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Entropy: Definition

The entropy H(X ) of a discrete random variable X is defined by

H(X ) = −
∑
x∈X

p(x) log p(x).

Let

X =

{
1 with probability p,

0 with probability 1− p.

Then,

H(X ) = −p log p − (1− p) log(1− p) , H(p).
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Joint Entropy and Conditional Entropy

The joint entropy H(X ,Y ) of a pair of discrete random variables
(X ,Y ) with a joint distribution p(x , y) is defined as

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y).

If (X ,Y ) ∼ p(x , y), the conditional entropy H(Y |X ) is defined as

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y |x) log p(y |x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x).
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All Entropies Together

Chain Rule

H(X ,Y ) = H(X ) + H(Y |X ).

Proof.

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log p(x , y)

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(x)p(y |x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log p(x)−
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= −
∑
x∈X

p(x) log p(x)−
∑
x∈X

∑
y∈Y

p(x , y) log p(y |x)

= H(X ) + H(Y |X ).
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Mutual Information

Original Definition

The mutual information I (X ;Y ) between two discrete random
variables X ,Y with joint distribution p(x , y) is defined as

I (X ;Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
.

Alternative Definitions

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y )

= H(Y )− H(Y |X )

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

Mutual Information

Original Definition

The mutual information I (X ;Y ) between two discrete random
variables X ,Y with joint distribution p(x , y) is defined as

I (X ;Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
.

Alternative Definitions

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y )

= H(Y )− H(Y |X )

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

Mutual Information

Original Definition

The mutual information I (X ;Y ) between two discrete random
variables X ,Y with joint distribution p(x , y) is defined as

I (X ;Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
.

Alternative Definitions

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y )

= H(Y )− H(Y |X )

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

Mutual Information

Original Definition

The mutual information I (X ;Y ) between two discrete random
variables X ,Y with joint distribution p(x , y) is defined as

I (X ;Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
.

Alternative Definitions

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y )

= H(Y )− H(Y |X )

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

Mutual Information

Original Definition

The mutual information I (X ;Y ) between two discrete random
variables X ,Y with joint distribution p(x , y) is defined as

I (X ;Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
.

Alternative Definitions

I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

= H(X )− H(X |Y )

= H(Y )− H(Y |X )

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

Mutual Information and Entropy
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Asymptotic Equipartition Property Theorem

AEP Theorem
If X1,X2, . . . , are i.i.d ∼ p(x), then

−1

n
log p(X1,X2, . . . ,Xn)→ H(X ) in probability.

Proof.

−1

n
log p(X1,X2, . . . ,Xn) = −1

n

n∑
i=1

log p(Xi )→ −E[log p(X )] = H(X ).

Guangyue Han The University of Hong Kong
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The Shannon-McMillan-Breiman Theorem

The Shannon-McMillan-Breiman Theorem
Let {Xn} be a finite-valued stationary ergodic process. Then, with
probability 1,

−1

n
log p(X1,X2, . . . ,Xn)→ H(X ),

where H(X ) here denotes the entropy rate of the process {Xn},
namely,

H(X ) = lim
n→∞

H(X1,X2, . . . ,Xn)/n.

Proof.
There are many. The simplest is the sandwich argument by
Algoet and Cover [1988].

Guangyue Han The University of Hong Kong
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Typical Set: Definition and Properties

Definition
The typical set A

(n)
ε with respect to p(x) is the set of sequence

(x1, x2, . . . , xn) ∈ X n with the property

H(X )− ε ≤ −1

n
log p(x1, x2, . . . , xn) ≤ H(X ) + ε.

Properties

I (1− ε)2n(H(X )−ε) ≤ |A(n)
ε | ≤ 2n(H(X )+ε) for n sufficiently large.

I Pr{A(n)
ε } > 1− ε for n sufficiently large.

Guangyue Han The University of Hong Kong
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Typical Set: A Pictorial Description

Consider all the instances (x1, x2, . . . , xn) ∈ X n of i.i.d.
(X1,X2, · · · ,Xn) with distribution p(x).

Guangyue Han The University of Hong Kong
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Source Coding (Data Compression)

I Represent each typical
sequence with about
nH(X ) bits.

I Represent each
non-typical sequence with
about n log |X | bits.

I Then we have a
one-to-one and easily
decodable code.

