Existence of density for the stochastic wave equation with space-time homogeneous noise

Lluís Quer-Sardanyons

Joint work with Raluca Balan (University of Ottawa) and Jian Song (University of Hong Kong)

Workshop on Stochastic Analysis and Related Topics July 3-5, 2018, University of Hong Kong

Outline

- 1. The stochastic wave equation
- 2. Domain of the Wiener integral
- 3. Mild Skorohod solution
- 4. Existence of density
- 5. Sketch of the proof

The stochastic wave equation

We consider the SPDE on $\mathbb{R}_+ \times \mathbb{R}^d$, with $d \in \{1, 2\}$,

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(t,x) &= \Delta u(t,x) + u(t,x)\dot{W}(t,x), \\ u(0,x) &= 1, \quad x \in \mathbb{R}^d, \\ \frac{\partial u}{\partial t}(0,x) &= 0, \quad x \in \mathbb{R}^d. \end{cases}$$
 (SWE)

- Δ is the Laplacian operator on \mathbb{R}^d .
- \dot{W} is a space-time homogeneous Gaussian noise.
- This problem is called the Hyperbolic Anderson Model.

Space-time homogeneous Gaussian noise

It is given by a zero-mean Gaussian family $\{W(\varphi), \varphi \in \mathcal{D}(\mathbb{R}^{d+1})\}$ with

$$\mathbb{E}[W(\varphi)W(\psi)] = \int_{\mathbb{R}^2 \times \mathbb{R}^{2d}} \varphi(t, x) \gamma(t-s) f(x-y) \psi(s, y) dx dy dt ds,$$

where $\gamma, f : \mathbb{R} \to [0, \infty]$ are continuous, symmetric, locally integrable functions, such that

$$\gamma(t) < \infty$$
 if and only if $t \neq 0$,
 $f(x) < \infty$ if and only if $x \neq 0$.

Moreover, we assume that γ , *f* are non-negative definite:

$$\int_{\mathbb{R}^d} (\varphi * \widetilde{\varphi})(x) f(x) dx \ge 0, \quad \text{for all} \quad \varphi \in \mathcal{S}(\mathbb{R}^d).$$

where $\tilde{\varphi}(x) = \varphi(-x)$ and $\mathcal{S}(\mathbb{R}^d)$ is the space of rapidly decreasing \mathcal{C}^{∞} -functions on \mathbb{R}^d .

Basic example

Fractional correlation in time:

$$\gamma(t) = H(2H-1)|t|^{2H-2}$$
 with $\frac{1}{2} < H < 1$.

Riesz kernel is space:

$$f(x) = |x|^{\alpha - d}$$
 with $0 < \alpha < d$

Spectral measures

There exist non-negative tempered measures ν and μ such that

$$\gamma = \mathcal{F}\nu$$
 and $f = \mathcal{F}\mu$,

where the Fourier transform is understood in the space $S'_{\mathbb{C}}(\mathbb{R}^d)$ of \mathbb{C} -valued tempered distributions:

$$\int_{\mathbb{R}^d} f(x)\varphi(x)dx = \int_{\mathbb{R}^d} \mathcal{F}\varphi(\xi)\mu(d\xi) \quad \text{for all} \quad \varphi \in \mathcal{S}_{\mathbb{C}}(\mathbb{R}^d).$$

where $\mathcal{F}\varphi(\xi) = \int_{\mathbb{R}^d} e^{-i\xi \cdot x} \varphi(x) dx$ is the Fourier transform of φ .

There exists $k \ge 1$ such that

$$\int_{\mathbb{R}^d} \left(\frac{1}{1+|\xi|^2}\right)^k \mu(d\xi) < \infty.$$

(respectively, for γ)

We have that, for any $\psi_1, \psi_2 \in S_{\mathbb{C}}(\mathbb{R}^d)$ and $\phi_1, \phi_2 \in S_{\mathbb{C}}(\mathbb{R})$,

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \psi_1(x) f(x-y) \overline{\psi_2(y)} dx dy = \int_{\mathbb{R}^d} \mathcal{F}\psi_1(\xi) \overline{\mathcal{F}\psi_2(\xi)} \mu(d\xi)$$
$$\int_{\mathbb{R}} \int_{\mathbb{R}} \phi_1(t) \gamma(t-s) \overline{\phi_2(s)} dt ds = \int_{\mathbb{R}} \mathcal{F}\phi_1(\tau) \overline{\mathcal{F}\phi_2(\tau)} \nu(d\tau).$$

