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Concept of Function — Its History and Teaching
by
Man-Keung Siu

Objective

In the last century, Felix Klein strongly advocated an emphasis on the function con-
cept in teaching as a unifying idea permeating all mathematics. How basic is the func-
tion concept? We shall try to trace its development and attempt to incorporate this
mathematical-historical vein into the teaching of mathematics at various levels, from sec-
ondary school to university. It is hoped that, by doing so, not only can the understanding
of this important concept be enhanced but a sense of history can be imparted to a wider
audience. With this in mind, instead of giving a comprehensive historical account /analysis,
we discuss its implications in learning/teaching. To render this article more usable as a
teaching-aid we adopt a format by which questions for discussion are woven into the text
and some illustrative examples are compiled as exercises at the end. There is no dearth
of relevant scholarly material on the topic in general. I shall list only those on which I
have drawn in REFERENCES at the end. Some of them are not specifically referred to
in the text, but they have been so helpful that I record them if only to acknowledge my
appreciation. (I also wish to express my gratitude to my colleagues Israel Kleiner and Abe
Shenitzer for providing me with translation of [29], {31].)

‘What Is a Function?

It is of interest to start with three definitions as a ‘warm-up’. The first one by Johann
Bernoulli (1718) [41, p.72] is classical, vague but more or less concrete. The third one by
Patrick Suppes (1960) {44, p.59 and 86] is modern, precise but formidable. The second
one by Edouard Goursat (1923) [41, p.77] lies somewhere in between.

(1) One calls here Function of a variable a quantity composed in any manner whatever

of this variable and of constants.

(2) The modern definition of the word function is due to Cauchy and Riemann. One says
‘that y is a function of z if to a value of z corresponds a value of y. One indicates this

correspondence by the equation y = f(z).
(3) Ais a relation «» (Vz)}(z € A — (Fy)(F2)(z =< y,2 >)).

f is a function « f is a relation & (Vz)(Vy)(V2)(zfy & zfz — y = 2).

What did Bernoulli mean by “in any manner whatever” in (1)?

In what way do functions depicted in (1) and (2) differ? What advantages does (3) have
over the other two definitions?

How well do these definitions fit with your intuitive idea of a functional dependence?
How did the notion of a function evolve from that depicted in (1) to that depicted in (3)?

Browse over books such as:

o M. Abramowitz, I.A. Stegun, “Handbook of Mathematical Functions — With For-
mulas, Graphs, and Mathematical Tables”, National Bureau of Standards, 1964 (and
subsequent revisions),

e J. Spanier, K.B. Oldham, “An Atlas of Functions”, Hemisphere Publishing Corpora-
tion, 1987,

o American Institute of Physics, “American Institute of Physics Handbook”, McGraw
Hill, 1957 (and subsequent editions),

and think about the following questions.

Is a function a formula (analytical expression)? a graph (curve)? a table of values (corre-
spondence)? a law of dependence?

How well or how inadequate do the descriptions above apply to a function? What else
does a function signify? Nikolai Nikolaievich Luzin said that no single formal definition
can include the full content of the function concept [31]. Comment on this.

How did such vague but useful intuitive ideas of a function contribute to the emergence
and evolution of its concept in the history of mathematics?

Read pp.62-65 of J.E. Littlewood’s “A Mathematician’s Miscellany” (Methuen, 1953) and
comment.

When Did the Function Concept Originate?

Authors differ on the origin of the function concept. Some samples of opinion are

shown below.

e E.T. Bell: It may not be too generous to credit them [ancient Babylonians] with
an instinct for functionality; for a function has been succintly defined as a table or a

correspondence [1, p.32).

s Q. Pedersen: But if we conceive a function, not as formula, but as a more general
relation associating the elements of one set of numbers (viz, points of time 23, 3, 23,
. ) with the elements of another set (for example some angular variable in a planetary

system), it is obvious that functions in this sense abound throughout the Almagest.
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Only the word is missing: the thing itself is there and clearly represented by the many
tables of corresponding elements of such sets [37, p.36].

