ on G(n, n) such that

TG(n,n) = U ⊗ U ′ the hypothesis on the locally closed submanifold S ⊂ G(n, n) is equivalently the

hypothesis that, shrinking S if necessary, there exists an isomorphism ϕ : U ′|S
∼=−→ U |S such that,

identifying U ′|S with U |S by means of ϕ, TS can be naturally identified with S2U |S , hence inheriting a

holomorphic G-structure modeled on the Lagrangian Grassmannian GIII(n, n).

Proof of Theorem 6.1 Maintaining the notation X0 = GIII(n, n), X = G(n, n) for n > 3 we have proven

that the admissible pair (X0, X) satisfies Condition (F). To conclude that (X0, X) is a rigid pair it remains

to justify that the restriction map r : Γ(X,TX)→ Γ(X0, TX |X0
) defined by r(η) = η|X0

is surjective, and

we have reduced the problem to proving that Γ(X0,Λ
2U), U ∼= E∗, is irreducible. By Proposition 6.1

and Proposition 6.2 we know that all sections in Γ(X0,Λ
2U) descend from Λ2W . The symplectic group

Sp(n;C) acts irreducibly on W , and Λ2W splits into the direct sum of two irreducible components. More

precisely, the symplectic form s gives a linear map ψ : Λ2W → C, and we have Λ2W = A ⊕ B where

A = Kerψ ⊂ Λ2W is of codimension 1, and B = Cζ, where ζ ∈ Λ2W , is the element corresponding

to s ∈ Λ2W ∗ under the isomorphism W ∗ ∼= W induced by s. Denote by $ : Λ2W → Γ(X0,Λ
2U) the

natural projection. At every point x ∈ X0, $(ζ(x)) = 0 as can be checked using the normal form of s.

It follows that Γ(X0,Λ
2U) ∼= A is irreducible, and hence r : Γ(X,TX) → Γ(X0, TX |X0

) is surjective. By

Main Theorem (as stated in §3) the pair (X0, X) is rigid, as desired. �

(6.2) We consider now the case (X0, X) = (Qm, Qn) where 3 6 m < n. In this case (X0, X) is degenerate

for substructures, but under the assumption that a germ of sub-VMRT structure on (S, x0) ⊂ (X.x0)

modeled on (Qm, Qn) is linearly saturated, Theorem 3.1 still applies. We will check that (a) Condition

(F) holds and that the restriction map r : Γ(Qn, TQn)→ Γ(Qm, TQn |Qm) is surjective. This gives a new

proof of the main result of Zhang [Zh14, §5]. We have

Theorem 6.2 (from Zhang [Zh14]). Let 3 6 m 6 n, and S ⊂ Qn ⊂ Pn+1 be locally closed complex

submanifold such that the standard holomorphic conformal structure on Qn restricts to a holomorphic

conformal structure on S. Suppose S is linearly saturated. In other words, suppose for any x ∈ S and

for any projective line ` ⊂ Qn which passes through x and which is tangent to S at x we must have the

inclusion (`;x) ⊂ (S, x) of germs of complex submanifolds. Then, there exists γ ∈ Aut(Qn) such that

Z := γ(Qm) contains S is an open subset.

Proof. By Theorem 3.1 it suffices to verify that (a) the admissible pair (Qm, Qn) satisfies Condition

(F) on the fitting of sub-VMRTs; and that (b) the restriction map r : Γ(Qn, TQn) → Γ(Qm, TQn |Qm) is

surjective.

We proceed with verifying (a) on the fitting of sub-VMRTs. We have C0(Qd) ∼= Qd−2 ↪→ PT0(Qd) ∼=
Pd−1 for any integer d > 3. Suppose λ : C0(Qm) ↪→ C0(Qn) is given such that (C0(Qm) ⊂ PT0(Qm))

is projectively equivalent to (λ(C0(Qm) ⊂ PVλ), where PVλ stands for the projective linear span of the

image of λ, and λ(C0(Qm)) = λ(C0(Qn)) ∩ PVλ. Let q be any choice of a quadratic bilinear form on