In fact, Balan & Song 2017 proved that, for any $\varphi_1, \varphi_2 \in \mathcal{D}(\mathbb{R}^{d+1})$,

$$\begin{split} \mathbb{E}[W(\varphi_1)W(\varphi_2)] &= \int_{\mathbb{R}^2 \times \mathbb{R}^{2d}} \varphi(t, x) \gamma(t - s) f(x - y) \psi(s, y) dx dy dt ds \\ &= \int_{\mathbb{R}^{d+1}} \mathcal{F} \varphi_1(\tau, \xi) \overline{\mathcal{F} \varphi_2(\tau, \xi)} \nu(d\tau) \mu(d\xi). \end{split}$$

where here \mathcal{F} denotes the Fourier transform in both variables.

The Wiener integral

Let \mathcal{H} be the completion of $\mathcal{D}(\mathbb{R}^{d+1})$ with respect to $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ defined by

$$\begin{split} \langle \varphi_1, \varphi_2 \rangle_{\mathcal{H}} &= \mathbb{E}[W(\varphi_1)W(\varphi_2)] \\ &= \int_{\mathbb{R}^2 \times \mathbb{R}^{2d}} \varphi_1(t, x) \gamma(t - s) f(x - y) \varphi_2(s, y) dx dy dt ds \\ &= \int_{\mathbb{R}^{d+1}} \mathcal{F}\varphi_1(\tau, \xi) \overline{\mathcal{F}\varphi_2(\tau, \xi)} \nu(d\tau) \mu(d\xi). \end{split}$$

Then, the noise can be extended to a isonormal Gaussian process $\{W(\varphi), \varphi \in \mathcal{H}\}$: for all $\varphi_1, \varphi_2 \in \mathcal{H}$,

 $\mathbb{E}[W(\varphi_1)] = 0 \quad \text{and} \quad \mathbb{E}[W(\varphi_1)W(\varphi_2)] = \langle \varphi_1, \varphi_2 \rangle_{\mathcal{H}}.$

 $W(\varphi)$ is called the Wiener integral of $\varphi \in \mathcal{H}$ with respect to W.

Characterization of ${\cal H}$

Hypothesis A: The measures ν and μ satisfy

 $\mu(d\xi) = (2\pi)^{-d} g(\xi) d\xi \quad \text{and} \quad \nu(d\tau) = (2\pi)^{-1} h(\tau) d\tau,$

and $\frac{1}{hg} \mathbf{1}_{\{hg>0\}}$ is a slow growth (or tempered) function.

Theorem

If Hypothesis A holds, then \mathcal{H} coincides with \mathcal{U} , the space of tempered distributions $S \in \mathcal{S}'(\mathbb{R}^{d+1})$ satisfying that $\mathcal{F}S$ is a function and

$$\int_{\mathbb{R}^{d+1}} \left|\mathcal{FS}(au,\xi)
ight|^2
u(extbf{d} au) \mu(extbf{d}\xi) < \infty.$$

Moreover, for any $S_1, S_2 \in \mathcal{H}$,

$$\langle S_1, S_2 \rangle_{\mathcal{H}} = \int_{\mathbb{R}^{d+1}} \mathcal{F}S_1(\tau, \xi) \overline{\mathcal{F}S_2(\tau, \xi)} \nu(d\tau) \mu(d\xi).$$

Proof.

1. The space $\mathcal{D}(\mathbb{R}^{d+1})$ is dense in \mathcal{U} , with respect to

$$\langle S_1, S_2 \rangle_{\mathcal{U}} := \int_{\mathbb{R}^{d+1}} \mathcal{F}S_1(\tau, \xi) \overline{\mathcal{F}S_2(\tau, \xi)} \nu(d\tau) \mu(d\xi).$$

Hence $\mathcal{U} \subset \mathcal{H}$. Generalization of Jolis 2010 to higher dimensions. Hypothesis A is not needed here.

2. Basse-O'Connor, Graversen & Pedersen 2012: the space \mathcal{U} is complete if and only if, for any $\varphi \in L^2_{\mathbb{C}}(\nu \times \mu)$ there exists an integer $k \ge 1$ such that

$$\int_{\{h>0,g>0\}} \left(\frac{1}{1+\tau^2+|\xi|^2}\right)^k |\varphi(\tau,\xi)| \, d\tau d\xi < \infty.$$

This is satisfied if $\frac{1}{hg} \mathbf{1}_{\{hg>0\}}$ is a slow growth function.

