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The stochastic wave equation

We consider the SPDE on R, x R, with d € {1,2},

d%u -
W(t’ x) = Au(t,x)+ u(t,x)W(t, x),
u(0,x) = 1, xeRY, (SWE)
ou _ d
E(O’ x) = 0, xeR°

e Ais the Laplacian operator on R¢.
e W is a space-time homogeneous Gaussian noise.

e This problem is called the Hyperbolic Anderson Model.



Space-time homogeneous Gaussian noise

It is given by a zero-mean Gaussian family {W(y), ¢ € D(R%*")} with

EIWEWWL = [ elt.x07(t= 9)f(x - y)(s.y)daotas,

X R

where v, f : R — [0, oo] are continuous, symmetric, locally integrable
functions, such that

~v(t) < oo ifandonlyif t#0,
f(x) < oo ifandonlyif x#0.

Moreover, we assume that v, f are non-negative definite:
/ () (X)f(x)dx >0, forall ¢ e S(RY),
R

where 3(x) = ¢(—x) and S(R?) is the space of rapidly decreasing
C>-functions on RY.



Basic example

Fractional correlation in time:

1

v(t) = H2H — 1)[t]?#~2  with 5 <H<1.

Riesz kernel is space:

f(x)=[x*"¢ with 0<a<d.



Spectral measures
There exist non-negative tempered measures v and u such that
v=Fv and f=Fu,

where the Fourier transform is understood in the space S¢(R?) of C-valued
tempered distributions:

/ F(X)(X)dx = / Fo(e)u(de) foral o e So(RY).
R R
where Fo(€) = [.q " *p(x)dx is the Fourier transform of ¢.

There exists k > 1 such that

/}Rd (1+1|£|2>kﬂ(d€) < 0.

(respectively, for ~)



We have that, for any 1,12 € Sc(R%) and ¢1, 2 € Sc(R),

/Rd /Rd 1 (X)F(x — y)ba(y)dxdy = /Rd Fab (&) Faba(€) u(de).

/R / $1(D)1(t — 8)da(s)oltds = / For(r)Fda(r)(dr).

In fact, Balan & Song 2017 proved that, for any ¢4, 2 € D(R4),

E[W (1) W(g2)] = / oy 2071 9)1(x =y )u(s. ) eyl

= Fe1(7,8) Fpa(r, §)v(dT) p(dE).

RA+1

where here F denotes the Fourier transform in both variables.



The Wiener integral

Let # be the completion of D(R?*") with respect to (-, )+ defined by
(01, 02)n = E[W(p1) W(e2)]

_ / o1(t, X)7(t — 8)F(x — y)pa(s, y)dxdydtds
R2 x R2d

- /R . For(n. O ealr Ov(dr)n(de).

Then, the noise can be extended to a isonormal Gaussian process
{W(p), p € H}: forall 1,02 € H,

E[W(ei)] =0 and  E[W(p1)W(p2)] = (o1, p2) -

W(yp) is called the Wiener integral of ¢ € H with respect to W.



Characterization of A

Hypothesis A: The measures v and p satisfy

p(de) = (2r)%g(€)d¢  and  v(dr) = (2m) 'h(r)dr,
and hig1 thg>0} IS @ slow growth (or tempered) function.
Theorem

If Hypothesis A holds, then H coincides with U, the space of tempered
distributions S € S'(R9+") satisfying that F S is a function and

[, 1FSroPudrn(de) < .

Moreover, for any Si,S; € H,

(S1,S2)n = FSi(7,€)F So(r, §)v(dT)pu(dE).

RA+1



Proof.

1. The space D(R?'") is dense in U, with respect to

(S1,S2)u = » FSi(1, ) F So(r, E)v(dr)pu(dS).
R
Hence U/ C H. Generalization of Jolis 2010 to higher dimensions.
Hypothesis A is not needed here.

2. Basse-O’Connor, Graversen & Pedersen 2012: the space U is complete
if and only if, for any ¢ € L2(v x 1) there exists an integer k > 1 such

that k
1
Ah>0 g>0} (m) ‘@(7—75)|de£ < 00.

This is satisfied if hig1{hg>o} is a slow growth function.



Important corollary

Recall: If S € #, we know that
I1S15 = / |FS(r, &) Pr(dr)u(d?),
RA+1

and it holds Fp = f.

Corollary
Assume that Hypothesis A holds. If S is a measurable function on Ry x R?
such that S € H and
/ / S(r,2)f(z — 2")S(r, 2 )dzdz'dr > 0,
0 RA JRA

then ||S||» > 0.

We will apply this result with S = Du(t, x).



