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Most readers of this article have come across the term “calculus”, perhaps in secondary school. Even
those who have not reached the stage of studying it have probably heard about it. While certain
fundamental ideas of calculus were already fermenting in the pioneering works of ancient Eastern and
Western mathematicians, as a systematic discipline, calculus has a history of just over three centuries.
This article is not about the development of calculus in the last three hundred years, but is the story of
its birth.

Nomenclature

The term “calculus” is derived from the Latin word meaning “stone”. It refers to calculation which, in
ancient Europe, was facilitated by stones. Nowadays, the medical term “a calculous man” refers to a
patient with kidney stones and not an expert of calculus.

In a way, the terminology is appropriate, as calculus was invented as a powerful tool in mathematical
calculations.  On the other hand, the name carries the misleading connotation that calculus is just
concerned with mechanical computations. This is furthest from the truth. Calculus is one of the greatest
achievements, not only in the history of mathematics, but in all of human civilization, with far-reaching
consequences in science, technology and philosophy. Today, calculus is an indispensible mathematical
tool in many fields, including not only the physical sciences, material sciences and engineering, but also
the biological sciences, social sciences and business administration.

Two major historic triumphs of calculus are well-known to all, but nevertheless worth repeating. First,
in the mid-17th century, Newton used his newly formulated calculus to expound his theory of mechanics,
which explained the movements of the heavenly bodies. This work opened a new chapter in the
investigation of the physical universe. Obviously impressed by this important work, the 18th century
poet Pope wrote:

Nature and nature’s laws
lay hid in night,
God said, “Let Newton be”,
and all was light.

Second, in the mid-19th century, Maxwell gave the theory of electromagnetism a mathematical treatment
and summarized it in the famous Maxwell (differential) equations. In this work, the existence of
electromagnetic waves was predicted, leading to their discovery by the experimental scientist Hertz in
twenty years' time. The potential of electromagnetic waves was finally realized when Marconi invented
wireless communication thirteen years later.

The Chinese terminology for calculus (weijifen) first appeared in 1859 in a translation of Analytic
Geometry and Calculus (written by the American mathematician Loomis in 1850) by Li Shanlan and the
Englishman Wylie. In the preface, Li wrote “This book deals first with algebra (meaning analytic
geometry, known as algebraic geometry at the time) and subsequently differential and then integral
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calculus, following the order of complexity of the topics, like climbing a staircase. Hence we have given the book
the title Dai Wei Ji Shi Ji (algebra, differential and integral calculus in ascending steps).” He continued thus “During
the time of the Emperor Kangxi, in the West, Leibniz and Newton invented the arts of differential and integral calculus
... which are based on the principle that all planar figures are built up from small to large. Every instantaneous
increment in area is called a differential (wei fen), and the total area is called an integral (ji fen).” This is the origin
of the Chinese terminology. )

Volume Calculations in Ancient Greece

Calculations of areas and volumes have appeared in ancient Eastern and Western mathematical literature going back
thousands of years, but it was not until the 4th and 3rd centuries BC when such formulae were given mathematical
proofs in Greece. The foremost contributor in this enterprise was Archimedes, who lived in the 3rd century BC. His
deductive reasoning is considered rigorous even by today’s standards. However, his greatness lies in his ingenious
usage of intuition and conjectures, and application of other fields to establish deep results in mathematics.

To establish his area formulae, he used the method of “exhaustion”, which was based on the work of the Greek
mathematician Eudoxus who lived one century before him. Eudoxus observed that if a magnitude was reduced by
at least half, and the remainder reduced by at least half, and so on, the remainder could be made arbitrarily small
after sufficiently many steps.