Important corollary

Recall: If $S \in \mathcal{H}$, we know that

$$\|m{S}\|_{\mathcal{H}}^2 = \int_{\mathbb{R}^{d+1}} \left|\mathcal{F}m{S}(au,\xi)
ight|^2
u(m{d} au) \mu(m{d}\xi),$$

and it holds $\mathcal{F}\mu = f$.

Corollary

Assume that Hypothesis A holds. If S is a measurable function on $\mathbb{R}_+ \times \mathbb{R}^d$ such that $S \in \mathcal{H}$ and

$$\int_0^\infty \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} S(r,z) f(z-z') S(r,z') dz dz' dr > 0,$$

then $||S||_{\mathcal{H}} > 0$.

We will apply this result with S = Du(t, x).

Malliavin derivative

Let $F = \varphi(W(h_1), \dots, W(h_n))$ be a smooth random variable, where $n \ge 1$, $h_1, \dots, h_n \in \mathcal{H}$ and $\varphi \in C_b^{\infty}(\mathbb{R}^n)$.

The Malliavin derivative of *F* is the \mathcal{H} -valued random variable given by:

$$DF = \sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_i} (W(h_1), \dots, W(h_n)) h_i$$

The operator *D* can be extended to $\mathbb{D}^{1,2}$, the completion of the set of smooth random variables with respect to

$$\|F\|_{1,2} = \left(\mathbb{E}[|F|]^2 + \mathbb{E}[\|DF\|_{\mathcal{H}}^2]\right)^{\frac{1}{2}}.$$

Similarly, one defines the iterated derivative $D^k F$ as a $\mathcal{H}^{\otimes k}$ -valued random variable. The domain of D^k in $L^p(\Omega)$ is denoted by $\mathbb{D}^{k,p}$.

Skorohod integral

The divergence operator δ is defined as the adjoint of *D*.

The domain of δ , denoted by $Dom(\delta)$, is the set of $u \in L^2(\Omega; \mathcal{H})$ such that

$$|\mathbb{E}[\langle \mathcal{DF}, u
angle_{\mathcal{H}}]| \leq C_u \Big(\mathbb{E}ig[|\mathcal{F}|^2ig]\Big)^{rac{1}{2}}, \hspace{1em} ext{for all } \mathcal{F} \in \mathbb{D}^{1,2}.$$

If $u \in \text{Dom}(\delta)$, then $\delta(u) \in L^2(\Omega)$ is characterized by the duality relation: $\mathbb{E}[F\delta(u)] = \mathbb{E}[\langle DF, u \rangle_{\mathcal{H}}], \text{ for all } F \in \mathbb{D}^{1,2}.$

If $u \in \text{Dom}(\delta)$, we use the notation

$$\delta(u) = \int_0^\infty \int_{\mathbb{R}^d} u(t, x) W(\delta t, \delta x),$$

and we say that $\delta(u)$ is the Skorohod integral of *u* with respect to *W*.

Mild Skorohod solution

Let *G* be the fundamental solution of the wave equation on \mathbb{R}^d with d = 1 and d = 2, respectively:

$$G(t,x) = \frac{1}{2} \mathbf{1}_{\{|x| \le t\}} \qquad G(t,x) = \frac{1}{2\pi} \frac{1}{\sqrt{t^2 - |x|^2}} \mathbf{1}_{\{|x| \le t\}}$$

Definition

A measurable stochastic process $\{u(t, x), (t, x) \in [0, \infty) \times \mathbb{R}^d\}$ is a solution of equation (SWE) if, for all T > 0,

$$\sup_{(t,x)\in[0,T]\times\mathbb{R}^d}\mathbb{E}[|u(t,x)|]^2<\infty,$$

and for any $(t, x) \in [0, \infty) \times \mathbb{R}^d$, it holds in $L^2(\Omega)$:

$$u(t,x) = 1 + \int_0^t \int_{\mathbb{R}^d} G(t-s,x-y)u(s,y)W(\delta s,\delta y).$$

Existence of solution

Theorem (Balan & Song 2017)

Equation (SWE) has a unique solution in any spatial dimension $d \ge 1$, provided that the spatial spectral measure μ satisfies

$$\int_{\mathbb{R}^d} \frac{1}{1+|\xi|^2} \mu(d\xi) < \infty.$$

Theorem (Balan & Song 2017)

Assume that

$$\int_{\mathbb{R}^d} \left(\frac{1}{1+|\xi|^2}\right)^{\beta} \mu(d\xi) < \infty, \tag{1}$$

for some $\beta \in (0, 1)$. Then, the solution of (SWE) has a modification with Hölder-continuous paths of order $(1 - \beta) - \varepsilon$, for any $\varepsilon > 0$.

