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1 Introduction

We start with three cartoons.
The first cartoon is on the Liar Paradox of Epimenides, the Cretan prophet of the

6th century B.C. to whom is ascribed the self-contradictory quotation “Cretans are
always liars” (Figure 1a). [This Liar Paradox is more correctly ascribed to the Greek
philosopher Eubulides of Miletus of the 4th century B.C.] The second cartoon is on the
adventure of the Athenian hero Theseus who killed the half-bull half-human monster
Minotaur in the Labyrinth at Knossos (Figure 1b). The relevance of these two cartoons
to the theme of this article will be discussed later in Section 3 [1].

Figure 1a Figure 1b

The third cartoon (Figure 2), besides its caricature of a prevailing market-driven men-
tality, reveals a common misconception the general public hold against mathematics —
that mathematics is just calculation following some fixed rules and procedures. This
will lead us into the theme of this article, viz which aspect of mathematics is more
significant, the aspect of “algorithmic mathematics” or the aspect of “dialectic mathe-
matics”?
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Figure 2

At the 1973 Joint AMS-MAA (American Mathematical Society – Mathematical
Association of America) Conference on the Influence of Computing on Mathematical
Research and Education Peter Henrici of Eidgenössische Technische Hochschule coined
the terms “algorithmic mathematics” and “dialectic mathematics” and discussed the
desirable equilibrium of these two polarities (Henrici, 1974; see also Davis & Hersh, 1980,
Chapter 4). In this article we will borrow these two terms and attempt to synthesize
the two aspects from a pedagogical viewpoint with illustrative examples gleaned from
mathematical developments in Eastern and Western cultures throughout history.

Maybe at the outset readers should be asked to bear with a more liberal usage of the
word “algorithm” used in this article, viz any well-defined sequence of operations to be
performed in solving a problem, not necessarily involving branching upon decision or
looping with iteration. Following (Chabert et al, 1994/1999, p.455; McNaughton, 1982)
we mainly require: (i) “The algorithm is a procedure which is carried out step by step”;
(ii) “whatever the entry data, the execution of the algorithm will terminate after a finite
number of steps.” In particular, we do not aim at probing the difference and similarity
between the way of thinking of a mathematician and a computer scientist. (The latter
question certainly deserves attention. Interested readers may wish to consult the text
of a 1979 talk by Donald Knuth (Knuth, 1981).) Hopefully, the meaning we attach to
the terms “algorithmic mathematics” and “dialectic mathematics” will become clearer
as we proceed. Let us quote several excerpts from the aforementioned paper of Henrici
to convey a general flavour before we start on some examples:

“Dialectic mathematics is a rigorously logical science, where state-
ments are either true or false, and where objects with specified
properties either do or do not exist. Algorithmic mathematics is
a tool for solving problems. Here we are concerned not only with
the existence of a mathematical object, but also with the cre-
dentials of its existence. Dialectic mathematics is an intellectual
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game played according to rules about which there is a high degree
of consensus. The rules of the game of algorithmic mathematics
may vary according to the urgency of the problem on hand. · · ·
Dialectic mathematics invites contemplation. Algorithmic math-
ematics invites action. Dialectic mathematics generates insight.
Algorithmic mathematics generates results.” (Henrici, 1974, p.80)

2 Examples of “algorithmic mathematics” and “di-

alectic mathematics”

The first example is a very ancient artifact dating from the 18th century B.C. (now
catalogued as the Yale Babylonian Collection 7289), a clay tablet on which was inscribed
a square and its two diagonals with numbers (in cuneiform expressed in the sexagesimal
system) 30 on one side and 1.4142129... and 42.426388... on one diagonal (see Figure
3).

Figure 3
There is no mistaking its meaning, viz the calculation of the square root of 2 and

hence the length of the diagonal of a square with side of length 30. The historians of
mathematics Otto Neugebauer and Abraham Sachs believe that the ancient Babylonians
worked out the square root of 2 by a rather natural algorithm based on the following
principle. Suppose x is a guess which is too small (respectively too large), then 2/x will
be a guess which is too large (respectively too small). Hence, their average 1

2
(x+2/x) is

a better guess. We can phrase this procedure as a piece of “algorithmic mathematics”
in solving the equation X2 − 2 = 0:

Set x1 = 1 and xn+1 =
1

2
(xn + 2/xn) for n ≥ 1 .

Stop when xn achieves a specified degree of accuracy .

It is instructive to draw a picture (see Figure 4) to see what is happening. The picture
embodies a piece of “dialectic mathematics” which justifies the procedure:

ξ is a root of X = f(X) and ξ is in I = [a, b].