The central idea of the method of “exhaustion” can be illustrated by the proof of the following simple assertion which
is the second theorem in Volume 12 of Euclid's Elements: The ratio of the areas of two circles is equal to the ratio
of the squares of their radii. In other words, if a circle has radius d and area a, and a second circle has radius D
and area A, then

a/A=d?/ D% *)

Effectively, this observation gives the formula for the area of a circle. The proof given in Elements goes as follows:
Suppose the equality (*) does not hold. Then either the left hand side (LHS) is larger than the right hand side (RHS)
or vice versa. If the LHS is larger, that is, if a/A > &?/ D?, pick an a, < a such that a, /A= d?/D? and denote
a-a by e Consider successive regular N-gons inscribed in the circles, with N doubling at each step; for example,
start with N = 3, i.e., equilateral triangles, followed by regular hexagons (N = 6), etc. Denote by p(N) and P(N) the
areas of these regular N-gons, inscribed in the circles of radii d and D respectively. Then it is easy to see that
p(N)/ P(N) = d* / D? and hence p(N) / P(N) = a, / A. Each time such an inscribed polygon doubles in the number
of sides, the difference between its area and that of the circumscribing circle reduces by more than half (an exercise
left to the readers). Therefore, by Eudoxos’ Principle, after a certain number of steps, a value N is arrived at such
that a - p(N) < e, that is, p(N) > a, and hence P(N) > A. This statement that the inscribed polygon has a larger area
than the circumscribing circle is of course absurd, showing that the original assumption that LHS is larger is flawed.
Similarly we can rule out RHS being larger. '

In fact, the concepts of the infinitesimal and limit in calculus were already alluded to in Eudoxos’ Principle, albeit
disguised in a language involving finitely many steps, thus hiding the essentiality of the infinite. The fact that calculus
was not born earlier was due in a large part to this attitude of ancient mathematicians that the infinite ought to be
avoided. Nevertheless, the rigour demonstrated by mathematicians over 2000 years ago is well worth our respect.

Using this technique, Archimedes established many area and volume formulae. However, one mystery remained.
One could prove that a formula was the right one by this method if the formula was indeed the right one, but how
was one to come up with the right formula in-the first place? Was Archimedes divinely inspired? This mystery was
finally unveiled in 1906 by Heiberg, a German scholar who specialized in ancient Greek mathematics. He found
a parchment in a monastery in Constantinople with prayers from the 13th century. However underneath the prayers,
some other writing could barely be discerned. Through Heiberg's extreme care and persistance, it was finally revealed
that it was a 10th century copy of a missing manuscript of Archimedes. It was a letter to the mathematician
Eratosthenes explaining how he discovered the area and volume formulae. This precious document is now known
as “The Method”.
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- Archimedes explained that he first put the geometric object on one side of a hypothetical balance. The geometric
object was viewed as being made up of infinitesimal cross sections, which he would move, one by one, from one
side of the balance to the other until the two sides balanced. The area or volume formulae were then calculated
by the Principle of Moment of Force.

To illustrate this, let us take a round ball of radius R, a circular cylinder of radius R and height 2R, and a circular
cone of base radius 2R and height 2R, and put them on side A of a balance as shown in diagram 1a. Measuring
from the fulcrum O of the balance, remove a cross section of a very small thickness L at a distance x (see diagram
1a). Since L is very small, we may suppose that the volumes of the cross sections of the ball, cylinder and cone are
respectively 7x(2R - x)L, 7R'L, and 7ix'L (why?). Take the cross sections from the ball and the cone and move them
to side B of the balance, at a distance 2R from O. From the theory of mechanics, we can calculate the torque from
side B to be 2R[ax(2R - X)L + 7x'L] = x(=(2RYL]. Thus, if we double the radius of the cylinder on side A, the two
sides will balance. By moving the ball and the cone to the other side of the balance cross section by cross section,
they will eventually balance the cylinder with the radius doubled on the other side (see diagram 1b).

Thus, denoting the volumes of the ball, the original cylinder, the enlarged (radius doubled) cylinder, and the cone by
V,, V. V,and V, respectively, we obtain the formula that

Side A
2Rx (Vy+ V) =RxV,. < s s
Since 7\
R B
2R
V=13V, - —
(o)
it follows that N
—_— X -
V,= 1/6VD.
Diagram 1a Diagram 1b

Furthermore, as V=4V, , we conclude that
V,=2/3V..