T0(Qn) which is a representative (unique up to a nonzero multiplicative constant) of the conformal class

at 0 of the standard holomorphic conformal structure of Qn. By the hypothesis the restriction of q to Vλ
is nondegenerate, and λ is induced by a linear map Λ : T0(Qm)

∼=−→ Vλ. For a linear subspace E ⊂ T0(Qn)
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denote by E⊥ the annihilator of E with respect to q. When q|E is nondegenerate, E⊥∩E = 0 and we have

T0(Qn) = E ⊕ E⊥, and q|E⊥ is also nondegenerate. Applied to the current situation with E = T0(Qm)

or Vλ, there is a linear isomorphism Λ′ : T0(Qm)⊥ → V ⊥λ which preserves restrictions of the quadratic

form q. Λ and Λ′ together determine a linear map Λ̃ : T0(Qn)
∼=−→ T0(Qn) which preserves q, thus Λ̃

determines a projective linear transformation Λ̃ extending Λ such that Λ̃ : C0(Qn)
∼=−→ C0(Qn), proving

(a).

For the proof of (b) note first of all that the tangent sequence 0 −→ TQm −→ TQn |Qm −→ NQm|Qn −→
0 splits holomorphically. To see this, note that the projective second fundamental form σ : S2TQn →
NQn|Pn+1 is everywhere nondegenerate. For each point x ∈ Qm, the restriction of σx to S2Tx(Qm)

is also nondegenerate, and Nx := Tx(Qm)⊥ is complementary to Tx(Qm). Varying x on Qm, by the

holomorphicity of σ we obtain a holomorphic vector subbundle N ⊂ TQm such that TQn |Qm = TQm ⊕N ,

proving that the tangent sequence on Qm ⊂ Qn splits holomorphically. We have Γ(Qm, TQn |Qm) =

Γ(Qm, TQm)⊕Γ(Qm,N ). From the injective group homomorphism Aut0(Qm) ↪→ Aut0(Qn) it follows by

passing to Lie algebras that all holomorphic tangent vector fields on Qm lift to holomorphic vector fields

on Qn. It remains therefore to prove that all sections in Γ(Qm,N ) lift to holomorphic vector fields on

Qn.

By the homogeneity of Qn under Aut0(Qn), for any x ∈ Qm there exists a global holomorphic vector

field η on Qn such that η(x) /∈ Tx(Qm). Thus, the vector subspace A ⊂ Γ(Qm, NQm|Qn) induced by global

holomorphic vector fields is nonzero. Since Qm ⊂ Qn is a complete linear section by (n−m) hyperplanes,

we have NQm|Qn ∼= O(1)n−m. To prove the surjectivity of r : Γ(Qn, TQn)→ Γ(Qm, TQn |Qm) consider first

of all the case where n = m+1. Then, Γ(Qm, NQm|Qm+1) ∼= Γ(Qm,O(1)) is an (m+2) dimensional vector

space on which Aut0(Qm) acts irreducibly. Hence, from A 6= 0 it follows that A = Γ(Qm, NQm|Qm+1).

In general, identifying N with O(1)n−m, it suffices that for any direct summand L ∼= O(1) in N ∼=
O(1)n−m we can prove that each section ξ in Γ(Qm,L) ⊂ Γ(Qm,N ) lifts to a global holomorphic vector

field on Qn. We may insert a hyperquadric Qm+1, Qm ⊂ Qm+1 ⊂ Qn. We have TQm+1 |Qm = TQm ⊕ L
where L ∼= O(1) and the arguments in the last paragraph shows that any ξ ∈ Γ(Qm,L) lifts to some

holomorphic vector field η′ on Qm+1. Then, η′ lifts to η ∈ Γ(Qn, TQn) from the equivariant embedding

Qm+1 ↪→ Qn. Arguing for each of the direct summand of N = O(1) ⊕ · · · ⊕ O(1) it follows that each

section ξ ∈ Γ(Qm,N ) = Γ(Qm,O(1)) ⊕ · · · ⊕ Γ(Qm,O(1)) lifts to a global holomorphic vector field

η ∈ Γ(Qn, TQn), verifying (b) and hence completing the proof of the theorem. �
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