Guangyue Han The University of Hong Kong
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Shannon’s Source Coding Theorem

The average bits needed is

E[l(X1, . . . ,Xn)] =
∑

x1,...,xn

p(x1, . . . , xn)l(x1, . . . , xn)

=
∑

x1,...,xn∈A
(n)
ε

p(x1, . . . , xn)l(x1, . . . , xn) +
∑

x1,...,xn 6∈A
(n)
ε

p(x1, . . . , xn)l(x1, . . . , xn)

=
∑

x1,...,xn∈A
(n)
ε

p(x1, . . . , xn)nH(X ) +
∑

x1,...,xn 6∈A
(n)
ε

p(x1, . . . , xn)n log |X | ≈ nH(X ).

Source Coding Theorem

For any information source distributed according to
X1,X2, · · · ∼ p(x), the compression rate is always greater than
H(X ), but it can be arbitrarily close to H(X ).

Guangyue Han The University of Hong Kong
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Communication Channel: Definition

I A message W results in channel inputs X1(W ), . . . ,Xn(W );
I And they are received as a random sequence

Y1, . . . ,Yn ∼ p(y1, . . . , yn|x1, . . . , xn).
I The receiver then guesses the index W by an appropriate

decoding rule Ŵ = g(Y1, . . . ,Yn).
I The receiver makes an error if Ŵ is not the same as W that

was transmitted.
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decoding rule Ŵ = g(Y1, . . . ,Yn).
I The receiver makes an error if Ŵ is not the same as W that
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Communication Channel: An Example

Binary Symmetric Channel

p(Y = 0|X = 0) = 1− p, p(Y = 1|X = 0) = p,

p(Y = 0|X = 1) = p, p(Y = 1|X = 1) = 1− p.
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Tradeoff between Speed and Reliability

Speed

To transmit 1: we transmit 1. It is likely that we receive 0. Note
that the transmission rate is 1.

Reliability

To transmit 1: we transmit 11111. Though it is likely that we
receive something else, such as 11011, but more likely than not, we
can correct the possible error. Note that the transmission rate is
however 1/5.

Guangyue Han The University of Hong Kong
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Shannon’s Channel Coding Theorem: Statement

Channel Coding Theorem

For any discrete memoryless channel, asymptotically perfect
transmission rate below the capacity

C = max
p(x)

I (X ;Y )

is always possible, but is not possible above the capacity.
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Shannon’s Channel Coding Theorem: Proof
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Shannon’s Channel Coding Theorem: Proof

I For each typical input n-sequence, there are approximately
2nH(Y |X ) possible typical output sequences, all of them equally
likely.

I We wish to ensure that no two X input sequences produce the
same Y output sequence. Otherwise, we will not be able to
decide which X sequence was sent.

I The total number of possible typical Y sequences is
approximately 2nH(Y ). This set has to be divided into sets of
size 2nH(Y |X ) corresponding to the different input X
sequences.

I The total number of disjoint sets is less than or equal to
2n(H(Y )−H(Y |X )) = 2nI (X ;Y ). Hence, we can send at most
approximately 2nI (X ;Y ) distinguishable sequences of length n.

Guangyue Han The University of Hong Kong
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Capacity of Binary Symmetric Channels

The capacity of a binary symmetric channel with crossover
probability p is C = 1− H(p), where

H(p) = −p log p − (1− p) log(1− p).

Proof.

I (X ;Y ) = H(Y )− H(Y |X )

= H(Y )−
∑
x

p(x)H(Y |X = x)

= H(Y )−
∑
x

p(x)H(p)

= H(Y )− H(p)

≤ 1− H(p).
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Capacity of Additive White Gaussian Channels

The capacity of an additive white Gaussian channel Y = X + Z ,
where E[X 2] ≤ P and Z ∼ N(0, 1), is C = 1

2 log(1 + P).

Proof.

I (X ;Y ) = H(Y )− H(Y |X )

= H(Y )− H(X + Z |X )

= H(Y )− H(Z |X )

= H(Y )− H(Z )

≤ 1

2
log 2πe(1 + P)− 1

2
log 2πe

=
1

2
log(1 + P).
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I Channel transitions are characterized by time-invariant
transition probabilities {p(y |x)}.

I Channel inputs are independent and identically distributed.