Malliavin derivative

Let F = o(W(hy),..., W(hs)) be a smooth random variable, where n > 1,
hi,...,hp € Hand p € C°(R").

The Malliavin derivative of F is the #-valued random variable given by:
DF = Z (W(hy), ... W(hn))hi

The operator D can be extended to D'+, the completion of the set of smooth
random variables with respect to

IFilv2 = (EOFI° +E[IDFIE] ).

Similarly, one defines the iterated derivative D¥F as a #®*-valued random
variable. The domain of D* in LP(Q) is denoted by D"



Skorohod integral

The divergence operator ¢ is defined as the adjoint of D.

The domain of &, denoted by Dom(¢), is the set of u € L2(Q; ) such that

1
[EL(DF, usd| < Cu(E[|FI?])*, forall FeD'?

If u e Dom(d), then &(u) € L3(Q) is characterized by the duality relation:
E[F5(u)] = E[(DF, u)%], forall F e D"
If u € Dom(d), we use the notation
5(u) = / / u(t, X)W(5t, 6),
0 Rd

and we say that é(u) is the Skorohod integral of u with respect to W.



Mild Skorohod solution

Let G be the fundamental solution of the wave equation on R? with d = 1 and
d = 2, respectively:

1 1 1
Gt.x) = z1gxzny  Gltx) = g\/ﬁmx\ét}

Definition
A measurable stochastic process {u(t, x), (f,x) € [0,00) x R} is a solution
of equation (SWE) if, forall T > 0,

sup  E[ju(t,x)|]? < oo,
(t,x)€[0, T] xRd

and for any (t, x) € [0,00) x R?, it holds in L3(Q):

u(t,x) =1+ /t G(t—s,x —y)u(s,y)W(ss,dy).
0o Jrd



Existence of solution

Theorem (Balan & Song 2017)

Equation (SWE) has a unique solution in any spatial dimensiond > 1,
provided that the spatial spectral measure p satisfies

1
/uzzd Triee |§|2/L(d€) < 0.

Theorem (Balan & Song 2017)

Assume that 5
1
/er (W) w(d€) < oo, (1)

for some 8 € (0,1). Then, the solution of (SWE) has a modification with
Hélder-continuous paths of order (1 — 3) — ¢, forany e > 0.

Optimality of (1): Dalang & Sanz-Solé 2005.



Chaos expansion

In Balan & Song 2017, it is proved that, for any (t, x) € Ry x R?, u(t, x) has
the Wiener chaos expansion

u(t, x) =14 I(fal-, 1, %)),

where I, is the multiple Wiener integral of order n with respect to W, and

fn(t1,X1,. .oy by Xn, L, X) = G(t— tn,X—Xn) . G(tz — b, Xo _X1)1{0<t1<.4.<tn<t}~

It follows that

Ellu(t, ) = Y Lant),

n>0

where _
an(t) = (M) [[fa(-, £, X) en

and 7,,(~7 t, x) is the symmetrization of f,(-, t, x).



Existence of density

Hypothesis A: The measures v and p satisfy
p(de) = (2m)%g()de  and  wv(dr) = (2r) 'h(r)dr,

and hig1 {hg>0y} is @ slow growth (or tempered) function.

Theorem
Assume that Hypothesis A holds and

[ (i) we <

for some 8 € (0,1). Then, the restriction of the law of the random variable
u(t, x)1 {ux-0y to the set R\{0} is absolutely continuous with respect to the
Lebesgue measure on R\ {0}.



Related literature

Existence (and smoothness) of density for the stochastic wave equation:

do*u .
W(t’ x) = Au(t, x) + b(u(t, x)) + o(u(t, x))W(t, x).

All existing results assume that
lo(z)| > C>0 forall zeR

and that noise is white in time (and rather general f):

e d = 1: Carmona & Nualart 1988, where x € | C R.

e d = 2: Millet & Sanz-Solé 1999.

e d € {1,2}: Marquez-Carreras, Mellouk & Sarra 2001.
e d=23: QS & Sanz-Solé 2004.

e d e {1,2,3}: Nualart & QS 2007.

® d > 4: Sanz-Solé & SR 2013, Sanz-Solé & SiR 2015.



The stochastic heat equation with space-time colored noise:

W (t,x) = du(t )+ u(t )WL x)  x€RS d>1.

Smoothness of the density:

e Hu, Nualart & Song 2011: for H, Hs, ..., Hg € (3,1),
d
v(t) = pu(t) ;== H2H - D|tF"2  and  f(x) = [ om(x).
=1

e Hu, Huang, Nualart & Tindel 2015: general v and f such that

1

B
W) p(dg) < oo.

0<B <1 P and /(
R

e Hu & Le 2018: for some ag € [0,1) and a4 € (0, 2),

Cit™ < q(t) < cot™™ and f(ex) < ¢ f(x).