Optimality of (1): Dalang & Sanz-Solé 2005.

Chaos expansion

In Balan & Song 2017, it is proved that, for any $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, u(t, x) has the Wiener chaos expansion

$$u(t,x)=1+\sum_{n\geq 1}I_n(f_n(\cdot,t,x)),$$

where I_n is the multiple Wiener integral of order *n* with respect to *W*, and

 $f_n(t_1, x_1, \ldots, t_n, x_n, t, x) = G(t - t_n, x - x_n) \ldots G(t_2 - t_1, x_2 - x_1) \mathbf{1}_{\{0 < t_1 < \ldots < t_n < t\}}.$

It follows that

$$\mathbb{E}[|u(t,x)|^2] = \sum_{n\geq 0} \frac{1}{n!} \alpha_n(t),$$

where

$$\alpha_n(t) = (n!)^2 \|\widetilde{f}_n(\cdot, t, x)\|_{\mathcal{H}^{\otimes n}}^2$$

and $\tilde{f}_n(\cdot, t, x)$ is the symmetrization of $f_n(\cdot, t, x)$.

Existence of density

Hypothesis A: The measures ν and μ satisfy

 $\mu(d\xi) = (2\pi)^{-d} g(\xi) d\xi \quad \text{and} \quad \nu(d\tau) = (2\pi)^{-1} h(\tau) d\tau,$

and $\frac{1}{hg} \mathbf{1}_{\{hg>0\}}$ is a slow growth (or tempered) function.

Theorem Assume that Hypothesis A holds and

$$\int_{\mathbb{R}^d} \left(\frac{1}{1+|\xi|^2}\right)^{\beta} \mu(d\xi) < \infty,$$

for some $\beta \in (0, 1)$. Then, the restriction of the law of the random variable $u(t, x) \mathbf{1}_{\{u(t,x)\neq 0\}}$ to the set $\mathbb{R} \setminus \{0\}$ is absolutely continuous with respect to the Lebesgue measure on $\mathbb{R} \setminus \{0\}$.

Related literature

Existence (and smoothness) of density for the stochastic wave equation:

$$\frac{\partial^2 u}{\partial t^2}(t,x) = \Delta u(t,x) + b(u(t,x)) + \sigma(u(t,x))\dot{W}(t,x).$$

All existing results assume that

$$|\sigma(z)| \geq C > 0$$
 for all $z \in \mathbb{R}$

and that noise is white in time (and rather general f):

- d = 1: Carmona & Nualart 1988, where $x \in I \subseteq \mathbb{R}$.
- *d* = 2: Millet & Sanz-Solé 1999.
- $d \in \{1, 2\}$: Márquez-Carreras, Mellouk & Sarrà 2001.
- *d* = 3: QS & Sanz-Solé 2004.
- *d* ∈ {1, 2, 3}: Nualart & QS 2007.
- *d* ≥ 4: Sanz-Solé & Süß 2013, Sanz-Solé & Süß 2015.

The stochastic heat equation with space-time colored noise:

$$\frac{\partial u}{\partial t}(t,x) = \Delta u(t,x) + \frac{u(t,x)}{\dot{W}}(t,x) \qquad x \in \mathbb{R}^d, \ d \ge 1.$$

Smoothness of the density:

• Hu, Nualart & Song 2011: for $H, H_1, ..., H_d \in (\frac{1}{2}, 1)$,

$$\gamma(t) =
ho_H(t) := H(2H-1)|t|^{2H-2}$$
 and $f(x) = \prod_{i=1}^{d}
ho_{H_i}(x_i).$

• Hu, Huang, Nualart & Tindel 2015: general γ and f such that

$$0 \leq \gamma(t) \lesssim |t|^{-(1-eta)} \qquad ext{and} \qquad \int_{\mathbb{R}^d} \left(rac{1}{1+|\xi|^2}
ight)^eta \mu(d\xi) < \infty.$$

• Hu & Le 2018: for some $\alpha_0 \in [0, 1)$ and $\alpha_1 \in (0, 2)$,

$$C_1 t^{\alpha_0} \leq \gamma(t) \leq c_2 t^{-\alpha_0}$$
 and $f(cx) \leq c^{-\alpha_1} f(x)$.