In addition, Archimedes determined that the surface area of the sphere is two-thirds that of the (original) cylinder. He
was so proud of this formula that he decided that the geometric figure depicting the ball B contained in the cylinder C
(see diagram 2) was to be his epitaph.

Archimedes’ death was a tragedy to the world. There was a legend that when the Roman
general Marcellus took the city Syracuse in south ltaly in which Archimedes lived, the
soldiers found an old man in a room drawing pictures in sand. When the soldiers ruined
the drawings, the old man lost his temper and was subsequently killed by the soldiers.
The old man was Archimedes. Another legend had it that Marcellus was much impressed
by Archimedes’ genius and wanted to meet him. When the soldiers went to fetch
Archimedes, he was completely absorbed in his problem-solving and refused to go,
thereupon the soldiers lost their cool and had Archimedes killed.

Alas, after two thousand years, Archimedes is still being remembered, but who still
remembers Marcellus? To finish the legend, when he learned of Archimedes’ death,

Diagram 2 Marcellus was so remorseful he erected a monument on which Archimedes’ beloved
geometric shapes were engraved. ~As time went by, people forgot about this, until it was rediscovered in 1965 when
the site was acquired for hotel development.
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Volume Calculations in Ancient China

To continue with our story, but now moving to the Far East, the earliest complete and systematic mathematical treatise
in China is Jiu Zhang Suanshu (Nine Chapters on the Mathematical Art), which contained results in mathematics up
to the Han dynasty (206 BC - AD 220), including, without proof, many area and volume formulae.

During the time of the Three Kingdoms (AD 220 - 265), Liu Hui provided explanatory notes for Jiu Zhang Suanshu.
The fifth chapter, entitled “Shang Gong" (discussing work), dealt with engineering mathematics, but in fact contained
mainly volume calculations. Among the problems discussed was one on the volume of a “yang ma”, which was the
building term at the time meaning the pyramid with rectangular base. Liu Hui wrote: “Bisecting a cube along the
diagonal yields two ‘gian du’. Each ‘gian du’ can further be divided along a diagonal into a ‘yang ma’ and a ‘bie
nao’, at the constant ratio of 2 : 1 in volume.” “Qian du”
is the term for the wall around a moat, here meaning a
prism whose cross sections are right-angled triangles. “Bie
nao” is the term for a particular tortoise bone, here meaning
a pyramid with right-angled triangular base (see diagram 3).
Thus, according to Liu Hui, the volume of a “yang ma” is
‘twice that of a “bie nao”, whereas two “yang ma” and two
“bie nao” together make one cube. Hence, the volume of
a “bie nao” is one-sixth that of a cube, and the volume of

Qian Du Bie Nao a “yang ma” is one-third that of a cube, giving the formula
that the volume of a “yang ma” is equal to one-third the
Diagram 3 product of the height and the base area.

More than one thousand and six hundred years after Liu Hui, the German mathematician Hilbert raised the following
famous problem: Is it possible to re-arrange a subdivision of a polyhedron to obtain another polyhedron of the same
volume? The answer is that this is not always possible. The solution of this problem has a profound mathematical
meaning, which, put simply, is that calculus is necessary for volume calculations.

So was calculus used in Liu Hui’s derivation? The answer was in fact yes, but probably Liu Hui himself was not aware
of it, as it was quite beyond the level of mathematical sophistication of his time. As a matter of fact, after the passage
quoted above, Liu Huis explanations continue, and they can be summarized as follows: Divide the “yang ma” into
two smaller “yang ma” and four “gian du”, and divide the “bie nao” into two smaller “bie nao” and two “gian du”.
Put aside all the smaller “yang ma” and “bie nao”, then the remaining parts of the original “yang ma” and “bie
nao” are in the ratio of 2 : 1 in volume. Repeat this process to each of the smaller “yang ma” and “bie nao”. Upon
iteration of this process, the “yang ma” and “bie nao” will get smaller and smaller. As they become infinitesimal,
they become “formless and thus negligible”. This explains why the volumes of the original “yang ma” and “bie nao”
are in 2 : 1 ratio. Of course, by today’s standards of rigour, “becoming formless and thus negligible” is not quite
acceptable, but there is no doubt that Liu Hui has captured the basic idea of the infinitesimal.