I Representative examples include (memoryless) binary
symmetric channels and additive white Gaussian channels.
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Capacity of Memoryless Channels

Shannon’s channel coding theorem

C = sup
p(x)

I (X ;Y )

= sup
p(x)
−
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
.

The Blahut-Arimoto algorithm (BAA)
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Memory Channels

I Channel transitions are characterized by probabilities
{p(yi |x1, . . . , xi , y1, . . . , yi−1, si )},

where channel outputs are possibly dependent on previous and
current channel inputs and previous outputs and current
channel state; for example, inter-symbol interference channels,
flash memory channels, Gilbert-Elliot channels.

I Channel inputs may have to satisfy certain constraints which
necessitate dependence among channel inputs; for example,
(d , k)-RLL constraints, more generally, finite-type constraints.

I Such channels are widely used in a variety of real-life
applications, including magnetic and optical recording, solid
state drives, communications over band-limited channels
with inter-symbol interference.
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Capacity of Memory Channels

Despite a great deal of efforts by Zehavi and Wolf [1988], Mushkin
and Bar-David [1989], Shamai and Kofman [1990], Goldsmith and
Varaiya [1996], Arnold, Loeliger, Vontobel, Kavcic and Zeng
[2006], Holliday, Goldsmith, and Glynn [2006], Vontobel, Kavcic,
Arnold and Loeliger [2008], Pfister [2011], Permuter, Asnani and
Weissman [2013], Han [2015], ...
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Capacity of Memory Channels

Shannon’s channel coding theorem

C = sup
p(x)

I (X ;Y )
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p(x)

lim
n→∞

−
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n

∑
xn1 ,y

n
1

p(xn1 , y
n
1 ) log

p(xn1 , y
n
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p(xn1 )p(y
n
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The Generalized Blahut-Arimoto
algorithm (GBAA) by Vontobel,
Kavcic, Arnold and Loeliger [2008]
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Convergence of the GBAA

The GBAA will converge if the following conjecture is true.

Concavity Conjecture [Vontobel et al. 2008]

I (X ;Y ) and H(X |Y ) are both concave with respect to a chosen
parameterization.

Unfortunately, the concavity conjecture is not true in general [Li
and Han, 2013].

Guangyue Han The University of Hong Kong
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A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes an = 1/na, a > 0,

θn+1 = θn + angnb(θn),

where

I θ0 is randomly selected from the parameter space Θ;

I gnb(θ) is a simulator for I ′(X (θ);Y (θ));

I
0 < β < α < 1/3, b > 0, 2a + b − 3bβ > 1,

here, α, β are some “hidden” parameters involved in the
definition of gnb(θ).

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes an = 1/na, a > 0,

θn+1 = θn + angnb(θn),

where

I θ0 is randomly selected from the parameter space Θ;

I gnb(θ) is a simulator for I ′(X (θ);Y (θ));

I
0 < β < α < 1/3, b > 0, 2a + b − 3bβ > 1,

here, α, β are some “hidden” parameters involved in the
definition of gnb(θ).

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes an = 1/na, a > 0,

θn+1 = θn + angnb(θn),

where

I θ0 is randomly selected from the parameter space Θ;

I gnb(θ) is a simulator for I ′(X (θ);Y (θ));

I
0 < β < α < 1/3, b > 0, 2a + b − 3bβ > 1,

here, α, β are some “hidden” parameters involved in the
definition of gnb(θ).

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes an = 1/na, a > 0,

θn+1 = θn + angnb(θn),

where

I θ0 is randomly selected from the parameter space Θ;

I gnb(θ) is a simulator for I ′(X (θ);Y (θ));

I
0 < β < α < 1/3, b > 0, 2a + b − 3bβ > 1,

here, α, β are some “hidden” parameters involved in the
definition of gnb(θ).

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

A Randomized Algorithm [Han 2015]

With appropriately chosen step sizes an = 1/na, a > 0,

θn+1 = θn + angnb(θn),

where

I θ0 is randomly selected from the parameter space Θ;

I gnb(θ) is a simulator for I ′(X (θ);Y (θ));

I
0 < β < α < 1/3, b > 0, 2a + b − 3bβ > 1,

here, α, β are some “hidden” parameters involved in the
definition of gnb(θ).

