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This paper focuses on two pdnts, relevance and abstradion, which
require dtentionin teading a ourse on abstrac algebra.

Introduction

If a student and a teacher in a course on abstract algebra are to speak their mind on the
course, probably they will ask each other the following questions.

Student: Why do I have to study all this abstract stuff? I do not see how it is used in my other
courses or in daily life. I do not see why it is called “algebra” either. It looks entirely
different from the kind of algebra I learnt in school. I get confused with the multitude
of definitions and theorems about things I cannot visualize.

Teacher: All the notions are clearly defined and all the theorems are systematically derived.
Everything is so precise and logical. You can even start from scratch without having
to know much beforehand. How come you do not understand what is going on and
feel confused?

It is not uncommon for people to regard abstract algebra as what is exemplified, but no
doubt largely caricatured, by the amusing parody of A.K. Austin (Math. Gazette, 51 (1967),
149-150) in the form of a fictitious paper which begins with:

“A.C. Jones in his paper “A Note on the Theory of Boffles”, Proceedings of the
National Society, 13, first defined a Biffle to be a non-definite Boffle and asked
if every Biffle was reducible.

C.D. Brown in “On a Paper by A.C. Jones”, Biffle, 24, answered in part this
question by defining a Wuffle to be a reducible Biffle and he was then able to
show that all Wuffles were reducible.
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Such a distorted view of abstrad algebra will naturaly breed in the student doukt about
and aversion to the subjed. In this paper | will not elaborate on the goplicability and utility of
the subject. Abstract algebra is useful, as workers in the field will testify. (For example, one
acount based onpersonal experienceis given in [Siu, 200Q.) However, such applicdions are
mostly beyond what an undergraduate adrriculum usualy encompasses. More pertinently,
immediate utility is not the sole objedive in justifying the teaching of a subject in the
undergraduate aurriculum. | would instead concentrate on the points about relevance and
abstraction raised in the conversation at the beginning. There is no avoidance of these two
points in a discussion onthe teating and learning of abstract algebra. | feel that difficulty in
teadingisrelated to the lack of attention paid to these two pdnts.

Relevance

Since | have said that | put aside the question on utility, by relevance I will not restrict
the discussion to relevance with applications but will include a broader relevance with the



student’s past learning experience and with the historical past. Let me illustrate by a list of ten
problems which I handed out on the first day of class in a course on abstract algebra which I
taught for a number of years in the early 1990s. These are not meant to be answered right away,
nor even by the end of the course, but are meant to bring out the relevance of the course. Some
of these questions have a long history; some have played key roles in shaping the development
of mathematics; some arise in applications to other fields; some can be stated in such a way as
to sound familiar to a school pupil; some possess all these features. (This way in starting the
course is inspired by I. Kleiner, who shared with me his teaching experience in a 1988
workshop at Kristiansand. See [Kleiner, 1995].)

Q) Whyis(-1) x (-1) =17
2 Can oretrised an angle?dugicae a ambe?square a drcle?
(©)) Which regular N-goncan be mnstructed?

4) What are dl integral solutionsof Y =X’ -2?
(5) Can oresolve 2X° -5X* +5=0byradicds?
(6) Which is more symmetric: a square? a equil ateral triangle? aredangle? a arcle?

@) “There are a certain number of objects. If you court them by threes, two are l€eft. If you
court them by fives, three are left. If you count them by sevens, two are left. How many
objeds are there?” (Sun Zi Suanding, c. 4th century)

(8) Can 36 dficers be drawn from 6 dfferent ranks and from 6 dfferent regiments so that
they be aranged in a square array in which each row and each column consist of 6
officers of different ranks and dfferent regiments? (L. Euler, 1779

9 How many (structural) isomers of alkanes (C_ H,,.,) are there?

2N+2)

(10) Can oreplace N das on an N x N grid with one dot in ead row and each column so
that any shifted copy hes at most one dot in common in the overlapping part? (J.P.
Costas, 1966 S.W. Golomb and H. Taylor, 1989

In class | will runthroughthese ten questions with short comments, far from sufficient
to explain the question in detail (not to say the answer), but adequate as a bridge with what has
been learnt before or as a preview of what lies ahead. Take Question (1) as an example. | will
relate the question to students learning experience in elementary arithmetic, how they leant
this fad and why they aacepted it in school, whether they can convince someone baffled by it,
or are they themselves baffled by it? (An interesting account of this learning experience is
depicted in Vie de Henri Brulard (1836) by the French nowelist Stendhal (M.-H. Beyle).) Then |
will tell them abou the “art of positive and negative numbers’ explained in the ancient Chinese
mathematical classics Jiu Zhang $ian S (Nine Chapters on the Mathematicd Art, compaosed
between 100B.C. and A.D. 100, and the first explicit mentioning of the rule “minus times
minusis equal to plus’ in Suan Xue Qi Meng (A First Introduction to Arithmetic, 1299 by Zhu
Shijie. | will continue to tell students it took the Western mathematical community along time
to come to terms with the operations on regative numbers. (I learn a lot on this topic from
[Pycior, 1981].) Aslate as the beginning of the 19th century many Engli sh mathematicians still
objected to the use of negative numbers. F. Maseres, one of the main proponents of this
objedion,wrote in Tracts on the Resolution d Affeded Algebraick Equations (1800:

