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The stochastic wave equation

We consider the SPDE on R+ × Rd , with d ∈ {1, 2},

∂2u
∂t2 (t , x) = ∆u(t , x) + u(t , x)Ẇ (t , x),

u(0, x) = 1, x ∈ Rd ,

∂u
∂t

(0, x) = 0, x ∈ Rd .

(SWE)

• ∆ is the Laplacian operator on Rd .

• Ẇ is a space-time homogeneous Gaussian noise.

• This problem is called the Hyperbolic Anderson Model.



Space-time homogeneous Gaussian noise

It is given by a zero-mean Gaussian family {W (ϕ), ϕ ∈ D(Rd+1)} with

E[W (ϕ)W (ψ)] =

∫
R2×R2d

ϕ(t , x)γ(t − s)f (x − y)ψ(s, y)dxdydtds,

where γ, f : R→ [0,∞] are continuous, symmetric, locally integrable
functions, such that

γ(t) <∞ if and only if t 6= 0,

f (x) <∞ if and only if x 6= 0.

Moreover, we assume that γ, f are non-negative definite:∫
Rd

(ϕ ∗ ϕ̃)(x)f (x)dx ≥ 0, for all ϕ ∈ S(Rd ),

where ϕ̃(x) = ϕ(−x) and S(Rd ) is the space of rapidly decreasing
C∞-functions on Rd .



Basic example

Fractional correlation in time:

γ(t) = H(2H − 1)|t |2H−2 with
1
2
< H < 1.

Riesz kernel is space:

f (x) = |x |α−d with 0 < α < d .



Spectral measures

There exist non-negative tempered measures ν and µ such that

γ = Fν and f = Fµ,

where the Fourier transform is understood in the space S ′C(Rd ) of C-valued
tempered distributions:∫

Rd
f (x)ϕ(x)dx =

∫
Rd
Fϕ(ξ)µ(dξ) for all ϕ ∈ SC(Rd ).

where Fϕ(ξ) =
∫
Rd e−iξ·xϕ(x)dx is the Fourier transform of ϕ.

There exists k ≥ 1 such that∫
Rd

(
1

1 + |ξ|2

)k

µ(dξ) <∞.

(respectively, for γ)



We have that, for any ψ1, ψ2 ∈ SC(Rd ) and φ1, φ2 ∈ SC(R),∫
Rd

∫
Rd
ψ1(x)f (x − y)ψ2(y)dxdy =

∫
Rd
Fψ1(ξ)Fψ2(ξ)µ(dξ).

∫
R

∫
R
φ1(t)γ(t − s)φ2(s)dtds =

∫
R
Fφ1(τ)Fφ2(τ)ν(dτ).

In fact, Balan & Song 2017 proved that, for any ϕ1, ϕ2 ∈ D(Rd+1),

E[W (ϕ1)W (ϕ2)] =

∫
R2×R2d

ϕ(t , x)γ(t − s)f (x − y)ψ(s, y)dxdydtds

=

∫
Rd+1
Fϕ1(τ, ξ)Fϕ2(τ, ξ)ν(dτ)µ(dξ).

where here F denotes the Fourier transform in both variables.



The Wiener integral

Let H be the completion of D(Rd+1) with respect to 〈·, ·〉H defined by

〈ϕ1, ϕ2〉H = E[W (ϕ1)W (ϕ2)]

=

∫
R2×R2d

ϕ1(t , x)γ(t − s)f (x − y)ϕ2(s, y)dxdydtds

=

∫
Rd+1
Fϕ1(τ, ξ)Fϕ2(τ, ξ)ν(dτ)µ(dξ).

Then, the noise can be extended to a isonormal Gaussian process
{W (ϕ), ϕ ∈ H}: for all ϕ1, ϕ2 ∈ H,

E[W (ϕ1)] = 0 and E[W (ϕ1)W (ϕ2)] = 〈ϕ1, ϕ2〉H.

W (ϕ) is called the Wiener integral of ϕ ∈ H with respect to W .



Characterization of H

Hypothesis A: The measures ν and µ satisfy

µ(dξ) = (2π)−d g(ξ)dξ and ν(dτ) = (2π)−1h(τ)dτ,

and 1
hg 1{hg>0} is a slow growth (or tempered) function.

Theorem
If Hypothesis A holds, then H coincides with U , the space of tempered
distributions S ∈ S ′(Rd+1) satisfying that FS is a function and∫

Rd+1
|FS(τ, ξ)|2ν(dτ)µ(dξ) <∞.