In the last section, we saw how Archimedes treated geometric objects as being made up of infinitesimal cross sections.
This point of view was also often employed by Liu Hui in the form of the following principle: If the cross sections
at the same height of two objects have a constant ratio in area, then the volumes of these two objects are also in
the same ratio. An interesting example occurred when he corrected a mistake in the original text in chapter four,
entitled “Shao Guang” (short width). The original text stated that the ratio between the volumes of a round ball and
its circumscribing cube was 7% : 42 (in the original text, 3 was used as an approximation to & ). It had been known
that the ratio between the area of a circle and its circumscribing square was = : 4, and therefore the volumes of a
circular cylinder and its circumscribing cube were in the same ratio. The above mistake stemmed from the misconception
that the ratio between the volumes of a round ball and its circumscribing circular cylinder was also 7 : 4.

This error was pointed out by Liu Hui. In fact, he stated that 7 : 4 was the ratio between the volumes of the round
ball and the object which he called “mou he fang gai”. Visualize the round ball as being made up of cross sections
of circles, from a point at the north pole increasing in size to the equator and then decreasing back to a point at the
south pole. Each circle has a circumscribing square. The object formed by these circumscribing squares is a “mou
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. he fang gai”. It is also the intersection between two identical circular cylinders .which are placed such that their axes
intersect perpendicularly. Thus, if one knew the volume of the “mou he fang gai”, the volume of the.round ball could
be inferred. However, Liu Hui failed in his attempt to evaluate the volume of the “mou he fang gai”, and he wrote:
“Due to the extremely intricate interaction between the circle and the square, [ fail to obtain the answer. | leave this
problem to a more able person. It is not right for me to make irresponsible comments.” His frankness, humility and
integrity are indeed remarkable.

After about two hundred years, during the North-South Period (AD 420 — 589), the father and son mathematician team
Zu Chongzhi and Zu Geng solved this problem in the following ingenious way: Divide the “mou he fang ;?’ai” into
eight equal parts and put one part in a cube with side R (where R is the radius of the round ball). ‘Now the'volume
of the space between the cube and the 1/8 “mou he fang gai” inside can be computed. Note that if we take a cross
section of this space at a distance h from the bottom of the cube, its area is given by the Pythagoras Theorem to be
R? - x* =k (see diagram 4). Now take an upside down pyramid of height R with a square base (now on top) with
side R. lIts cross section at a distance of h from the bottom (the tip of the pyramid) also has an area of k2 Therefore,
the space between the cube and 1/8 of the “mou he fang

gai” has the same volume as the pyramid. Now the R
pyramid is 1/3 of a cube with side R, therefore, the volume

of the pyramid is (1/3)R?, from which we deduce that the

area of the “mou he fang gai” is (2/3)D° where D is the R
diameter of the round ball. Finally, we conclude that the
volume of the round ball is

«~3—> X

n/4x 23D = 1/6nD’.

Diagram 4

It is a pity that their book Zhui Shu has been lost since the North Song dynasty (AD 960 — 1126) and very little is
known about it. Our account of the above calculation is based on explanatory notes on fiu Zhang Suanshu written
by the Tang dynasty (AD 618 — 907) mathematician Li Chunfeng.

The arguments by the Zu's were based on the following principle: Given two objects
whose cross sections at the same height have the same area, then the two objects have
the same volume. This is known in the West as Cavalieri’s Principle, after the Italian
mathematician who published it in 1635 and used it to establish many volume formulae.
In fact, even in the West, this principle had been commonly used before the time of
Cavalieri. For example, in the early 17th century, the German astronomer Kepler used
it to find the area of an ellipse. He first put an ellipse of semi-major axis a and semi-
minor axis b in a circle of radius a (see diagram 5). Then he observed that the ratio
between the lengths of A'B'and AB is b : a. As AB formed the cross sections of the
circle, and A'B' formed the cross sections of the ellipse, he concluded that the area of
the ellipse was mab, using the knowledge that the area of the circle was 722 %]

Diagram 5

Editor's Note: This is a translation of an article (in Chinese) by Dr M K Siu, which forms Chapter
2 of his book One, Two, Three and Beyond, published by Guangdong Jiaoyu Chubanshe, 1990.
The Singapore Mathematical Society wishes to thank Dr Siu for allowing this translation to be
published in the Mathematical Medley. Due to the length of the article, it will be published in
two parts; the second part will appear in the next issue of the Medley.