“the Science of Algebra, or Universa Arithmetick, has been disgraced and
rendered doscure and difficult, and disgustingto men of ajust taste for accurate
reasoning.”



W. Frend, another of the main proporents, lamented the lack of a logica foundhtion for
negative numbersin The Principles of Algebra (1796:

“when a person canna explain the principles of a science without reference to
metaphor, the probability is, that he has never thought acarately upon the
subjed.”

Such doubt and ureasinessstill exist among pupils when they first learn the rule “minus times
minusis equal to plus’. In aletter to F. Maseresin 1801, R. Woodhause, Lucasian Professor of
Mathematics at Cambridge University, even said:

“till the doctrines of negative and imaginary quantities are better taught than
they are at present taught in the University of Cambridge, ... they had better
not be taught.”

Clealy we should na adopt this policy now. We do owe our undergraduates an explanation.
This motivation will naturally blend in with the discussion m solving equations related to
Questions (4) and Question (5).

The discussion on solving equations is particularly relevant, not just because of the
well-known fad that the word “agebra” is the Latinized version of the Arabic word “al-jabr”
which appeared in the title of the book Hisab al-jabr wal-muqabala on solving equations
(written by Mohammed ibn Musa a-Khowarizmi in around 82), bu because it leals to
subsequent development which evolve into what we today cdl (abstract) algebra. Classical
algebra is smply the art of solving (algebraic) equations. Indeed, up to the mid 19th century
mathematicians still regarded algebra as such. For a period F. Viéte used the term “analysis’ to
denate algebra, because he did not favour the word of Arabic origin on the ground that it has no
meaning in the European language! However, later in the @a of 1. Newton and G.W. Leibniz,
cdculus was regarded as an extenson d agebra with lots of functions expressed as power
series which behave like polynomials of infinitely high degree The word “anaysis’ gradually
aquired its modern meaning in describing the subjed, while its original use to denote dgebra
never caught on. Algebra remained to be alled agebra. The techniques called by F. Viéte
“logistica speciosa” that deds with operation on symbols representing species or forms of
things, as contrasted to “logistica numerosa” that deds with the aithmetic of numbers, are still
being learnt in school algebrain order to prepare the way for solving equations. Unfortunately,
a cantral message is normally lost in schod agebra amidst the technicalities of simplification
of algebraic expressions, factorization of polynomials, laws of indices, etc. This centra
messageis:

We treat numerical quantities as general objects and manipulate such general
objects asif they are numerical quantities. Althoughwe do nd know what they
are (prior to solving the equation) we know they stand for certain numbers, and
as ach they obey general rules(suchasa+ (—a) =0,ax (bxc) =(ax b) xc,
etc) We can therefore apply these general rules g/stematicaly to solve
problems which can be formulated in terms of equations.

No wonder F. Viete was 9 ogptimistic & to close his book In Artem Analyticam Isogoge
(Introduction to the Analytical Art, 1591) with the saying “Quod est, Nullum non poblema
solvere’ (there is no problem that cannot be solved)! This central message cntinues to ring



true in the subsequent development of algebra. In [MacLane 1981] S. Mad_ane describes
abstrad algebra as:

“the program of studying algebraic manipulations on arbitrary objects with the
intent of obtaining theorems and results degp enough to gve substantial
information abou the prior existing particular objeds.”

A study of this kind is facilitated by, if not necesstates, the use of the axiomatic method, bu
one must not equate abstract algebra with axiomatic goproach. After al, the latter is only an
organizing principle but not the substance of the former. We will treat this point in more detail
when we discussabstradion in the next sedion.

