Multiplicative Actions of Cyclic Groups

Ming-chang Kang

Department of Mathematics, National Taiwan University, Taipei, Taiwan E-mail: kang@math.ntu.edu.tw

Abstract. Multiplicative group action is ubiquitous in the study of the birational classification of algebraic tori, the rationality problem of algebraic varieties, and Noether's problem in Galois theory, etc.

Let π be a finite group and $\Lambda = \mathbb{Z}[\pi]$ be the group ring of π over \mathbb{Z} . A Λ -module M is called a π -lattice if it is a free abelian group of finite rank as an abelian group. For any field k we may associate the Laurent polynomial ring k[M] and its quotient field k(M); explicitly, if $M = \bigoplus_{1 \le i \le m} \mathbb{Z} \cdot x_i$, then $k[M] = k[x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_m^{\pm 1}]$ and $k(M) = k(x_1, \ldots, x_m)$.

Case 1. Let L be a Galois extension over K with Galois group π . Let k = L.

The action of π on k may be extended to that on k[M] and k(M), i.e. if $\sigma \in \pi$ and $\sigma \cdot x_j = \sum_{1 \leq i \leq m} a_{ij} x_i \in M$, then σ acts on k[M] and k(M) by $\sigma \cdot x_j = \prod_{1 \leq i \leq m} x_i^{a_{ij}} \in k[M]$. The fixed subfield $k(M)^{\pi}$ is the function field of the algebraic torus with character group M defined over K and split by L.

Case 2. Let k be a field with trivial π -action.

A multiplicative action of π may be endowed on k[M] and k(M) as above (but π acts trivially on k). In [Fa], Farkas asks what are the birational invariants of the field k(M) with the prescribed π -action, when π is a cyclic group of prime order.

We shall define an invariant $S_{\pi}(M)$ for any π -lattice M and give a complete answer to Farkas' question when π is any finite cyclic group and k contains a primitive *n*-th root of unity (when the order of π is a prime number, no assumption about the root of unity is necessary) [CHK]. Our answer will turn out to be connected with the flasque class $\rho(M)$ defined in [CTS; Sw] for the case of algebraic tori. As applications we will show that (1) if π is a finite cyclic group, then $L(M)^{\pi}$ is retract rational over K for any π -lattice M; (2) (Endo and Miyata [EM]) if π is a cyclic group of order p^m , then F_{π} is isomorphic to $\bigoplus_{1 \leq i \leq m} Cl(\mathbb{Z}[\zeta_{p^i}])$.

References

- [CHK] H. Chu, S. J. Hu and M., Multiplicative actions of cyclic groups, preprint.
- [CTS] J. L. Colliot-Thelene and J. J. Sansuc, La R-equivalence sur les tores, Ann. Sci. E. N. S. 101 (1977) 175-230.
- [EM] S. Endo and T. Miyata, Quasi-permutation modules over finite groups I,J. Math. Soc. Japan 25 (1973) 397-421.
- [Fa] D. R. Farkas, Birational invariants of crystals and fields with a finite group of operators, Math. Proc. Cambridge Phil. Soc. 107 (1990) 417-424.
- [Sw] R. G. Swan, Noether's problem in Galois theory, in "Emmy Noether in Bryn Mawr", edited by B. Srinivasan and J. Sally, Springer-Verlag, Berlin, 1983.