e W. Hartner, M. Schramm: The question of [the] origin and development [of the
concept of function] is usually treated with striking one-sidedness: it is considered
almost exclusively in relation to Cartesian analysis, which in turn is claimed (erro-
neously, we believe) to be a late offspring of the scholastic latitudines formarum [20,
p.215]. )

o AF.Monna: The notion of a function has no place in Greek mathematics [35, p.58].

e AP. Youschkevitch: ... the mathematical thought of antiquity created no general
notion of either a variable quantity or of a function. ... Occurring some time after the
downfall of antique society, the new flowering of science in countries of Arabic culture
did not, as far as is known, bring about essentially new developments in functionality.
... The notion of function first occured in a more general form three centuries later
[in the 14th century], in the schools of natural philosophy at Oxford and Paris. ...
still I do not maintain that this role {played by ideas of both the Oxford and the Paris
schools of natural philosophy| was dominant, the more so as a new interpretation of
functionality came to the fore in the 17th century. ... As a consequence of all this, a
new method of introducing functions was brought into being, to become for a long time
the principal method in mathematics and, especially in its applications [46, pp.44, 45,
50, 51].

e C. Boyer: The function concept and the idea of symbols as representing variables
does not seem to enter into the work of any mathematician of the time [of Descartes
and Fermat] [4, p.156].

e D.E. Smith:  After all, the real idea of functionality, as shown by the use of co-
ordinates was first clearly and publicly expressed by Descartes [42, p.376].

e F. Cajori: Some of the mathematicians of the Middle Ages possessed some idea of a
function. ... But of a numeric dependence of one quantity upon another, as found in

Descartes, there is no trace among them [5, p.127].

e M. Kiine: From the study of motion [by Galileo] mathematics derived a fundamental
concept that was central to practically all of the work for the next two hundred years

— the concept of a function or a relation between variables [25, p.338].

In view of the remarks above the following questions may be instructive:

In primary/junior secondary school a student will encounter mathematical tables. How
can these help to instil the notion of functionality?

How far is the ‘instinct for functionality’ embodied in tables from the notion of functional-

ity? What is missing? (Would one suspect a formula like sin(z+y) = sinz cos y+coszsiny
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by staring at a sine/cosine table?)
Is there similarity between tables and the notion of correspondence which is stressed in
the modern definition of function?
How much does (and actually did, in the past) the study of nature influence and benefit
the development of mathematics?

From 14th Century to 18th Century

Quantitative description of (physical) change, e.g. velocity and acceleration, was em-
bodied in the doctrine of latitude of forms developed by Nicole Oresme (“De configu-
rationibus”, ¢.1350). Although this dim idea of a functional dependence exerted minor
influence later, it indicated: (i) quantitative laws of nature as laws of functional depen-
dence, (ii) conscious use of general ideas about independent/dependent variables, (iii)
graphic representation of a functional dependence. For more detail, read chapter 6 of [7].

According to Alistair C. Crombie [9, vol. II, section 1.4], this idea of functional rela-
tionships was developed without actual measurement and only in principle. Youschkevitch
ascribed this to a lack of computational technique, “an obvious disproportion [developed]
between the high level of abstract theoretical speculations and the weakness of mathe-
matical apparatus” [45, p.49]. We can ask: What moral do we gain from this historical

incident concerning the balance of concepts and technical skills in our teaching?

Further impetus came from the study of motion by Johannes Kepler and Galileo
Galilei in the early 17th century. By that time, arithmetic (extension of the concept
of numbers) and algebra (symbolic algebra) had also developed to a stage which made
possible the wedding of algebra and geometry by René Descartes and Pierre de Fermat,
with the invention of calculus by Issac Newton and Gottfried Wilhelm Leibniz to follow.
As a consequence of all these events, time was ripe for the introduction of the notion of
function.

Let us look at the notions of function by Descartes and Fermat.

e P. Fermat {“Ad Locos Planos et Solidos Isagoge”, 1629; published in 1679): As soon
as two unknown quantities appear in a final equation, there is a locus, and the end

point of one of the two quantities describes a straight or a curved line [46, p.52].

o R. Descartes (“La Géométrie”, 1637):  If then we should take successively an infinite
number of different values for the line y, we should obtain an infinite number of values
for the line z, and therefore an infinity of different points, such as C, by means of

which the required curve could be drawn [11, p. 34].