Coming badk to solving equations, | agreethat the full story cannot be understood urtil
we oover Galois theory, which is not usualy covered, for lack of time and for the level of
sophistication, in afirst course in abstract algebra. But some indication d how this problem is
related to the emergence of the ancept of a groupis worth the time spent even in afirst course
in abstract algebra. From the symmetry of an equation to the symmetry in geometry and keyond
is a trip students can enjoy and bkenefit from the course. To illustrate | will now give an

extremely sketchy explanation on solving the cubic equation X’ +5bX* +cX +d =0, only
highlighting the aucial point on symmetry. (This explanation was given by A.-T. Vandermonde
in abrilliant memoir of 1774 [Tignol, 198Q.) Let a, B,y be the threeroats of the aubic equation.
Note that

a =§[(a+ﬁ+y)+#(a+wﬁ+w2y)3 +@+wBrawyy
where w=e¢""". Similar expressions can be found for B8 and y. If we put u =a +wB +wW’y
and v=a +w’ B +wy, then a =%[—b +\/u_+3\/v_] Can we epressu’,v’in terms of the
coefficients of the origina equation (and constants) using only rational operations and radicals?
If we can, then we can express al roats a, 8,y in terms of the wefficients of the origina
equation (and constants) using anly rational operations and radicals, i.e. the aibic equation is
solvable by radicals. Note that «’ =%[u3 +v 4@’ —v3)2] WV =%[u3 +v' =@’ —v3)2] and
W =v) =@’ +v’)* —4u’v’. By aresult on symmetric polynomials (which is familiar to
school pupilsin the special case of paynomials in two indeterminates), we will achieve that if
we can show that »° +v’and »’v’ are symmetric polynomias in a, B,y . How can we check
this? Let us runthroughall six possible permutationsof a, B8,y andseewhat u =a +wB +w’y
and v=a +w’ B + wy become? For instance, if a becomes a, B become y and y becomes 3,
then u becomes v and v becomes u so that ° becomes v* and v’ becomes «°. Take one more
case, if o becomes y, B becomes a and y becomes 3, then u becomes «wu and v becomes v so
that u® becomes U’ and v’ beaomes v’ . A simple calculation will show that for al six
permutations of a,B,y, v’ +v’ remains »* +v’ and «»’v’ remains «’v’. Hence u’ +v’ and
u’v’ are symmetric polynomiasin a, 8,y . More generally, the set of certain permutations ona

finite number of symbols under the operation d compasition is a typicad example of a group.
The notion of a group pays a prominent role in the discussion on the problem of solving
equationsin radicas.



Abstradion

In the last section I touch upon the point on abstraction. Let us listen to what L.
Kronecker had to say in his 1870 paper on algebraic number theory:

“these principles belong to a more general and more astract realm of idess. It
is therefore proper to free their development from all inessential restrictions,
thus making it unnecessary to reped the same argument when applying it in
different cases ... Also, when stated with al admissible generdlity, the
presentation gains in simplicity and, since only the truly essential fedures are
thrown into relief, in transparency.”

That much iswell said, bu only for the teachers who are seasoned mathematicians themselves.
For students, especidly those who first embark on higher mathematics, that can only give them,
if anything at all, a comforting psychologicd suppat for what is to come. In redity that is not
enough to arm them to face the challenge. In its long process of evolution (which is
unfortunately unfamiliar to most students) mathematics has acquired a language of its own,
which can sound qute obscure to ore not steeped in that training. Abstraction is a forte that
lends mathematics its power, thoughit causes anxiety in many as well. However, we should see
that as a dhalenge rather than as mething to avoid, to uncover the cncrete parts which
evolveinto the astrad concepts rather than to ony study the concrete parts.

Having stated the generalities above | will now focus on three specific aspeds
pertaining to abstract algebra: (i) definitions, (ii) prodfs, (iii) symbolic thinking? geometric
thinking? or something else?

For mathematicians a definition pcssesses two levels in meaning. On the first level, a
definition serves the mere purpose of an abbreviation. Instead o saying:

If straight lines /,,7,,L on the same plane are such that /, sets up onL
adjacent angles equal to one another and 7, sets up onL adjacent angles equal
to one acther, then 7, and 7, do not meet one another in either direction
when they are produced indefinitely,

we ned orly say:
If ¢,,¢,areperpendiculartolL,then 7,7, areparallel.

On the second level, a definition embodies a concept. The job d a mathematician includes that
of formulating wseful definitions and delineating relationship between definitions. (When we
retreat to more and more basic definitions we come face to faa with the role of axioms.) Only
becaise we understand a definition on the secondlevel well enough do we fed easy about it on
the first level, just like what Shakespeare says, “W hat’s in a name? That which we cdl a rose
by any other name would smell as sweet.” (Romeo and Juliet, Act 2, Sene 1) For a teader,
clarity and preciseness are dl that matter. But for anovice if not sufficient attentionis given to
a definition, they will regard a definition as something coming aut of the blue, something
mysterious and incomprehensible, and hence something to be memorized in order to pass the
examination. At this point, communication between the teater and the students already breaks



down. In a paper on mathematical definitions H. Poincaré says (L’ Enseignement Mathématique,
6 (19049, 255283):

“What is a good dfinition? For the philosopher or the scientist, it is a
definition which applies to all the objects to be defined, and applies only to
them, ... in education it is not that; it is one that can be understood by the
pugls, ... How are we to find a statement that will at the same time satisfy the
inexorable laws of logic and ou desire to understand the new notion's plagein
the general scheme of the science, our neal of thinking in images? More often
than not we shall not find it, and that is why the statement of a definitionis not
enough it must be prepared and it must be justified.”