Moreover, for any S1,S2 ∈ H,

〈S1,S2〉H =

∫
Rd+1
FS1(τ, ξ)FS2(τ, ξ)ν(dτ)µ(dξ).



Proof.

1. The space D(Rd+1) is dense in U , with respect to

〈S1,S2〉U :=

∫
Rd+1
FS1(τ, ξ)FS2(τ, ξ)ν(dτ)µ(dξ).

Hence U ⊂ H. Generalization of Jolis 2010 to higher dimensions.
Hypothesis A is not needed here.

2. Basse-O’Connor, Graversen & Pedersen 2012: the space U is complete
if and only if, for any ϕ ∈ L2

C(ν × µ) there exists an integer k ≥ 1 such
that ∫

{h>0,g>0}

(
1

1 + τ 2 + |ξ|2

)k

|ϕ(τ, ξ)| dτdξ <∞.

This is satisfied if 1
hg 1{hg>0} is a slow growth function.



Important corollary

Recall: If S ∈ H, we know that

‖S‖2
H =

∫
Rd+1
|FS(τ, ξ)|2ν(dτ)µ(dξ),

and it holds Fµ = f .

Corollary
Assume that Hypothesis A holds. If S is a measurable function on R+ × Rd

such that S ∈ H and∫ ∞
0

∫
Rd

∫
Rd

S(r , z)f (z − z′)S(r , z′)dzdz′dr > 0,

then ‖S‖H > 0.

We will apply this result with S = Du(t , x).



Malliavin derivative

Let F = ϕ(W (h1), . . . ,W (hn)) be a smooth random variable, where n ≥ 1,
h1, . . . , hn ∈ H and ϕ ∈ C∞b (Rn).

The Malliavin derivative of F is the H-valued random variable given by:

DF =
n∑

i=1

∂ϕ

∂xi
(W (h1), . . . ,W (hn))hi

The operator D can be extended to D1,2, the completion of the set of smooth
random variables with respect to

‖F‖1,2 =
(
E[|F |]2 + E

[
‖DF‖2

H
]) 1

2
.

Similarly, one defines the iterated derivative Dk F as a H⊗k -valued random
variable. The domain of Dk in Lp(Ω) is denoted by Dk,p.



Skorohod integral

The divergence operator δ is defined as the adjoint of D.

The domain of δ, denoted by Dom(δ), is the set of u ∈ L2(Ω;H) such that

|E[〈DF , u〉H]| ≤ Cu

(
E
[
|F |2

]) 1
2
, for all F ∈ D1,2.

If u ∈ Dom(δ), then δ(u) ∈ L2(Ω) is characterized by the duality relation:

E[Fδ(u)] = E[〈DF , u〉H], for all F ∈ D1,2.

If u ∈ Dom(δ), we use the notation

δ(u) =

∫ ∞
0

∫
Rd

u(t , x)W (δt , δx),

and we say that δ(u) is the Skorohod integral of u with respect to W .



Mild Skorohod solution

Let G be the fundamental solution of the wave equation on Rd with d = 1 and
d = 2, respectively:

G(t , x) =
1
2

1{|x|≤t} G(t , x) =
1

2π
1√

t2 − |x |2
1{|x|≤t}

Definition
A measurable stochastic process {u(t , x), (t , x) ∈ [0,∞)× Rd} is a solution
of equation (SWE) if, for all T > 0,

sup
(t,x)∈[0,T ]×Rd

E[|u(t , x)|]2 <∞,

and for any (t , x) ∈ [0,∞)× Rd , it holds in L2(Ω):

u(t , x) = 1 +

∫ t

0

∫
Rd

G(t − s, x − y)u(s, y)W (δs, δy).



Existence of solution

Theorem (Balan & Song 2017)
Equation (SWE) has a unique solution in any spatial dimension d ≥ 1,
provided that the spatial spectral measure µ satisfies∫

Rd

1
1 + |ξ|2 µ(dξ) <∞.

Theorem (Balan & Song 2017)
Assume that ∫

Rd

(
1

1 + |ξ|2

)β
µ(dξ) <∞, (1)

for some β ∈ (0, 1). Then, the solution of (SWE) has a modification with
Hölder-continuous paths of order (1− β)− ε, for any ε > 0.

Optimality of (1): Dalang & Sanz-Solé 2005.



Chaos expansion

In Balan & Song 2017, it is proved that, for any (t , x) ∈ R+ × Rd , u(t , x) has
the Wiener chaos expansion

u(t , x) = 1 +
∑
n≥1

In(fn(·, t , x)),

where In is the multiple Wiener integral of order n with respect to W , and

fn(t1, x1, . . . , tn, xn, t , x) = G(t − tn, x − xn) . . .G(t2− t1, x2− x1)1{0<t1<...<tn<t}.