*Dr M K Siu is Reader of Mathematics at the University of Hong Kong and is the author of
numerous popular mathematics books.

**Dr P'Y H Pang is Senior Lecturer in Mathematics at the National University of Singapore.
The translator would like to express his thanks to Professor Lam Lay Yong for her helpful advice.
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In the last episode, we mentioned the work of the father and
son mathematician team Zu Chongzhi and Zu Geng during the
North-South Period (AD 420—589) and how one of their
results (now known as Cavalieri’s Principle) was rediscovered
in Europe about one thousand years later and was used by
Kepler to calculate the area of an ellipse. So why was Kepler

interested in the area of an ellipse?

4. The Rise of Mathematics in Western Europe

Two millenia prior to Kepler, the ancient Greeks had discovered ellipses. However, their interest in them was
purely as an exercise in geometry; it was Kepler who brought the ellipse into the realm of practical science.
Curiosity in the mysteries of the universe led Kepler to Tycho Brahe, the leading astronomer of his time, to
be his assistant. Upon the sudden demise of Tycho Brahe two years later, Kepler inherited his position, and
with it the richest and most elaborate depository of astronomical data in Europe at the time, and Kepler was
determined to find the laws that governed the universe from this wealth of data. Kepler kept to the highest
standards of empiricism, rejecting one theory after another only for minute discrepancies with the data. Finally
in the year 1609, he published two celebrated Laws:

(I) The planets follow elliptic orbits around the sun, with the sun as a focus;

() the straight line segment joining the sun and the planet sweeps out equal areas in equal time intervals.

Ten years later, he published the Third Law:

(IIl) The square of the period of the planet's revolution around the sun is proportional to the cube of the
semi-major axis of the elliptic orbit.

While the Polish astronomer Copernicus had made the ground-breaking proposal in 1543 that planets revolved
around the sun, he was unable to break completely from ancient Greek influences and believed that they did
$0 in circular orbits with constant speed. Kepler's discoveries not only turned the world to the investigation
of non-circular and non-uniform motions, they contributed directly to the development of calculus. It was
in order to understand Kepler's Three Laws better that led Newton to his theory of mechanics, for which
calculus was a prerequisite.

! The first part of this article appeared in the last issue of the Medley.
* Reader, the University of Hong Kong
3 Senior Lecturer, National University of Singapore
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Contemporarily, the ltalian physicist Galileo Galilei also played a key role in the development of calculus.
Basically, he initiated the “mathematization” of science. He believed that scientific investigation must start with
natural phenomena. From the intricacies of natural phenomena one extracts the basic concepts of matter and
motion. By using mathematics, new results can be deduced from these basic concepts, and the new results must
then be verified by laboratory experimentation. Thus mathematics is an inherent partner of science. To quote a
famous saying Galileo made in 1610: “The mysteries of the universe are all written in this great book in front
of us, and in order to understand it, we must first learn the language in which it is written ... this language is
mathematics.”

As a result of the Renaissance of the 15th century, Europe in the 17th century was imbued with the keen desire
to understand nature. This desire stimulated the thinking and widened the horizon of people. At the same time,
advances in industry and commerce brought new and pressing scientific and technological problems. Specifically,
these problems involved variable quantities which could not be tackled with the “static” mathematics of the time.
Naturally, these “dynamical” challenges attracted most of the first-rate minds of the day.