Guangyue Han The University of Hong Kong



Fundamentals of Information Theory Memory Channels Continuous-Time Information Theory

Our Simulator of I ′(X ;Y )

Define

q = q(n) , nβ, p = p(n) , nα, k = k(n) , n/(nα + nβ).

For any j with iq + (i − 1)p + 1 ≤ j ≤ iq + ip, define

Wj = −
(

p′(Yj−bq/2c)

p(Yj−bq/2c)
+ · · ·+

p′(Yj |Y j−1
j−bq/2c)

p(Yj |Y j−1
j−bq/2c)

)
log p(Yj |Y j−1

j−bq/2c),

and furthermore

ζi , Wiq+(i−1)p+1 + · · ·+ Wiq+ip, Sn ,
∑k(n)

i=1 ζi .

Our simulator for I ′(X ;Y ):

gn(X n
1 ,Y

n
1 ) = H ′(X2|X1) + Sn(Y n

1 )/(kp)− Sn(X n
1 ,Y

n
1 )/(kp).

Guangyue Han The University of Hong Kong
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Convergence of Our Algorithm

Convergence and convergence rate with concavity

If I (X ;Y ) is concave with respect to θ, then θn converges to the
unique capacity achieving distribution θ∗ almost surely. And for
any τ with 2a + b − 3bβ − 2τ > 1, we have

|θn − θ∗| = Õ(n−τ ).

Guangyue Han The University of Hong Kong
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The Ideas for the Proofs

Analyticity result [Han, Marcus, 2006]

The entropy rate of hidden Markov chains is analytic.

Refinements of the Shannon-MaMillan-Breiman theorem [Han, 2012]

Limit theorems for the sample entropy of hidden Markov chains
hold.

The analyticity result states that I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

is a “nicely behaved” function.

The refinement results confirm that using Monte Carlo simulations,
I (X ;Y ) and its derivatives can be “well-approximated”.

Guangyue Han The University of Hong Kong
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Continuous-Time Information Theory
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Continuous-Time Gaussian Non-Feedback Channels

Consider the following continuous-time Gaussian channel:

Y (t) =
√
snr

∫ t

0
X (s)ds + B(t), t ∈ [0,T ],

where {B(t)} is the standard Brownian motion.

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Non-Feedback Channels

Theorem (Ducan 1970)

The following I-CMMSE relationship holds:

I (XT
0 ;Y T

0 ) =
1

2
E
∫ T

0
(X (s)− E[X (s)|Y s

0 ])2 ds.

Theorem (Guo, Shamai and Verdu 2005)

The following I-MMSE relationship holds:

d

dsnr
I (XT

0 ;Y T
0 ) =

1

2
E
∫ T

0
(X (s)− E[X (s)|Y T

0 ])2ds.

Guangyue Han The University of Hong Kong
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Continuous-Time Gaussian Feedback Channels

Consider the following continuous-time Gaussian feedback channel:

Y (t) =
√
snr

∫ t

0
X (s,M,Y s

0 )ds + B(t), t ∈ [0,T ],

where {B(t)} is the standard Brownian motion.
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Continuous-Time Gaussian Feedback Channels

Theorem (Kadota, Zakai and Ziv 1971)

The following I-CMMSE relationship:

I (M;Y T
0 ) =

1

2
E
∫ T

0
(X (s,M,Y s

0 )− E[X (s,M,Y s
0 )|Y s

0 ])2 ds.

Theorem (Han and Song 2016)

The following I-MMSE relationship holds:

d

dsnr
I (M;Y T

0 ) =
1

2

∫ T

0
E
[(

X (s)− E[X (s)|Y T
0 ]
)2]

ds

+snr

∫ T

0
E
[(

X (s)− E
[
X (s)|Y T

0

]) d

dsnr
X (s)

]
ds.
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Continuous-Time Gaussian Feedback Channels

Theorem (Kadota, Zakai and Ziv 1971)
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Capacity of Continuous-Time Gaussian Channels

For either the following continuous-time Gaussian channel:

Y (t) =
√
snr

∫ t

0
X (s)ds + B(t), t ∈ [0,T ],

or the following continuous-time Gaussian feedback channel:

Y (t) =
√
snr

∫ t

0
X (s,M,Y s

0 )ds + B(t), t ∈ [0,T ],

the capacity is P/2.

Guangyue Han The University of Hong Kong
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Thank you!

Guangyue Han The University of Hong Kong