I will illustrate with the definition of a quotient structure, which is a natorious learning
difficulty for an average undergraduate. At the same time it is a notion which appeas in many
contexts and warrants the time and effort for its explication. In elementary number theory it
appears in the form of modulo arithmetic, which can be traced badk to the work of C.F. Gauss
in 1801.In the theory of system of linear equations (respedively nth order linear recurrence
relation, respectively nth order linea differentia equation), it appears in the form of the
gudient space of a suitable vector space modulo the solution space of the asociated
homogeneous system. In the theory of groups it appeas in the form of the qudient group
modulo a normal subgroup. In topology it appears in the form of a quotient topoogicd space
modulo a subspace. Historically speaking, the notion made its first explicit début in the
explanation by A.L. Cauchy onwhat the field of complex numbers s, viz the quotient ring of

polynomials with real coefficients modulo the ideal generated by X* +1. Although the
contexts are different and the purpases of making use of the quotient structure may vary, there
is an urderlying common principle, the partition of a set through the identification of certain
elements of the set. A partition d a set amounts to the same thing as the introduction of an
equivalence relation on the set. That explains both the mativation why we do that and the
technique on how to do that. It also reveals the main learning olstacle in that we ae looking at
the process (equivaent relation) and the object (equivalence clas9 at the same time. Worse yet,
we have to learn haw to see asubset of elements (coset) as an element by itself without losing
sight that it actually stands for a subset of elements. It is this kind d flexibility of framework
which is demanding onthe mathematical maturity of the students. It takes time to let the idea
sink in. Dishing out a crred and precise definition d, say a qudient group, is not enough,
athoughit sounds perfectly clear to the teacher, who will wonder why students cannot take in
such a dea-cut answer.

Let us continue to seethe proof of one theorem making wse of a quotient structure. As
Y.l. Manin puts it, “a good proof is what makes us wiser”. Our aim is to explain and to
persuade, not just to verify and to force the result upan the leaner. The theorem we will look at
isamost basic result in the theory of finite groups usually referred to as Lagrange’s Theorem
(J.L. Lagrange 17701771):

If H isasubgroup d afinite group G, then the order of H is a divisor of the
order of G.

How do we visualize the result? A traditional way to classify mathematical thinking is to say
that some people are more inclined towards geometric thinking and some are more inclined
towards gymbolic thinking. Even in abstract algebra baoth types of thinking can be useful.
However, in abstract algebra there may be a third type in which a schematic diagram aids the
thinking. For instance, in this example one tries to figure out a way to court the dements of a



groupG. Part of Gisthe subgroup H ={e =h,,h,,....h } wheres= |H|. If H isthe whole of G,

then we are done. If nat, then there is some g in G outside of H. It is not hard to see that we
create ancther (disoint from H) subset gH ={g = gh,, gh,,...,gh_ }. (It neads sme cedking

for the qualification “ancther”.) If H and gH together cover the whole of G, then again we ae
dore. If not, then there is till some g’ in G which is outside of H and gH. (Some doadling an
the paper may help!) Consider g'H ={g'=g'h,,g'h,,....,g'h,}, which turns out to be yet
ancther (digoint from H and gH) subset. (It needs even more chedking for the qualificaion “yet
ancther”.) If H and gH and g'H together cover the whae of G, then we are done. If nat, we
repeat the process until we arive & a partition d G into t pieces. Now that we redlize the
conrection ketween a partition and an equivaence relation, we can streamline the proof of
Lagrange’s Theorem by passng to the quotient set G/H of cosets of G by H. These t copies of
H, eat consigting of s = |H| elements, exhaust the whole of G with |G| elements, so t|H| = |G|,
i.e. |H| isadivisor of |G|. A further natural question is to ask whether we can turn G/H into a
group ty inducing the group operation of G on G/H. It turns out thisis not always possible, but
will be possible if and orly if H is what we term a normal subgroup o G. That will lead to
further discusson onwhy we want to doso. My favourite examples to ill ustrate why we want
to “kill” a subgroup are: (i) to look at the commutator subgroup [G, G] and the quatient group
G/[G, G] to dscuss “how abelian” G is? (ii) to look at the centre Z and the quatient group G/Z
to discusswhen G is abelian. In thisway the lesons go onand the course unfolds.
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