Let f and f ′ be continuous on I and |f ′(x)| ≤ K < 1

for all x in I. If x1 is in I and xn+1 = f(xn) for n ≥ 1,

then lim
n→∞

xn = ξ.
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Figure 4
“Algorithmic mathematics” abounds in the ancient mathematical literature. Let

us continue to focus on the extraction of square root. In the Chinese mathematical
classics Jiuzhang Suanshu [Nine Chapters On the Mathematical Art ] compiled between
100B.C. and 100A.D. there is this Problem 12 in Chapter 4:

“Now given an area 55225 [square] bu. Tell: what is the side of the square?
... The Rule of Extracting the Square Root: Lay down the given area as
shi . Borrow a counting rod to determine the digit place. Set it under the
unit place of the shi . Advance [to the left] every two digit places as one
step. Estimate the first digit of the root. ...” (translation in Shen et al,
1999, pp.203-204)

The algorithm is what the author learnt in his primary school days. It yields in this
case the digit 2, then 3, then 5 making up the answer

√
55225 = 235. Commentaries by

Liu Hiu in the mid 3rd century gave a geometric explanation (see Figure 5) in which
integers a ∈ {0, 100, 200, . . . , 900}, b ∈ {0, 10, 20, . . . , 90}, c ∈ {0, 1, 2, . . . , 9} are found
such that (a + b + c)2 = 55225.

Figure 5
A suitable modification of the algorithm for extracting square root gives rise to

an algorithm for solving a quadratic equation. One typical example is Problem 20 in
Chapter 9 of Jiuzhang Suanshu:

“Now given a square city of unknown side, with gates opening in
the middle. 20 bu from the north gate there is a tree, which is
visible when one goes 14 bu from the south gate and then 1775
bu westward. Tell: what is the length of each side?” (translation
in Shen et al, 1999, p.507)
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Letting x be the length of each side, we see that the equation in question is X2 +34X =
71000 [2]. A slight modification of the picture in Figure 5 (see Figure 6) will yield a
modified algorithm.

Figure 6
The same type of quadratic equations was studied by the Islamic mathematician

Muhammad ibn Mūsā Al-Khwarizmi in his famous treatise Al-kitāb al-muhtasar fǐ hisab
al-jabr wa-l-muqābala [The Condensed Book On the Calculation of Restoration And
Reduction] around 825A.D. The algorithm exhibits a different flavour from the Chinese
method in that a closed formula is given. Expressed in modern day language, the
formula for a root x of X2 + bX = c is x =

√
(b/2)2 + c− (b/2). Just as in the Chinese

literature, the “algorithmic mathematics” is accompanied by “dialectic mathematics”
in the form of a geometric argument (see Figure 7).

Figure 7
Al-Khwarizmi concluded by saying, “We have now explained these things concisely

by geometry in order that what is necessary for an understanding of this branch of
study might be made easier. The things which with some difficulty are conceived by
the eye of the mind are made clear by geometric figures.”

3 Intertwining of “algorithmic mathematics” and

“dialectic mathematics”

Let us get back to the equation X2− 2 = 0. On the algorithmic side we have exhibited
a constructive process through the iteration xn+1 = 1

2
(xn + 2/xn) which enables us to

get a solution within a demanded accuracy. On the dialectic side we can guarantee the
existence of a solution based on the Intermediate Value Theorem applied to the contin-
uous function f(x) = x2− 2 on the closed interval [1, 2]. The two strands intertwine to
produce further results in different areas of mathematics, be they computational results
in numerical analysis or theoretic results in algebra, analysis or geometry. At the same
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time the problem is generalized to algebraic equations of higher degree. On the algorith-
mic side there is the work of Qin Jiushao who solved equations up to the tenth degree
in his 1247 treatise, which is equivalent to the algorithm devised by William George
Horner in 1819. On the dialectic side there is the Fundamental Theorem of Algebra
and the search of a closed formula for the roots, the latter problem leading to group
theory and field theory in abstract algebra. In recent decades, there has been much
research on the constructive aspect of the Fundamental Theorem of Algebra, which is a
swing back to the algorithmic side. A classic example to illustrate this back-and-forth
movement between “algorithmic mathematics” and “dialectic mathematics” is the work
of Paul Gordan and David Hilbert in the theory of invariants at the end of the 19th
century. Gordan was hailed as the “King of the Invariants” and in 1868 established
the existence of a finite basis for the binary forms through hard and long calculations
covering page after page. The work was so laborious already for the binary forms that
people could not push forth the argument for forms of higher degree. Hilbert came
along in 1888 to give an elegant short existence proof of a finite basis for forms of any
degree. It is frequently reported that Gordan commented, upon learning of the proof
by Hilbert, “This is not mathematics. This is theology.” What is less frequently men-
tioned is that Hilbert worked hard to find a constructive proof of his theorem on basis.
He succeeded in 1892, finding a constructive proof through knowledge of the existence
proof. Upon learning of this constructive proof, Gordan was reported to say, “I have
convinced myself that theology also has its merits.” (Reid, 1970, Chapter V)

About the two cartoons on Cretan legends, the first one concerns the aspect of “di-
alectic mathematics” while the second one concerns the aspect of “algorithmic math-
ematics”. It is clear from the second cartoon that learning an algorithm without un-
derstanding the idea behind it can be quite dangerous, just like what Theseus might
encounter when the very nice boy tried to be helpful! In the reversed direction, the
algorithmic aspect has a role to play in the dialectic aspect. Referring to the ball of
thread from the beautiful Ariadnes, the Minoan princess who fell in love with The-
seus, Gottfried Wilhem Leibniz once described his dream of making logical reasoning
algorithmic in the following passage, “The true method must provide us with a filum
Ariadnes, that is to say a kind of sensitive and coarse means that guides the mind, in
the same way as lines drawn in geometry and the type of operations that are prescribed
to apprentices in Arithmetic. Without that our mind would not know how to go along
path without straying.” This dream was accomplished to some degree of success in
the mid 19th century through the work of George Boole, who wrote in his treatise An
Investigation Into the Laws of Thought (1854), “The design of the following treatise is
to investigate the fundamental laws of those operations of the mind by which reasoning
is performed; to give expression to them in the symbolic language of a calculus, and
upon this foundation to establish the science of Logic and construct its method ...”