Malliavin differentiability

Proposition

For any $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, $u(t, x) \in \mathbb{D}^{k, p}$ for any $k \ge 1$ and p > 1.

Proof:

We have that $u(t, x) \in \mathbb{D}^{k, p}$ if

$$\sum_{n\geq 1} n^{\frac{k}{2}} (p-1)^{\frac{n}{2}} \left(\mathbb{E} \left[|I_n(f_n(\cdot,t,x))|^2 \right] \right)^{\frac{1}{2}} < \infty.$$

For this, we use the proof that, for any $k \ge 0$,

$$\sum_{n\geq 0}\frac{n^k}{n!}\alpha_n(t)<\infty,$$

where we recall that $\alpha_n(t) = (n!)^2 \|\tilde{f}_n(\cdot, t, x)\|_{\mathcal{H}^{\otimes n}}^2$.

An important point in the proof of

$$\sum_{n\geq 0}\frac{n^k}{n!}\alpha_n(t)<\infty$$

has been the maximum principle (refining Balan & Song 2017 for $d \in \{1,2\}$)

$$\sup_{\eta\in\mathbb{R}^d}\int_{\mathbb{R}^d}|\mathcal{F}G(t,\cdot)(\xi+\eta)|^2\mu(d\xi)=\int_{\mathbb{R}^d}|\mathcal{F}G(t,\cdot)(\xi)|^2\mu(d\xi).$$

It is based on the Parseval-type identity (Khoshnevisan & Xiao 2009):

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \varphi(x) f(x-y) \overline{\varphi(y)} dx dy = \int_{\mathbb{R}^d} |\mathcal{F}\varphi(\xi)|^2 \mu(d\xi),$$

for all $\varphi \in L^1_{\mathbb{C}}(\mathbb{R}^d)$ with $\int_{\mathbb{R}^d} |\mathcal{F}|\varphi|(\xi)|^2 \mu(d\xi) < \infty$.

Equation for Du(t, x)

We recall that $Du(t, x) \in \mathcal{H}$, which may contain distributions.

In order to apply the Corollary, first we prove that, for any $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, the process $\{D_{r,z}u(t,x), (r,z) \in [0,t] \times \mathbb{R}^d\}$ has a measurable modification.

We will need to prove that, a.s. on some Ω_m ,

$$\int_0^t \|D_r u(t,x)\|_0^2 dr := \int_0^t \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} D_{r,z} u(t,x) f(z-z') D_{r,z'} u(t,x) dz dz' dr > 0.$$

Let \mathcal{P}_0 be the completion of $\mathcal{D}(\mathbb{R}^d)$ with respect to

$$\langle \varphi, \psi \rangle_0 = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \varphi(z) f(z - z') \psi(z') dz dz'.$$

We show that, for fixed $r \in [0, t]$, $D_r u(t, x)$ satisfies an equation in $L^2(\Omega; \mathcal{P}_0)$.

Theorem For any $r \in [0, t]$, the following equality holds in $L^2(\Omega; \mathcal{P}_0)$:

$$D_r u(t,x) = G(t-r,x-\cdot)u(r,\cdot) + \int_0^t \int_{\mathbb{R}^d} G(t-s,x-y)D_r u(s,y)W(\overline{\delta s},\overline{\delta y}).$$

Here, the notation

$$\int_0^\infty \int_{\mathbb{R}^d} U(s,y) W(\overline{\delta}s,\overline{\delta}y), \qquad U \in L^2(\Omega;\mathcal{H}\otimes\mathcal{P}_0),$$

stands for a \mathcal{P}_0 -valued Skorohod integral, interpreted as the adjoint of the Malliavin derivative of Hilbert-space-valued random variables (Nualart 2006).

Proof: we use the Picard iteration scheme (Balan 2012)

$$u_n(t,x) = 1 + \sum_{k=1}^n I_k(f_k(\cdot,t,x)).$$

Non-degeneracy of Du(t, x)

Recall:

$$\frac{\partial^2 u}{\partial t^2}(t,x) = \Delta u(t,x) + \frac{u(t,x)}{\dot{W}(t,x)}$$

Lemma Let $(\Gamma_m)_{m\geq 1}$ be a sequence of open sets in \mathbb{R} such that

 $0 \notin \Gamma_m \quad and \quad \Gamma_m \subset \Gamma_{m+1}, \quad for \ all \quad m \ge 1.$ Let $\Gamma = \bigcup_{m \ge 1} \Gamma_m$. Let $F \in \mathbb{D}^{2,p}$ for some p > 1 be such that, for all $m \ge 1$, $\|DF\|_{\mathcal{H}} > 0 \quad a.s. \ on \quad \{F \in \Gamma_m\}.$

Then, the restriction of the law of the variable $F1_{\{F \in \Gamma\}}$ to the set Γ is absolutely continuous with respect to the Lebesgue measure on Γ .