It follows that
E[|u(t , x)|2] =

∑
n≥0

1
n!
αn(t),

where
αn(t) = (n!)2‖̃fn(·, t , x)‖2

H⊗n

and f̃n(·, t , x) is the symmetrization of fn(·, t , x).



Existence of density

Hypothesis A: The measures ν and µ satisfy

µ(dξ) = (2π)−d g(ξ)dξ and ν(dτ) = (2π)−1h(τ)dτ,

and 1
hg 1{hg>0} is a slow growth (or tempered) function.

Theorem
Assume that Hypothesis A holds and∫

Rd

(
1

1 + |ξ|2

)β
µ(dξ) <∞,

for some β ∈ (0, 1). Then, the restriction of the law of the random variable
u(t , x)1{u(t,x) 6=0} to the set R\{0} is absolutely continuous with respect to the
Lebesgue measure on R\{0}.



Related literature

Existence (and smoothness) of density for the stochastic wave equation:

∂2u
∂t2 (t , x) = ∆u(t , x) + b(u(t , x)) + σ(u(t , x))Ẇ (t , x).

All existing results assume that

|σ(z)| ≥ C > 0 for all z ∈ R

and that noise is white in time (and rather general f ):

• d = 1: Carmona & Nualart 1988, where x ∈ I ⊆ R.
• d = 2: Millet & Sanz-Solé 1999.
• d ∈ {1, 2}: Márquez-Carreras, Mellouk & Sarrà 2001.
• d = 3: QS & Sanz-Solé 2004.
• d ∈ {1, 2, 3}: Nualart & QS 2007.
• d ≥ 4: Sanz-Solé & Süß 2013, Sanz-Solé & Süß 2015.



The stochastic heat equation with space-time colored noise:

∂u
∂t

(t , x) = ∆u(t , x) + u(t , x)Ẇ (t , x) x ∈ Rd , d ≥ 1.

Smoothness of the density:

• Hu, Nualart & Song 2011: for H,H1, . . . ,Hd ∈ ( 1
2 , 1),

γ(t) = ρH(t) := H(2H − 1)|t |2H−2 and f (x) =
d∏

i=1

ρHi (xi ).

• Hu, Huang, Nualart & Tindel 2015: general γ and f such that

0 ≤ γ(t) . |t |−(1−β) and
∫
Rd

(
1

1 + |ξ|2

)β
µ(dξ) <∞.

• Hu & Le 2018: for some α0 ∈ [0, 1) and α1 ∈ (0, 2),

C1tα0 ≤ γ(t) ≤ c2t−α0 and f (cx) ≤ c−α1 f (x).



Malliavin differentiability

Proposition
For any (t , x) ∈ R+ × Rd , u(t , x) ∈ Dk,p for any k ≥ 1 and p > 1.

Proof:

We have that u(t , x) ∈ Dk,p if∑
n≥1

n
k
2 (p − 1)

n
2

(
E
[
|In(fn(·, t , x))|2

]) 1
2
<∞.

For this, we use the proof that, for any k ≥ 0,∑
n≥0

nk

n!
αn(t) <∞,

where we recall that αn(t) = (n!)2‖̃fn(·, t , x)‖2
H⊗n .



An important point in the proof of∑
n≥0

nk

n!
αn(t) <∞

has been the maximum principle (refining Balan & Song 2017 for d ∈ {1, 2})

sup
η∈Rd

∫
Rd
|FG(t , ·)(ξ + η)|2µ(dξ) =

∫
Rd
|FG(t , ·)(ξ)|2µ(dξ).

It is based on the Parseval-type identity (Khoshnevisan & Xiao 2009):∫
Rd

∫
Rd
ϕ(x)f (x − y)ϕ(y)dxdy =

∫
Rd
|Fϕ(ξ)|2µ(dξ),

for all ϕ ∈ L1
C(Rd ) with

∫
Rd |F|ϕ|(ξ)|2µ(dξ) <∞.



Equation for Du(t , x)

We recall that Du(t , x) ∈ H, which may contain distributions.

In order to apply the Corollary, first we prove that, for any (t , x) ∈ R+ × Rd ,
the process {Dr,zu(t , x), (r , z) ∈ [0, t ]× Rd} has a measurable modification.