Thus we see that it is not necessary and is actually harmful to the development
of mathematics to separate strictly “algorithmic mathematics” and “dialectic mathe-
matics”. Traditionally it is held that Western mathematics, developed from that of
the ancient Greeks, is dialectic, while Eastern mathematics, developed from that of the
ancient Egyptians, Babylonians, Chinese and Indians, is algorithmic. As a statement in
broad strokes this thesis has an element of truth in it, but under more refined examina-
tion it is an over-simplification. Let us illustrate with a second example. This example
may sound familiar to readers, viz the Chinese Remainder Theorem. The source of the
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result, and thence its name, is a problem in Sunzi Suanjing [Master Sun’s Mathematical
Manual ] compiled in the 4th century that reads:

“Now there are an unknown number of things. If we count by
threes, there is a remainder 2; if we count by fives, there is a
remainder 3; if we count by sevens, there is a remainder 2. Find
the number of things.” (translation in Lam & Ang, 1992, p.178)

To solve this problem, which can be written in modern terminology as a system of
simultaneous linear congruence equations

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7) ,

the text offers three magic numbers 70, 21, 15 which are combined in a proper way to
yield the least positive solution

2× 70 + 3× 21 + 2× 15− 105× 2 = 23 .

In his treatise Suanfa Tongzong [Systematic Treatise on Arithmetic] of 1592 Cheng
Dawei even embellished this solution as a poem which reads:

“ ’Tis rare to find one man
Of seventy out of three,

There are twenty one branches
On five plum blossom trees.

When seven disciples reunite
It is in the middle of the month,

Discarding one hundred and five
You have the problem done.”

It is interesting to note (but the author is no qualified historian of mathematics to trace
the transmission of knowledge) that the same problem with its solution also appears in
Liber Abaci of 1202 by Leonardo of Pisa, better known as Fibonnaci. It reads:

“Let a contrived number be divided by 3, also by 5, also by 7; and
ask each time what remains from each division. For each unity
that remains from the division by 3, retain 70; for each unity that
remains from the division by 5, retain 21; and for each unity that
remains from the division by 7, retain 15. And as much as the
number surpasses 105, subtract from it 105; and what remains to
you is the contrived number.” (Davis & Hersh, 1980, p.188)

In ancient China the problem was handed down from generation to generation, grad-
ually attaining a glamour which was attached to events as disparate as a legendary
enumeration of the size of his army by the great marshal Han Xin in the late 3rd cen-
tury B.C. to a parlour trick of guessing the number of a collection of objects [3]. This
much is a familiar story told and re-told. We will turn to look at the problem from an
angle not as commonly adopted by popular accounts.

The first time the author encountered the name of the Chinese Remainder Theorem
(CRT) explicitly mentioned was when he, as a student, read Chapter V of (Zariski &
Samuel, 1958, p.279). The name is given to Theorem 17 about a property of a Dedekind
domain, with a footnote that reads:
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“A rule for the solution of simultaneous linear congruences, es-
sentially equivalent with Theorem 17 in the case of the ring J
of integers, was found by Chinese calendar makers between the
fourth and the seventh centuries A.D. It was used for finding the
common periods to several cycles of astronomical phenomena.”

In many textbooks on abstract algebra the CRT is phrased in the ring of integers Z
as an isomorphism between the quotient ring Z/M1 . . .MnZ and the product Z/M1Z×
· · ·×Z/MnZ where Mi,Mj are relatively prime integers for distinct i, j. A more general
version in the context of a commutative ring with unity R guarantees an isomorphism
between R/I1∩· · ·∩In and R/I1×· · ·×R/In where I1, . . . , In are ideals with Ii+Ij = R
for distinct i, j. Readers will readily provide their own “dialectic” proof of the CRT.

For many years the author has been curious as to how the abstract CRT develops
from the concrete problem in Sunzi Suanjing . One mostly cited (but not quite accurate)
account appears in (Dickson, 1920, p.57) which says:

“Sun-Tsǔ, in a Chinese work Suan-ching (arithmetic), about the
first century A.D., gave in the form of an obscure verse a rule
called t’ai-yen (great generalization) to determine a number hav-
ing the remainders 2, 3, 2, when divided by 3, 5, 7, respectively.
...”