We apply this lemma with F = u(t, x) and $\Gamma_m = \{v \in \mathbb{R}; |v| > \frac{1}{m}\}.$

We prove that

$$\|Du(t,x)\|_{\mathcal{H}} > 0$$
 a.s. on $\Omega_m = \left\{ |u(t,x)| > \frac{1}{m} \right\}.$

In view of the Corollary, it is enough to prove that

$$\int_0^t \|D_r u(t,x)\|_0^2 dr > 0 \quad \text{a.s. on} \quad \Omega_m.$$

Let $\delta \in (0, 1)$. Then,

$$\begin{split} \int_{0}^{t} \|D_{r}u(t,x)\|_{0}^{2} \, dr &\geq \int_{t-\delta}^{t} \|D_{r}u(t,x)\|_{0}^{2} \, dr \\ &\geq \frac{1}{2} \int_{t-\delta}^{t} \|G(t-r,x-\cdot)u(r,\cdot)\|_{0}^{2} \, dr - I(\delta), \end{split}$$

where

$$I(\delta) = \int_{t-\delta}^t \left\| \int_{t-\delta}^t \int_{\mathbb{R}^d} G(t-s,x-y) D_r u(s,y) W(\overline{\delta}s,\overline{\delta}y) \right\|_0^2 dr.$$

On the event Ω_m ,

$$\int_0^t \|D_r u(t,x)\|_0^2 dr \geq \frac{1}{2m^2} \psi(\delta) - \frac{1}{2} J(\delta) - I(\delta),$$

where

$$\psi(\delta) = \int_0^\delta \|G(r,\cdot)\|_0^2 dr = \int_0^\delta \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(r,z) f(z-z') G(r,z') dz dz' dr.$$

and $J(\delta)$ is given by

$$\int_{t-\delta}^t \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(t-r,x-z)f(z-z')G(t-r,x-z')\big(u(t,x)^2-u(r,z)u(r,z')\big)dzdz'dr.$$

We have

$$\mathbb{E}[I(\delta)] \lesssim \psi(\delta)\phi(\delta)$$
 and $\mathbb{E}[|J(\delta)|] \lesssim \delta^{\frac{1-\beta}{2}}\psi(\delta),$

$$\phi(\delta) = \int_{[0,\delta]^2} \int_{\mathbb{R}^{2d}} G(s,y) \gamma(s-s') f(y-y') G(s',y') dy dy' ds ds'$$

By Markov's inequality, for any $n \ge 1$,

$$\mathbb{P}\left(\left\{\int_{0}^{t}\|D_{r}u(t,x)\|_{0}^{2}\,dr<\frac{1}{n}\right\}\cap\Omega_{m}\right)\leq\mathbb{P}\left(I(\delta)+\frac{1}{2}J(\delta)>\frac{1}{2m^{2}}\psi(\delta)-\frac{1}{n}\right)\\\lesssim\left(\frac{1}{2m^{2}}\psi(\delta)-\frac{1}{n}\right)^{-1}\psi(\delta)\left(\phi(\delta)+\delta^{\frac{1-\beta}{2}}\right).$$

Taking $n \to \infty$, one gets

$$\mathbb{P}\left(\left\{\int_0^t \|D_r u(t,x)\|_0^2 dr = 0\right\} \cap \Omega_m\right) \lesssim \phi(\delta) + \delta^{\frac{1-\beta}{2}}.$$

Next, we take $\delta \rightarrow \mathbf{0}$ and obtain

$$\mathbb{P}\left(\left\{\int_0^t \|D_r u(t,x)\|_0^2 dr = 0\right\} \cap \Omega_m\right) = 0.$$

References

Balan, R. M. (2012). The stochastic wave equation with multiplicative fractional noise: a Malliavin calculus approach. *Potential Anal.* **36**, 1-34.

- Balan, R. M., Quer-Sardanyons, L. and Song, J. (2018). Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise. arXiv:1805.06936
- Balan, R. M. and Song, J. (2017). Hyperbolic Anderson Model with space-time homogeneous Gaussian noise. *Latin Amer. J. Probab. Math. Stat.* **14**, 799-849.