Malliavin differentiability

Proposition
For any (t,x) € Ry x RY, u(t,x) € D? forany k > 1 andp > 1.

Proof:
We have that u(t, x) € D¥P if

=

Zn%(p— 1)3(]E|:|/n(fn(7t7x))|2:|) < 00.

n>1

For this, we use the proof that, for any kK > 0,

k

Z %an(t) < 0,

n>0

where we recall that an(t) = (11)2[|fa(-, £, X)| 2 cn-



An important point in the proof of

K

Z %om(t) < 00

n>0

has been the maximum principle (refining Balan & Song 2017 for d € {1,2})

sup | |FG(t,-)(€ +n)Pu(dg) = /Rd |[FG(t,)(€)u(de).

nerd JRI
It is based on the Parseval-type identity (Khoshnevisan & Xiao 2009):
[, [ ettt —yyaandy = [ 17 e(e)Putde).
RI JRA R

for all € LL(EY) with [, |Flel(€) Pu(de) < oo.



Equation for Du(t, x)

We recall that Du(t, x) € H, which may contain distributions.

In order to apply the Corollary, first we prove that, for any (£, x) € R, x RY,
the process {D; - u(t, x), (r, z) € [0, f] x R?} has a measurable modification.

We will need to prove that, a.s. on some Q,
t t
/ ID.u(t, x)|2dr = / / / Dy 2u(t, X)f(z — 2Dy u(t, x)dzdZ dr > 0.
0 0 JRrd JRA
Let P, be the completion of D(RY) with respect to

wwof/Rd/Rd f(z— Z")(2')dzdZ'.

We show that, for fixed r € [0, f], Dy u(t, x) satisfies an equation in L?(Q; 7).



Theorem
For any r € [0, t], the following equality holds in L*(; Po):

t
Dru(t,x) = G(t —r,x —)u(r,-) +/ / G(t — s, x — y)Dru(s, y)W(ss,5y).
0 Jrd

Here, the notation
/ / Uls, y)W(s,3y),  Uc L2 H o Py),
0 RA

stands for a Py-valued Skorohod integral, interpreted as the adjoint of the
Malliavin derivative of Hilbert-space-valued random variables (Nualart 2006).

Proof: we use the Picard iteration scheme (Balan 2012)

Un(t,x) =1+ Z he(fe (-, 1, X)).

k=1



Non-degeneracy of Du(t, x)

Recall:
—2 =A + W
7 (8, x) u(t, x) + u(t, x)W(t, x)

Lemma
Let (T'm)m>1 be a sequence of open sets in R such that
0&Tln and Fm CTmyt, forall m>1.
LetT = Up>1Tm. Let F € D*P for some p > 1 be such that, for all m > 1,
IDF|l% >0 a.ss.on {FeTln}.
Then, the restriction of the law of the variable F1rcry to the setT is

absolutely continuous with respect to the Lebesgue measure onT .

We apply this lemma with F = u(t,x) and ', = {v € R;|v| > L}.



We prove that

1
IDu(t,x)|l» >0 as.on Qn= {|u(t, x)| > E}'

In view of the Corollary, it is enough to prove that

t
/||D,u(r,x)||§dr>o as.on Qn.
0

Let 5 € (0,1). Then,

t t
/ ID.u(t, )| dr > / IDeut, x)| dr
0 t—6

t
> 2 [ G~ rx = e, Yo~ 19),

t—§
where

2
ar.
0

o

t
[ [, att=s.x—yDu(s.yws.sy)
t—5 JRA




On the event Q,

[ 1Dt x> 516) - 1) - 19),

/ 1G(r, )3 df—/ /Rd/ (r,z)f(z— Z')G(r,Z')dzdZ dr.

and J(0) is given by

where

t
/ / G(t—r,x—2)f(z—2")G(t—r,x—2") (u(t, x)*~u(r, z)u(r, z")) dzdZ'dr.
t—6 JRY JRA
We have

Bl S v(0)é(5) and  E[JO)] 67 w(6),

6(5) = / G(s, y)(s — §)f(y — y')G(s'.y')dydy' dsds’
[0 5]2 R2d



By Markov’s inequality, for any n > 1,

P({/Ot||D,u(t,x)|\§dr< %} QO) <

P
S (ﬁw(é) - 1)7 OIC O

n

n

(16)+ 399> a0 - 1)

Taking n — oo, one gets

P ({/Ot 1D,u(t, X)| dr = o} n Qm) < $(0) +57.

Next, we take 6 — 0 and obtain

P ({/Ot | Dru(t, x)||5 dr = o} N Qm) =0.
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