This account probably originated from a series of articles published in the Shanghai
newspaper North-China Herald titled “Jottings on the science of the Chinese” written
by the British missionary Alexander Wylie of the London Missionary Society. Wylie
was one of the most prominent pioneers in the study of Chinese science after Antoine
Gaubil of the first half of the 18th century and Edouard Biot of the first half of the
19th century. In No. 116 (October 1852) of the North-China Herald he wrote:

“The general principles of the Ta-yen are probably given in their
simplest form, in the above rudimentary problem of Sun Tsze;
Subsequent authors enlarging on the idea, applied it with much
effect to that complex system of cycles and epicycles which form
such a prominent feature in the middle-age astronomy of the Chi-
nese. The reputed originator of this theory as applied to astron-
omy is the priest Yih Hing who had scarely finished the rough
draft of his work Ta-yen leih sháo, when he died A.D. 717. But it
is in the “Nine Sections of the art of numbers” by Tsin Keu Chaou
that we have the most full and explicit details on this subject. ...”

The account of Wylie was subsequently translated into German by K.L. Biernatzki in
1856, elaborated by L. Matthiessen in 1874/76, who pointed out that the Chinese result
is same as that expounded by Carl Friedrich Gauss in (Gauss, 1801/1966, Section II)
[4].

The author of the 1247 treatise Shushu Jiuzhang [Mathematical Treatise in Nine
Sections ] referred to in Wylie’s account was one of the most famous Chinese mathe-
maticians of the 13th century by the name of Qin Jiushao (Tsin Keu Chaou). From
the first two problems in Book I we can discern the source of the problem as well as the
naming of the technique he introduced, viz “Da Yan (or Ta-yen, meaning the Great
Extension) art of searching for unity”. Problem 1 states:
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“In the Yi Jing [Book of Changes ] it is said, “The Great Extension
number is 50, and the Use number is 49.” Again it is said, “It is
divided into 2 [parts], to represent the spheres; 1 is suspended to
represent the 3 powers; they are drawn out by 4, to represent the 4
seasons; three changes complete a symbol, and eighteen changes
perfect the diagrams.” What is the rule for the Extension and
what are the several numbers?” (translation in Wylie’s article)

This is a problem about the art of fortune telling by combination of blades of shi grass.
It provides an exercise about residue classes of congruence. Problem 2 states:

“Let the solar year be equal to 3651
4

days, the moon’s revolution,
29499

940
days, and the Jia Zi, 60 days. Suppose in the year A.D.

1246, the 53rd day of the Jia Zi is the Winter solstice or 1st day
of the Solar year; and the 1st day of the Jia Zi is the 9th day
of the month. Required the time between two conjunctions of
the commencement of these three cycles; also, the time that has
already elapsed, and how much as yet to run.” (translation in
Wylie’s article)

This is a problem about the reckoning of calendar where the number of days was counted
from a beginning point called the Shang Yuan, that being the coinciding moment of
the winter solstice, the first day of the lunar month and also the first day of the cycle
of sixty.

Let us phrase the “Da Yan art of searching for unity” in modern terminology to
illustrate the algorithmic thinking embodied therein. The system of simultaneous con-
gruence equation is

x ≡ A1 (mod M1), x ≡ A2 (mod M2), . . . , x ≡ An (mod Mn) .

Qin’s work includes the general case when M1, . . . ,Mn are not necessarily mutually
relatively prime. His method amounts to arranging to have mi|Mi with m1, . . . , mn

mutually relatively prime and LCM(m1, . . . , mn) = LCM(M1, . . . , Mn). An equivalent
problem is to solve x ≡ Ai (mod mi) for i ∈ {1, . . . , n}, which is solvable if and only if
GCD(Mi,Mj) divides Ai − Aj for all i 6= j. The next step in Qin’s work reduces the
system (in the case M1, . . . , Mn are mutually relatively prime) to solving separately a
single congruence equation of the form kibi ≡ 1 (mod Mi). Finally, in order to solve
the single equation kb ≡ 1 (mod m) Qin uses reciprocal subtraction, equivalent to the
famous euclidean algorithm, to the equation until 1 (unity) is obtained.

Writing out the algorithm in full, we have

m = bq1 + r1, b = r1q2 + r2, r1 = r2q3 + r3, etc. with m > b > r1 > r2 > · · ·

so that ultimately ri becomes 1. Set k1 = q1, then k1b ≡ q1b ≡ −r1 (all congruences
refer to modulo m). Set k2 = k1q2 + 1, then k2b ≡ k1q2b + b ≡ −r1q2 + b ≡ r2.
Set k3 = k2q3 + k1, then k3b ≡ k2q3b + k1b ≡ r2q3 − r1 ≡ −r3. Set k4 = k3q4 + k2,
then k4b ≡ k3q4b + k2b ≡ −r3q4 + r2 ≡ r4, etc. In general, we have kib ≡ (−1)iri

(mod m). This algorithm provides a method for solving kb ≡ 1 (mod m) as well as
a proof that what is calculated is a solution. The method is to start with (1, b) and
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change (ki, ri) to (ki+1, ri+1), stopping when ri = 1 and i is even. Then ki is a solution.
For example, to solve 14k ≡ 1 (mod 19) we start with (1, 14), which is changed to
(1, 5), then to (3, 4), then to (4, 1), then to (15, 1). Hence 15 is a solution. When the
calculation is performed by manipulating counting rods on a board as in ancient times,
the procedure is rather streamlined. Within this algorithmic thinking we can discern
two points of dialectic interest. The first is how one can combine information on each
separate component to obtain a global solution. This feature is particularly prominent
when the result is formulated in the CTR in abstract algebra. The second is the use of
linear combination which affords a tool for other applications such as for curve fitting
or the Strong Approximation Theorem in valuation theory.