We will need to prove that, a.s. on some Ωm,∫ t

0
‖Dr u(t , x)‖2

0dr :=

∫ t

0

∫
Rd

∫
Rd

Dr,zu(t , x)f (z − z′)Dr,z′u(t , x)dzdz′dr > 0.

Let P0 be the completion of D(Rd ) with respect to

〈ϕ,ψ〉0 =

∫
Rd

∫
Rd
ϕ(z)f (z − z′)ψ(z′)dzdz′.

We show that, for fixed r ∈ [0, t ], Dr u(t , x) satisfies an equation in L2(Ω;P0).



Theorem
For any r ∈ [0, t ], the following equality holds in L2(Ω;P0):

Dr u(t , x) = G(t − r , x − ·)u(r , ·) +

∫ t

0

∫
Rd

G(t − s, x − y)Dr u(s, y)W (δs, δy).

Here, the notation∫ ∞
0

∫
Rd

U(s, y)W (δs, δy), U ∈ L2(Ω;H⊗P0),

stands for a P0-valued Skorohod integral, interpreted as the adjoint of the
Malliavin derivative of Hilbert-space-valued random variables (Nualart 2006).

Proof: we use the Picard iteration scheme (Balan 2012)

un(t , x) = 1 +
n∑

k=1

Ik (fk (·, t , x)).



Non-degeneracy of Du(t , x)

Recall:
∂2u
∂t2 (t , x) = ∆u(t , x) + u(t , x)Ẇ (t , x)

Lemma
Let (Γm)m≥1 be a sequence of open sets in R such that

0 6∈ Γm and Γm ⊂ Γm+1, for all m ≥ 1.

Let Γ = ∪m≥1Γm. Let F ∈ D2,p for some p > 1 be such that, for all m ≥ 1,

‖DF‖H > 0 a.s. on {F ∈ Γm}.

Then, the restriction of the law of the variable F1{F∈Γ} to the set Γ is
absolutely continuous with respect to the Lebesgue measure on Γ.

We apply this lemma with F = u(t , x) and Γm = {v ∈ R; |v | > 1
m}.



We prove that

‖Du(t , x)‖H > 0 a.s. on Ωm =
{
|u(t , x)| > 1

m

}
.

In view of the Corollary, it is enough to prove that∫ t

0
‖Dr u(t , x)‖2

0 dr > 0 a.s. on Ωm.

Let δ ∈ (0, 1). Then,∫ t

0
‖Dr u(t , x)‖2

0 dr ≥
∫ t

t−δ
‖Dr u(t , x)‖2

0 dr

≥ 1
2

∫ t

t−δ
‖G(t − r , x − ·)u(r , ·)‖2

0 dr − I(δ),

where

I(δ) =

∫ t

t−δ

∥∥∥∥∫ t

t−δ

∫
Rd

G(t − s, x − y)Dr u(s, y)W (δs, δy)

∥∥∥∥2

0

dr .



On the event Ωm,∫ t

0
‖Dr u(t , x)‖2

0 dr ≥ 1
2m2ψ(δ)− 1

2
J(δ)− I(δ),

where

ψ(δ) =

∫ δ

0
‖G(r , ·)‖2

0 dr =

∫ δ

0

∫
Rd

∫
Rd

G(r , z)f (z − z′)G(r , z′)dzdz′dr .

and J(δ) is given by∫ t

t−δ

∫
Rd

∫
Rd

G(t−r , x−z)f (z−z′)G(t−r , x−z′)
(
u(t , x)2−u(r , z)u(r , z′)

)
dzdz′dr .

We have

E[I(δ)] . ψ(δ)φ(δ) and E[|J(δ)|] . δ
1−β

2 ψ(δ),

φ(δ) =

∫
[0,δ]2

∫
R2d

G(s, y)γ(s − s′)f (y − y ′)G(s′, y ′)dydy ′dsds′



By Markov’s inequality, for any n ≥ 1,

P
({∫ t

0
‖Dr u(t , x)‖2

0 dr <
1
n

}
∩ Ωm

)
≤ P

(
I(δ) +

1
2

J(δ) >
1

2m2ψ(δ)− 1
n

)
.

(
1

2m2ψ(δ)− 1
n

)−1

ψ(δ)
(
φ(δ) + δ

1−β
2

)
.

Taking n→∞, one gets

P
({∫ t

0
‖Dr u(t , x)‖2

0 dr = 0
}
∩ Ωm

)
. φ(δ) + δ

1−β
2 .

Next, we take δ → 0 and obtain

P
({∫ t

0
‖Dr u(t , x)‖2

0 dr = 0
}
∩ Ωm

)
= 0.
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