Hermann Hankel commented: “

. modern mathematics dates from the moment
when Descartes went beyond the purely algebraic treatment of equations to study the
variation of magnitudes that an algebraic expression undergoes when one of its generally
denoted magnitudes passes through a continuous series of values” [2, p.8]. Friedrich Engels
also said: “The turning point in mathematics was Descartes’ variable magnitude. With
that came motion and hence dialectics in mathematics, and at once also of necessity the

differential and integral calculus, which moreover immediately begins, ... * [14, p. 199].

Infinitesimal calculus arose from geometric and kinematic problems. Although in the
17th century it was geometric rather than analytic in nature, and which was not yet a
‘calculus of functions’ as we know it to-day, it did however induced further study into the
notion of function by providing further examples of functions, cloaked in various forms such
as (i) fluent by Newton, (ii) abscissa, ordinate, subtangent, subnormal, etc. by Leibniz,
(1i1) expansion of function into infinite power series by Nicholas Mercator, James Gregory
and Newton. '

The most explicit definition of the function concept in the 17th century was given by
Gregory (Vera Circuli et Hyperbolae Quadratura, 1667): “We call a quantity composed
of other quantities if that quantity results from those other quantities by addition, subtrac-
tion, multiplication, division, extracting of roots or by any other imaginable operations”
[46, p.58]. Gregory referred to a quantity obtained through the first five operations as
“composed analytically” , where the word ‘analytic’ was used in the sense of Francis Vieta
in his “In Artem Analyticem Isagoge” of 1591 [43, pp. 75-76]. The sixth operation meant
some rather general Infinite process.

The word ‘function’ first appeared in a manuscript of Leibniz (Methodus tangentium
inversa, seu de functionibus, 1673): “other kinds of lines which, in a given figure, perform
some function.” [46, p.56]. Further on in the same manuscript, the term ‘function’ took
on a new meaning as a general term for various geometric quantities associated to a
variable point on the curve. (This also appeared in Leibniz’ later articles in 1692 and
1694. The word was also used in the same sense by Jakob Bernoulli in 1694.) In a letter
dated September 2, 1694 of Johann Bernoulli to Leibniz, in whic2h Bernoulli expanded the
rlzf—gg-i- 1.;.3z3371:-—---,he said that “by
n 1 understand a quantity somehow formed from indeterminate and constant [quantities]”
[46, p.57]. In a letter dated July 29, 1698 of Leibniz to Johann Bernoulli, he said that

“] am pleased that you use the term function in my sense.” The first explicit definition

integral / ndz in an infinite series nz—

of a function (as an analytical expression) was by Johann Bernoulli (see the definition in
the section “What Is a Function?”). Bernoulli used the notation ez, without brackets.
Brackets, as well as the sign f for function were due to Euler in his article of 1734 [46,
p.60].

In the preface to Book I of his “Introductio in analysis infinitorum” (1748), Leonhard
Euler claimed that mathematical analysis is the general science of variables and their
functions [15, Book I, p.vi], thereby endowing the function concept a central prominence in
analysis. His entire approach was algebraic and no longer geometric. Concerning function
he defined:  “l. A constant quantity is a determinate quantity keeping the same value
permanently. ... ... ... 2. A variable quantity is an indeterminate or universal quantity
which comprises in itself all determinante values. ... ... ... 4. A function of a variable
quantity is an analytical expression composed in any manner from that variable quantity
and numbers or constant quantities.” [15, Book I, pp.2-3]. Note the use of: (i) analytical
expression (with power series as a universal form), (ii) generality of the variable. A
consequence was a tenet in 18th century mathematics on ‘analytical continuity’: If two

functions agree on an interval, they agree everywhere {29, section 1.9].

In Book II of “Introductio ... ” Euler extended his notion of function to include the
so-called “discontinuous” functions. Care must be taken not to confuse Euler’s use of the
term “continuous” with that we know to-day (due to Bernard Bolzano and Augustin-Louis
Cauchy). (See the section “Fourier Series and the Function Concept”). A function (curve)
is E-continuous if it is given by a single analytical expression through-out. A function
(curve) is E- discontinuous (also called mized or irregular by Euler) if it is given by two or
more analytical expressions on different intervals [15, Book II, p.6]. (Later, Euler included
also curves which were drawn freehand, i.e. the analytic expression changed from point to
paint, so to speak.) [30, p.301; 46, p.68].