It is not surprising that the euclidean algorithm is used in Qin’s work. The principle
was familiar to the ancient Chinese who explained it in Chapter 1 of Jiuzhang Suanshu
as:

“Rule for reduction of fractions: If [the denominator and numera-
tor] can be halved, halve them. If not, lay down the denominator
and numerator, subtract the smaller number from the greater.
Repeat the process to obtain the dengsu (greatest common divi-
sor). Reduce them by the dengsu.” (translation in Shen et al,
1999, p.64)

It is called the euclidean algorithm in the Western world because it is contained in the
first two propositions of Book VII of Elements compiled by Euclid in about 300 B.C.
If we read these two propositions we would be struck by its strong algorithmic flavour.
Proposition 1 states:

“Two unequal numbers being set out, and the less being contin-
ually subtracted in turn from the greater, if the number which
is left never measures the one before it until an unit is left, the
original numbers will be prime to one another.” (translation in
Heath, 1925/1956, Vol.2, p.296)

This is followed by Proposition 2 which says:

“Given two numbers not prime to one another, to find their great-
est common measure.” (translation in Heath, 1925/1956, Vol.2,
p.298)

A reading of the proofs of these two propositions will offer the reader a more balanced
view of the style of the book Elements . The kind of mathematics developed in Elements
is traditionally seen as an archetype of “dialectic mathematics”. This more balanced
view betrays the over-simplified belief that Eastern-Western mathematics is synony-
mous with algorithmic-dialectic mathematics. Furthermore, some people even stress
above all only the formal and rigorous aspect of “dialectic mathematics”. Following
the reasoning put forth by S.D. Agashe in (Agashe, 1989) we will try to reveal the
(somewhat algorithmic) background and motives of the mathematics contained in the
first two books of Elements . Proposition 14 in Book II addresses the construction of a
square equal (in area) to a given rectilinear figure. It seems the problem of interest is
to compare two rectilinear figures, whose one-dimensional analogue of comparing two
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line segments is easy. For two line segments we can put one onto the other and see
which one lies completely inside the other (or is equal to the other). Actually this is
what Proposition 3 of Book I sets out to do:

“Given two unequal straight lines, to cut off from the greater a
straight line equal to the less.” (translation in Heath, 1925/1956,
Vol.1, p.246)

To justify this result we have to rely on Postulate 1, Postulate 2 and Postulate 3.
Unfortunately, for rectilinear figures the problem is no longer as straightforward, except
for the case of two squares when we can reduce the investigation to the sides of each
square by putting one onto the other so that one square lies completely inside the other
(or is equal to the other). Incidentally we need Postulate 4 to guarantee that. Hence we
have found a way to compare two rectilinear figures, viz we try to reduce a rectilinear
figure to a square, which is the content of Proposition 14 in Book II:

“Construct a square equal to a given rectilineal figure.” (transla-
tion in Heath, 1925/1956, Vol.1, p.409)

Let us first try to reduce a rectangle to a square. A rectangle can be readily converted
to an L-shaped gnomon which is the difference between two squares. Actually that is
the content of Proposition 5 in Book II (see Figure 8).

Figure 8
To make the difference of two squares a square we can ask a reversed question about

the sum of two squares being equal to a square. The latter question is answered by
the famous Pythagoras’ Theorem which is Proposition 47 in Book I! To complete the
picture we must construct a rectangle equal to a rectilinear figure. By decomposing
a rectilinear figure into triangles and by contructing a rectangle (or more generally a
parallelogram with one angle given) equal to each triangle, the problem will be solved.
The construction of a parallelogram (with one angle given) equal to a triangle is the
content of Proposition 42, Proposition 44 and Proposition 45 in Book I, whose proofs
all rely on Postulate 5 about parallelism. Viewed in this way, the axiomatic approach
exemplified in Elements gains a richer meaning. Bertrand Russell describes his own
childhood experience in learning Elements in (Russell, 1967, p.36): “At the age of
eleven, I began Euclid, with my brother as tutor. This was one of the great events
of my life, as dazzling as first love. ... I had been told that Euclid proved things,
and was much disappointed that he started with axioms. At first, I refused to accept
them unless my brother could offer me some reason for doing so, but he said, “If you
don’t accept them, we cannot go on”, and as I wished to go on, I reluctantly admitted
them pro temp.” Maybe Russell would have felt happier if his brother had told him
something along a similar line as what is explained above!
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4 Pedagogical viewpoint