i

5. Differentiation and Integration

Let us first consider an important concept, namely, rate of change. For simplicity of exposition, let us take the
example of the rate of change of distance versus time - in other words, speed. First, we must distinguish
between two types of speed: average speed and instantaneous speed. Average speed is a simple concept: it is
the quotient of the distance covered in a certain time interval divided by the length of that time interval. But
what is often of more interest is instantaneous speed. For example, when a bullet hits a target, the average speed
of the bullet does not tell much, it is the instantaneous speed at impact which carries the force! How can we
understand instantaneous speed? Suppose a bullet is moving forward, and between the time instant T and
T+ 0.5 sec it has travelled 207.5 m. Then the average speed for this time period would be 415 m/s. If we shorten
the time of observation to between T and T + 0.1, and suppose the bullet has travelled 41.9 m in this time
interval, then the average speed would be 419 m/s. Repeating this now for the time interval between T and
T+ 0.01, we may observe that the distance covered becomes 4.199 m, giving an average speed of 419.9 m/s.
Keep on shortening the time interval this way, the average speed will tend towards a certain number. This
number should be the instantaneous speed of the bullet at time 7. You may argue: “If an instant is a time interval
of length zero, how can the bullet change position in an instant and how can there be any (instantaneous)
speed?”  Indeed, this is an archaic argument first put forward by the ancient Greeks in the 5th century BC. Let
us not get bogged down by its debate ~ anyone who has run into an object and got bruised would not doubt
the evidence of instantaneous speed.

The following principle was observed by Galileo: When an object falls freely from rest, the distance fallen is
directly proportional to the square of time. When a quantity varies with another quantity, this relationship is
called a function in mathematics. Let's denote by S the distance fallen, and by T the time in which the fall takes
place, then we say that Sis a function of T. If we measure S in metres and T in seconds, then Galileos principle
can be expressed as S = 5T° (5 is an approximate value). We may ask what is the object’s instantaneous speed
after 5 seconds. (Incidentally, the average speed for the first 5 seconds is 25 m/s as the object falls 125 m.) The
instantaneous speed can be worked out as follows: We observe that when T = 5, S = 125; and when

T=5+h S=55+h =125+ 50h + 5% (1)

Thus the average speed in this time interval of length h is 50 + 5h m/s. As h gets smaller and smaller, the
average speed tends to 50 m/s. Thus, the instantaneous speed of the free-falling object five seconds after its
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release is 50 m/s. Your attention is drawn to the following very important fact: It seems that the instantaneous speed
is obtained by putting h = 0, in (1); however, this does not concur at all with the reasoning we have just given. Indeed,
if we put the length of the time interval h = 0, then the difference S would also be

0, in which case when we calculate the average speed we would get 0/0, which

of course is meaningless.

Our consideration of the instantaneous speed above in fact contains the essential
concepts of calculus. In a more general setting, if y is a function of x, i.e., yis a ]
quantity which varies as x varies, then the instantaneous rate of change of y with h
respect to x is called the derivative of y and the method for its computation is called

differentiation. As another example, consider y being atmospheric pressure and x

being height, then the derivative of y with respect to x measures the instantaneous

9] X x+h

rate of change of atmospheric pressure with respect to height (note that here the

word “instantaneous” does not refer to a tiurlne instant but a height level). The usual Diagram 1
mathematical notation for this derivative is % , and geometrically it can be described

as follows: Consider the graph of the function y with respect to x in the usual x - y coordinate system. Note that
the average rate of change between x and x + h is the slope of the secant joining the points A and B as indicated

in Diagram 1.

As we shorten h repeatedly, the secant approaches the tangent R to the graph at x (see Diagram 1). Thus, the
instantaneous rate of change is the slope of the tangent.

Computing the slope of a tangent was an important area of research in the 17th century. Around 1630, the French
mathematician Fermat proposed a systematic method for their computation, which was basically the method we
described in the last paragraph. In this way, Fermat computed the slopes of the tangents to the curves y = X, y = X,
y=x', etc., and found that at the point x = a, they were 2a, 3’ 4a’ etc., respectively.