Towards the end of the 18th century, Joseph Louis Lagrange and Sylvestre-Francois

Lacroix defined the concept of a function in a seemingly more general way.

e J.L. Lagrange (“Théorie des fonctions analytique”, 1797):  One calls function of one
or several quantities any expression for calculation in which these quantities enter in
any manner whatever, mingled or not with some other quantities which are regarded
as beilig given and invariable values, whereas the quantities of the function can take all
possible values. ... We denote, in general, by the letter f or F placed before a variable
any function of this variable, that is to say any quantity depending on this variable

and which varies with it together according to a given law [41, p. 73].

» S.F. Lacroix (“Traité du calcul différentiel et du calcul intégral”, 1797):  Every quan-
tity whose value depends on one or more other quantities is called a function of these
latter, whether one knows or is ignorant of what operations it is necessary to use to
arrive from the latter to the first [2, p. 36].

But Lagrange’s and Lacroix’s apparently general definitions of a function are in fact still
‘Fulerian’. Lacroix had the implicitly given functions in mind when he said “whether one
knows ... to the first”. Lagrange even showed that any given function can be expanded

as a power series. ¢ Algebraification’ of analysis was at its height!
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It may be of interest to look at the Chinese terminology for function. In 1859 Li Shan-
lan ( & £ # ), together with Alexander Wylie, translated “Elements of Analytical
Geometry and of Differential and Integral Calculus” by Elias Loomis (1850). The word
‘function’ was translated as p& #{ (literally meaning ‘quantity that contains’) with
the explanation that “f the variable quantity contains another variable quantity, then the
former is a function ( & 8 ) of the latter” [28, pp. 207-208]. Subsequent illustra-
tion indicates that the term is to be understoood in the Eulerian sense of an analytical
expression.

What do we learn from this piece of historical development about the understanding
of the function concept? Are we retracing the steps in learning the function concept in
school?

Controversy About the Vibrating String

The main impulse for further development of the function concept in the 18th century
came from a controversy over a problem in mathematical physics, viz. the motion of a tense
string fixed at two ends when it is made to vibrate. (This problem actually turned out to
play a central role in the development of the whole of analysis.) In a nutshell, the dispute
concerned the type of functions which could be allowed in analysis from the standpoint of a
mathematician, a physicist, and a then emerging type of scholar: a mathematical physicist.
For additional reading the following are recommended: [10; 39; 43, pp. 351-368].

The standpoint of a mathematician was represented by the work of Jean le Rond
d’Alembert in 1747. He said, “I propose to show in this paper that there exist an infinity of
curves different from the elongated cycloid [companion of an extremely elongated cycloid]
which satisfy the problem under consideration.” [43, p. 352]. d’Alembert deduced from
the equation describing the motion of the string

%y 8%y
the solution y(x,t) =.f(z+t)+ f(z —t). The only restrictions he imposed on the function
f were that it be periodic, odd and everywhere (twice) differentiable.

The standpoint of a mathematical physicist was represented by the work of Euler in

1748 and later the work of Lagrange in 1759. Euler re-derived the wave equation

%y %y
—a?‘ :Cz'a?, y(O,t) :y(L,t):O

and the functional solution, formally identical with d’Alembert’s. He claimed that f can

be deduced solely from initial conditions. If Y (z), V (z) are the initial position and velocity
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of the string, then

zfot

y(et) = LY (et et) + ¥ (o~ ct) + %/ +t V(s)ds] .
z—c
Further, Euler proclaimed that Y (z), V (z) need not be functions in the ordinary sense, but
may be any curve drawn frechand (e.g. the ‘plucked’ string, the ‘snapped’ string). He said
(“Institutiones calculi differentialis”, 1755):  “If, therefore, z denotes a variable quantity
then all the quantities which depend on z in any manner whatever or are determined by it
are called its functions, ... .” [41, p.73] However, throughout the book, only E-continuous
functions were considered! Lagrange discretized the problem as that of a loaded string
and found

L w T e
y(z,t) = %/0 dXY (X) [sin (TX) sin (T) cos (Tt)

-+ sin (#) sin (22—1) cos (Zﬂ-TCt) Ao ]

. L 3 L we
+ ;2;/() dXV(X) [sin (—fl)g) sin (T) cos (Tt)

o+ 1 sin (#) sin (2—;}{) cos (27rCt) 1. ]

2 L

One can ask: How close was Lagrange to the Fourier series? ' Why did he miss it? {2, pp.
30-33; 10, p. 36].