We now come to the pedagogical viewpoint. In looking at how the two aspects —
“algorithmic mathematics” and “dialectic mathematics” — intertwine with each other,
one is reminded of the yin and yang in Chinese philosophy in which the two aspects
complement and supplement each other with one containing some part of the other [5].
If that is the case, then in the teaching of mathematics we should not just emphasize
one at the expense of the other. When we learn something new we need first to get
acquainted with the new thing and to acquire sufficient feeling for it. A procedural
approach helps us to prepare more solid ground to build up subsequent conceptual
understanding. In turn, when we understand the concept better we will be able to
handle the algorithm with more facility. In the mathematics education community there
has been a long-running debate on procedural vs conceptual knowledge, or process vs
object in learning theory, or computer vs no-computer learning environment. In a more
general context these are all related to a debate on algorithmic vs dialectic mathematics,
which are actually not two opposing aspects but can join forces to provide an integrated
way of learning and teaching. In the remaining part of this Section we illustrate with
more examples, all taken from the author’s experience in teaching and research. (Hence
for convenience the first-person pronoun will be used throughout.)
(1) I vividly remember my “moment of revelation” in school algebra. At the beginning
I was not much excited about the subject when all that was learnt in class was sim-
plifying algebraic expressions, not even later when we came to solving an equation in
one unknown. Simultaneous equations in two unknowns seemed more interesting, but
still it did not strike a spark in me. Then one day, after working on several problems
on long division of one polynomial by a linear polynomial X − α, I was told that the
tedious algorithmic work can be skipped because the same answer will fall out simply
by evaluating the given polynomial at α. The proof given in the textbook was to me
quite an eye-opener at the time. Familiarity with the problem through the “algorithmic
mathematics” allows me to appreciate better the “dialectic mathematic” based on the
euclidean algorithm.
(2) Solving a system of linear equations by reduction to echelon form is clearly algorith-
mic in nature [6]. However, a clear understanding of this working does much to help us
understand the more abstract and theoretical part of linear algebra and see why many
of the concepts and definitions make sense. Therefore I will not regard an exercise in
manipulating a system of linear equations as a routine exercise for those who are less
apt at coping with abstract theory, but as a preparation for every student in the class.
Suitably dressed up, even a routine exercise can become a useful lead into interesting
and useful theory. As an example, we can ask:

“Let W1 be the subspace in R3 spanned by (1, 1, 2), (3, 0,−1),
(1,−2,−5) and let W2 be the subspace in R3 spanned by (4, 1, 1),
(1, 4,−1), (2,−7, 3). Calculate the intersection of W1 and W2.
Describe the geometry of it.”

An ad hoc calculation in this concrete case supported by a clear geometric picture, with
(4, 1, 1) lying on the line of intersection of the two hyperplanes W1 and W2, leads to a
more theoretical discussion in a general situation.
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(3) As a pupil I came across in school algebra many homework problems which ask
for writing expressions like p3q + pq3 or 5p2 − 3pq + 5q2 or p4 + q4 or ... in terms of
a, b, c where p, q are the roots of aX2 + bX + c = 0. Each time I could arrive at an
answer, maybe sometimes after long calculation. Why must an answer come up for
such so-called “symmetric” expressions? It was only many years later that I came to
understand this in the form of the Fundamental Theorem on Symmetric Polynomial.
There are different proofs for the result and it can be formulated in a rather general
context of polynomials over a commutative ring with unity. But it is still helpful to
work out one example in an algorithmic fashion to get a flavour of the dialectic proof.
For instance let us try to express the polynomial

X3
1X

2
2 + X3

2X
2
3 + X3

3X
2
1 + X2

1X
3
2 + X2

2X
3
3 + X2

3X
3
1

in terms of σ1 = X1+X2+X3, σ2 = X1X2+X2X3+X3X1, σ3 = X1X2X3. Naturally we
can write the polynomial in X1, X2, X3 as a polynomial in X3 with coefficients involving
X1, X2, i.e.

f(X1, X2, X3) = (X3
1X

2
2 + X2

1X
3
2 ) + (X3

1 + X3
2 )X2

3 + (X2
1 + X2

2 )X3
3 .

Applying our knowledge of polynomials in X1, X2 (after so much working in school
algebra), we arrive at

f(X1, X2, X3) = τ1τ
2
2 + (τ 3

1 − 3τ1τ2)X
2
3 + (τ 2

1 − 2τ2)X
3
3

where τ1 = X1 + X2, τ2 = X1X2. Now, write σ1 = τ1 + X3, σ2 = τ2 + τ1X3, σ3 = τ2X3.
From the first two relationships we can express τ1, τ2 in terms of σ1, σ2 and X3, i.e.
τ1 = σ1 − X3, τ2 = σ2 − σ1X3 + X2

3 . Substituting τ2 back to the third relationship
we can express X3

3 = σ3 − σ2X3 + σ1X
2
3 . Hence we can express the coefficients τ1τ

2
2 ,

τ 3
1 − 3τ1τ2, τ 2

1 − 2τ2 in terms of σ1, σ2, σ3 and X3 up to the second power. Substituting
back to f(X1, X2, X3) we obtain, after some rather tedious (but worthwhile!) work,

f(X1, X2, X3) = σ1σ
2
2 − 2σ2

1σ3 − σ2σ3 .