At the same time, Fermat made important contributions to the computation of the
area under a curve. He considered a lot of very narrow rectangles under the curve

~

(see Diagram 2). The sum of their areas would then give an estimate of the area
under the curve from below. As these rectangles became narrower and narrower (and
thus more and more of them would be needed), the sum of their areas would tend
to be the actual area under the curve. Using this idea, Fermat computed the areas
under the graphs y = X, y= X, y= X', etc., and found that between x = 0 and x = a,
they were a%/3, a'/4, a%/5, etc., respectively. This is in fact the fundamental concept

X | of integral calculus. At this point, the groundwork for differential and integral calculus

Diagram 2 had been laid.

Judging from Fermat's calculations, it is hard to believe that he was not already aware of the relationship between
differential and integral calculus. However, in the mathematical literature, the first to note the connection seems to
be the English mathematician Barrow, who was Newton’s teacher at Cambridge University. This was later clarified by
Newton and the German mathematician Leibniz, and is known today as the Fundamental Theorem of Calculus. Very
roughly, this theorem says that if we first integrate a function and then differentiate the integral, we recover the original
function. To be more precise, let f be a continuous function on the closed interval [a, b, and let

Fx) = I o d,

then f is the derivative of F. In fact, today, most people compute an integral by using this theorem - first, find the
indefinite integral (also called the primitive, which is a function whose derivative is the given one) for which there
is a host of methods, then evaluate it at the upper and lower limits and take the difference. For example, for f(x) = x,

an indefinite integral is x%/2, and thus

b b a
flxdx- 3 37
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_However, we must bear in mind- that this is a technique for computing an (definite) integral and is not its definition.

An (definite) integral is, by definition, the limit of an infinite sum (see explanations given in the last paragraph). It must
be pointed out that the integration technique using the Fundamental Theorem of Calculus is in practice rarely effective,
and in some cases even impossible as was demonstrated by mathematicians in the first half of the 19th century, except
for certain simple problems or textbook exercises! By formalizing these concepts, differential and integral calculus turn
out to be much more versatile than just computing speed or area.

6. The Work of Newton and Leibniz

When we mention calculus, the names of the Englishman Newton and the German Leibniz immediately come t(; mind.
These two outstanding scholars of the 17th century are accredited with the invention of calculus by most textbooks.
It is most unfortunate that their concurrent but independent founding of their own schools of calculus led to an ugly
plagiarism scandal, which resulted in a century of no, exchange between British and continental mathematicians.
Because of this, British mathematics did not advance for a century! Mathematicians must heed this historical lesson.
The most regrettable aspect of this dispute was that it was actually instigated by an “outsider”, the Swiss mathematician
de Duillier, who held a grudge against Leibniz. As it intensified, the dispute became a display of nationalistic bigotry,
and the protaganists could not escape involvement. In fact, earlier, Leibniz had very high esteem for Newton, and was
quoted as saying that Newton’s contribution to mathematics had been the better half of the sum of all before him.

This dispute of precedence is absolutely pointless as numerous scholars had made contributions to the developement
of calculus in the 17th century. It is fair to say that by the mid-17th century, all the groundwork had been prepared
and the time was ripe for calculus to make its grand entrance; Newton and Leibniz compiled the knowledge and put
on the final touches. This assessment does not in any way lessen the important contributions by these two great
mathematicians. We must bear in mind what era they lived in. Some people have called the 17th century “the age
of geniuses”. The “geniuses” came about because they exceeded others in observational powers, knowledge, diligence
and commitment. Thus they were able to make full use of the opportunities of their times to make the maximum
contributions. Newton had said: “If | have seen further than [others], it is because | have stood on the shoulders of
giants.” His secret of success was that he never stopped thinking. It was usual for him to work 18-19 hour days and
he had spent many sleepless nights in the laboratory.

Calculus without Newton and Leibniz is like the Trojan War without the wooden horse. In view of the fact that the
groundwork had been laid before, what then really were the contributions of these two great men?