The standpoint of a physicist was represented by the work of Daniel Bernoulli in 1753.
He said: “I do not the less esteem the calculations of Messrs. d’Alembert and Euler, which
certainly contain all that analysis can have at its deepest and most sublime, but which
show at the same time that an abstract analysis which is accepted without any synthetic
examination of the question under discussion is liable to surprise rather than enlighten us.
It seems to me that we have only to pay attention to the nature of the simple vibrations
of the strings to foresee without any calculation all that these two great geometers have
found by the most thorny and abstract calculations that the analytical mind can perform”
[43, p. 361]. Bernoulli argued that the solution must be a sum of the fundamental and

higher harmonics (principle of superposition)

. [Tz wct . [ 27T\ 27ct
y(z,t) = Ay sin <—E) cos <T> + Agsin ( 7 > cos (T) +



Fourier Series and the Function Concept

Jean Baptiste Joseph Fourier developed in his “Sur la propagation de la chaleur” of
1807 the theory of the series which to-day bears bis name in his investigation of heat
conduction that won him a prize from Institut de France in 1812. His theory was made
more widely known in a later treatise (“Théorie Analytique de la Chaleur”, 1822). For
more details on the subject, read [27]. The main idea is as follows.

Sol 3%y B%u . i _ _ _

olve —— + Froe 0 with conditions u(0,y) = u(r,y) =0, u(z,0) = ¢(z).
o0

u(z,y) = Y bpe~™sinng will be a solution when by, bz, bs, ... are so chosen that
n=1

p(z)= Y bpsinng for z lying between 0 and 7.
n=1

Fourier’s first heuristic approach was to assume ¢(z) to be an odd function expanded
into its Taylor series and to compare it with the original series with sin nz expanded also
into an infinite series, thus obtaining an infinite system of linear equaﬁions. He solved the
truncated system and passed to the limit, and obtained b, = z ¢(z) sin nzdz . He
then pointed out that this formula can be ‘yerified’ by the now st:ndard procedure for
evaluating Fourier coefficients making use of the orthogonality of the sine function on the
interval [0,] [13, pp. 304-306].

Physical constraints in the vibrating string problem and in the heat conduction prob-
lem differ in nature. The shape of the string (geometry) is visible, while temperature
distribution (algebra) is not. This may explain the freeing from geometric perception of a
function and the emergence of a general notion of function in the 19th century. Concerning
function, Fourier defined: “In general, the function f () represents a succession of values
or ordinates each of which is arbitrary. An infinity of values being given to the abscissa z,
there are an equal number of ordinates f(z). ... We do not suppose these ordinates to be
subject to a common law; they succeed each other in any manner whatever, and each of
them is given as if it were a single quantity.” [41, p. 73]. Subsquent investigation into the
Fourier series representation of a function led to the breakdown of the ‘Bulerian’ notion
of function. Although Fourier’s definition sounds like our modern notion, it appears that
he only had ‘discontiguous’ functions (see Question 4 in EXERCISES for its definition) in

mind. Still, Fourier’s work was instrumental in the following aspects:

e representation of an ‘arbitrary’ function by an analytical expression (recall Daniel

Bernoulli’s claim),
o renewed emphasis on analytical expression,
e re-examination of the function concept,

o did away with the tenet on ‘analytical continuity’ held by 18th century mathematicians.