Note that suddenly all terms involving X3 vanish and that is the answer we want!
Coincidence in mathematics is rare. If there is any coincidence, it usually begs for
an explanation. The explanation we seek in this case will lead us to one proof of the
Fundamental Theorem on Symmetric Polynomial.
(4) The simplest type of extension field discussed in a basic course on abstract algebra is
the adjunction of a single element algebraic over the ground field, say Q. The element
α, say in C, is said to be algebraic over Q if α is the zero of some polynomial with
coefficients in Q. The dialectic aspect involves the “finiteness” of the extension field
Q(α) viewed as a finite-dimensional vector space over Q. It is helpful to go through
some algorithmic calculation to experience the “finiteness”. For instance, take α =

√
2.

It is easy to see that a typical element in Q(α) (by knowing what Q(α) stands for) is
of the form (a + bα)/(c + dα) where a, b, c, d are in Q, because any term involving a
higher power of α can be ground down to a linear combination (over Q) of 1 and α.
The procedure on conjugation learnt in school allows us to revert the denominator as
part of the numerator, i.e.

1/(c + dα) = (c− dα)/(c + dα)(c− dα) = (c− dα)/(c2 − 2d2)

= [(c/(c2 − 2d2)] + [(−d)/(c2 − 2d2)]α .
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Hence, a typical element in Q(α) is of the form a + bα where a, b are in Q. It is more

instructive to follow with a slightly more complicated example such as α =
√

1 +
√

3.
It is not much harder to see that we can confine attention to linear combinations of
1, α, α2, α3, but this time it is much more messy to revert the denominator as part
of the numerator. This will motivate a more elegant dialectic proof modelled after
the algorithmic calculation for α =

√
2. Another useful piece of knowledge about

algebraic elements is: If a and b (say in C) are algebraic over Q, then a + b is algebraic
over Q. The dialectic aspect involves the notion of “finiteness” by viewing Q(a, b) as
a finite-dimensional vector space over Q. Going through an algorithmic calculation
may help to consolidate understanding. For instance, take

√
2, which is algebraic

over Q as a zero of X2 − 2, and take 3
√

3, which is algebraic over Q as a zero of
X3

3 − 3. Try to find a polynomial with coefficients in Q such that
√

2 + 3
√

3 is a zero
of it. We can follow an algorithm which expresses X2 − 2 = (X − √

2)(X +
√

2)
and (X3 − 3) = (X − α)(X − αω)(X − αω2) where α(∈ R) is such that α3 = 3 and
ω = 1

2
(
√

3i− 1), then consider the polynomial

g(X) = (X−
√

2−α)(X+
√

2−α)(X−
√

2−αω)(X+
√

2−αω)(X−
√

2−αω2)(X+
√

2−αω2)

which reduces after some calculation to X6 +6X4−6X3 +12X2−36X +1 (noting that
α3 = 3 and 1 + ω + ω2 = 0). It is certainly not incidental that ultimately no coefficient
involves

√
2 or α or ω ! Further enquiry will suggest a constructive proof of the general

result by making use of symmetric polynomials.
(5) To begin with a simple example, let z be a (complex) root other than 1 of the
equation X5 − 1 = 0, so z4 + z3 + z2 + z + 1 = 0, or (z1 + z4) + (z2 + z3) = 0. Write
η0 = z1 + z4 and η1 = z2 + z3 and note that η0 + η1 = −1 and η0η1 = η0 + η1 = −1.
Hence, η0, η1 are roots of Y 2 + Y − 1 = 0, say

η0 =
−1 +

√
5

2
, η1 =

−1−√5

2
.

From η0 = z+1
z

we obtain z2−η0z+1 = 0 so that one value for z is z = 1
2
(η0+

√
η2

0 − 4) =
1
4
[−1 +

√
5 +

√
−10− 2

√
5]. This calculation is the basic idea Carl Friederich Gauss

applied to solve the equation XN−1 = 0 where N is a prime number [7]. The calculation
will go through in general if at each stage we can break up the sum of powers of z into
two halves, which is the case when N is of the form 22s

+ 1, i.e. N is a Fermat prime.
This is the theory of cyclotomy developed by Gauss in (Gauss, 1801/1966, Section VII)
in connection with his celebrated discovery in 1796 of the constructibility of a regular
seventeen-sided polygon by straight-edge and compasses.

We now go tangentially off the work of Gauss but take with us one crucial point:
express η0η1 in the form aη0 + bη1 + c for some integers a, b, c. Let p be an odd prime
of the form 2f + 1 and g is a primitive root of p. Let C0 = {g2s|s ∈ {0, 1, 2, . . . , f − 1}}
and C1 = {g2s+1|s ∈ {0, 1, 2, . . . , f − 1}}, then {1, 2, . . . , p− 1} is decomposed into the
disjoint union C0∪C1. We call C0, C1 cyclotomic classes and (i, j) = |(Ci+1)∩Cj| (with
i, j ∈ {0, 1}) cyclotomic numbers. If η0 =

∑
t∈C0

zt and η1 =
∑

t∈C1

zt, then it turns out that

η0 + η1 = −1 and η0η1 = (1, 0)η0 + (1, 1)η1 + c where c is the number of 0 in C0 + C1