First, they put calculus into a systematic framework. According to Newton, his work on calculus was done during the
period 1665-1666; however, distaste for publication led to the delay of its dissemination. His major publications
include De analysi per aequationes numero terminorum infinitas (completed in 1669 but published in 1711), Methodus
fluxionum et serierum infinitorum (completed in 1671 and published in 1742), De quadratura curvarum (completed
in 1676 and published in 1693). His magnum opus, though, is his treatise Philosophiae naturalis principia mathematica,
in which he expounded his theories of calculus as well as mechanics. This treatise was completed later than the three
mentioned above but was the first in print (1687), thanks to his good friend and fellow mathematician Halley, who
dug into his own pockets to see its publication through.

On the other hand, Leibniz “discovered” calculus independently in 1676, but published his findings earlier than
Newton. His first paper on differentiation appeared in a German journal in 1684, followed in 1686 by a paper on
integration. He had originally used the terms Calculus Differentialis and Calculus Summatorius, which the Swiss
mathematician James Bernoulli later changed to Calculus Integralis. This is the origin of the terminology in English.
Before Newton and Leibniz, calculus consisted of a collection of “clever tricks” proposed by many different people.
It was Newton and Leibniz who organized them into a systematic, widely-applicable discipline with standardized
notation. Before that, its use had been extemporaneous — every problem required a different “trick” and the hard work
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of many first-rate minds. We must thank Newton and Leibniz if only for this.

Their (especially Newton’s) second main contribution was that they brought “infinity” into the realm of mathematics.
Newton observed that the infinite sum could be viewed as an extension of ordinary algebraic operations. As an
example, his celebrated Binomial Theorem was an extension of the binomial theorem in algebra. For a natural

number N, it had been known that
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where [ r ]denotes the binomial coefficient which is the number of ways one can choose r objects out of N different
ones. For a number N which is not a natural number, Newton showed that
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Of course, today we can see that the formula (3) is an obvious generalization of (2) by writing out the binomial
coefficients. (Note that the illusion that the infinite sum (3) is merely a straightforward extension of the finite sum
(2) is fallacious.) However, this is far from the way of thinking during Newton’s time; he derived the formula (3)
while considering an integration problem. On the other hand, the discovery of this formula allowed him to compute
the derivative of x", and it was through this sort of connection that he finally came upon the Fundamental Theorem
of Calculus. The incorporation of “infinity” into mathematics broke the Hellenic tradition of avoiding infinite
processes and began a new chapter for mathematics.

In the subsequent two centuries, many advances in calculus had been made. Theorems upon theorems had been
discovered, leading to the solution of one practical problem upon another. But still, the logical foundation of
calculus was pitifully deficient. The anology is a barely-equipped commando team going deep into enemy territories,
taking one stronghold after another, while its supplies and back-up are nowhere in sight. Most people find this
phenomenon shocking as they believe that mathematics is a science in which logic and rigour reign supreme. The
18th century English mathematician de Morgan said: “The driving force of mathematical discoveries is not deduction
but imagination.” It was by the sheer courage of 18th and 19th century mathematicians that calculus became a
profound and versatile body of knowledge. While there had been minor mistakes, it verged upon a miracle that,
lacking a solid foundation, there had not been any major breakdown in more than two hundred years and that it
had not gone astray. In addition to the extraordinary intelligence and foresight of the master mathematicians, this was
due to the fact that, at the time, mathematics developed hand in hand with physics and astronomy. Mathematical
discoveries were “empirically verified” by scientific experiments, and at the same time, problems originating in
science prompted the development of mathematical theories. This partnership with science provided the strong dose
of confidence that mathematics needed.

In 1734, the English Bishop Berkeley wrote The Analyst in which he attacked calculus for its lack of logical
foundation. This tract was subtitled “Or a Discourse Addressed to an Infidel Mathematician [presumably Halley].
Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis are More Distinctly
Conceived, or More Evidently Deduced, than Religious Mysteries and Points of Faith.” From this, Bishop Berkeley’s
rotivation for attacking calculus was clear. However, from the mathematical point of view, he did raise numerous
issues which had to be addressed. As more and more such questions badly needed answers, mathematicians in the
mid-19th century realized the imperiousness of building a rigorous foundation for calculus. Thus the need to give
calculus a new lease on life gave birth to a vast subject in mathematics — mathematical analysis. w*
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