(repetition counted). More generally, let p be a prime number and q = pα = ef+1 and g
is a generator of the multiplicative group of the finite field GF (q), which is decomposed
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into a disjoint union C0 ∪ C1 ∪ · · · ∪ Ce−1 where Ci = {ges+i|S ∈ {0, 1, 2, . . . , f − 1}}
(cyclotomic class). We call (i, j) = |(Ci+1)∩Cj| (with i, j ∈ {0, 1, . . . , e−1}) cyclotomic
numbers. The fascinating property which comes out of the calculation is that, when
and only when (i, 0) = (f − 1)/e for all i ∈ {0, 1, . . . , e − 1}, then C0 is a difference
set in GF (q), i.e. each nonzero element in GF (q) is the difference x − y of the same
number of pairs of elements (x, y) in C0 × C0. For instance, this is true for q = 11 so
that C0 = {1, 3, 4, 5, 9}, the set of quadratic residues modulo 11, is a difference set. If
you look at all the differences (modulo 11) x− y of pairs (x, y) of numbers in C0, you
will find each nonzero number appearing exactly twice. Research on difference sets is a
nice mixture of “algorithmic mathematics” and “dialectic mathematics”.
(6) The last example is a personal anecdote about a piece of research work. Let us first
look at the problem. Let F be the finite field with q = ps elements, i.e. F = GF (q).
A function f : F → C is called a nontrivial multiplicative character of F if f(0) = 0,
f(1) = 1 but f 6≡ 1 on F ∗ = F \ {0}, and f(b1b2) = f(b1)f(b2) for all b1, b2 in F . In
this case, it is well-know that

∑

b∈F

f(b)f(b + a) =

{
q − 1 if a = 0 ;
−1 if a 6= 0 .

(#)

Harvey Cohn asks whether the converse is true: If f : F → C is such that f(0) = 0,
f(1) = 1, |f(a)| = 1 for all a in F ∗ and (#) holds, must f be a nontrivial multiplicative
character of F? In the summer of 1996 I could settle the real case (so that f(a) is either
1 or −1 for nonzero a) with an affirmative answer when F is a prime field. That much
is “dialectic mathematics”. I failed to extend the argument to the case when F is not
necessarily a prime field. Hence the work was put aside until interest was resurrected in
the spring of 1999 when a young colleague, Stephen Choi, gave a seminar on the same
problem arising in a different context, attacked by a different approach. Naturally I
and Choi joined forces to look at the general case. We noted that (#) involves only
the addition in F but not the multiplication in F . If we compose a specific injective
multiplicative character χ : F → C of F with an additive bijection ϕ : F → F , then
f = χ ◦ ϕ satisfies (#) since χ satisfies (#). It remains to see if there exists any
additive bijection ϕ which is not multiplicative. I turned to “algorithmic mathematics”
by actually doing the calculation using a representation of F as the quotient ring of
GF (p)[X] modulo the ideal generated by an irreducible polynomial of degree s. One
day upon re-checking the calculation of some concrete cases, I found an error, which I
corrected. But in either case — the original incorrect version and the correct version —
(#) was satisfied. To my dismay more errors in the calculation were detected, but each
time, with correction or no correction, (#) was still satisfied. That made me become
aware that more often than not, ϕ is not multiplicative. Finally we could prove this
and give a negative answer to the problem in the case of non-prime fields in (Choi &
Siu, 2000).

5 Epilogue

To conclude we like to share with readers a Zen saying from the monk Qingyuan Weixin
in the Tang Dynasty (618-907):
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“Before I had studied Zen for thirty years, I saw mountains as
mountains, and waters as waters. When I arrived at a more inti-
mate knowledge, I come to the point where I saw the mountains
are not mountains, and waters are not waters. But now that I
have got its very substance I am at rest. For it is just that I
see mountains once again as mountains, and waters once again as
waters.”

Notes.

[1] Both cartoons have to do with Cretan legends because this article is a much
expanded text of a plenary lecture given at the 2nd International Conference on
the Teaching of Mathematics at the Undergraduate Level held in July 2002 in
Crete. If the two cartoons may offend his Cretan friends, the author hastily adds
a third cartoon from home, which appeared in a Hong Kong newspaper Ming Pao
on 27 March 2002, the day following the release of an official document on tertiary
education in Hong Kong.

[2] In the commentary by Liu Hui, he explains the working through geometry by a
clever dissection of area and arrives at the equivalent of that equation in modern
day language. See (Shen et al, 1999, p.508).

[3] The story about Han Xin may explain a common confusion some people make
in identifying the author of Sunji Suanjing with another Sun Ji who flourished
seven centuries earlier and who was famous for his treatise on military art.

[4] Kurt Mahler clarified this mistaken point in (Mahler, 1958).

[5] To go even further than that the author would even borrow a metaphor probably
from the biologist and popular science writer Stephen Jay Gould: Is a zebra a
white animal with black stripes or a black animal with white stripes?

[6] The algorithm is explicitly recorded and explained in Chapter 8 of Jiuzhang Suan-
shu. The title of the chapter itself is telling — Fangcheng , which means literally
“the procedure of calculation by a rectangular array”.

[7] The author has a slight suspicion that Gauss was inspired by the work of Alexandre-
Théophile Vandermonde who solved that equation in a brilliant 1774 paper titled
“Memoire sur la résolution des équations” (see Tignol, 1980, Chapter 11 and
Chapter 12).
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