In his “Cours d’analyse” of 1821 Cauchy defined: “When the variable quantities are
linked together in such a way that, when the value of one of them is given, we can infer the
values of all the others, we ordinarily conceive that these various quantities are expressed
by means of one of them which then takes the name of independent variable; and the
remaining quantities, expressed by means of the independent variable, are those which
one calls functions .of this variable.” [2, p. 104]. Again, Cauchy’s definition is in practice
more limited than it sounds. Immediately after the definition, he classified functions into
‘simple functions’ and ‘compound functions’. The first group consists of eleven functions,
viz

atz, a—z, az, %, z®, A%, logz, sinz, cosz, arcsinz, arccose,

where A is a non-negative number and a = +A, while the second group consists of functions
made up of the ‘simple functions’ by composition. In chapter 8 when he came to complex
function, he said: “when the constants or the variables included in a given function are
assumed imaginary after first having been considered real, ... » [29, section 4.2]. Cauchy
still had ‘Eulerian’ notion of function in mind. But he did mentioned: “As for methods,
1 have sought to give them all the rigour which exists in geometry, so as never to refer
to reasons drawn from the generalness of algebra.”[2, p. 102] In the same text, Cauchy
also defined the notion of continuity as we know it to-day: “ ... the functon f(=z) will
be a continuous function of the variable z between two assigned limits if, for each value
of z between those limits, the numerical value of the difference f(z+ a) — f(z) decreases
indefinitely with e.” (Bolzano gave the same definition in slightly different and more
precise language in 1817.) (18, p. 87; 35, p. 62].

It is interesting to ask the following questions: Why was the ‘Eulerian’ concept of
function maintained so long after the realization that it was inadequate? What lesson do
we learn from this experience? (If only a particular form is used, students unconsciously
accept that particular form as the definition. We witness the same psychological effect in
mathematicians of the 17th/18th centuries. A new concept receives recognition only when
it is relevant to current usage. This is as true in research as in teaching. What would a

student think of a function if all he needs to work with are algebraic expressions?)

Function Concept in the 19th and 20th Centuries

In a letter to his teacher Christoffe Hansteen dated March 29, 1826, Niels Henrik
Abel complained: “It [analysis] lacks at this point such plan and unity that it is really
amazing that it can be studied by so many people. The worst is that it has not at all
been treated with rigour. There are only a few propositions in higher analysis that have
been demonstrated with complete rigour. Everywhere one finds the unfortunate manner

of reasoning from the particular to the general, and it is very unusual that with such a
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method one finds, in spite of everything, only a few of what may be called paradoxes. It
is really very interesting to seek the reason. In my opinion that arises from the fact that
the functions with which analysis has until now been occupied can, for the most part, be
expressed by means of powers. As soon as others appear, something that, it is true, does
not often happen, this no longer works and from false conclusions there flow a mass of
incorrect propositions that link together.” [2, pp. 86-87].

Mathematicians in the 19th century sought to providev new rigour for analysis. This
began with the work of Carl Friedrich Gauss, Abel, Bolzano, Cauchy, Peter Gustav Lejeune
Dirichhlet and was furthered by Karl Welerstrass, Richard Dedekind, Georg Friedrich
Bernhard Riemann, Georg Cantor. Many factors came together to bring about this new
attitude. (See, for example, [17].) This trend brought with it a new conception of function

as the following sampling shows.

e N.I Lobatchevsky (“On the convergence of trigonometric series”, 1838):  General
conception demands that a function of = be called a number which is given for each z
and which changes gradually together with z. The value of the function could be given
either by an analytical expression, or by a condition which offers a means for testing
all numbers and selecting one of them; or lastly, the dependence may exist but remain
unknown [46, p. 77].

e P.G.L. Dirichlet (ﬁber die Darstellung ganz wilkiirlicher Funktionen durch Sinus- und
Cosinusreihen, 1837):  One thinks of a and b as two fixed values and of = as a variable
quantity that can progressively take all values lying between a and b. Now if to every
z there corresponds a single, finite y in such a way that, as z continuously passes
through the interval from a to b, y = f(z) also gradually changes, then y is called a
continuous function of z in this interval. It is here not at all necessary that y depends
on z according to the same law throughout the entire interval; indeed one does not
even need to think of a dependence expressible by mathematical operations. Presented
geometrically, that is with z and y thought of as the abscissa and ordinate, a continuous
function appears as a connected curve which for every value of the abscissa contained
between @ and b has only one point. ... As long as one has determined the function
for only a part of the interval, the manner of its extension to the rest of the interval

remains completely arbitrary (2, p. 197)].

e G.F.B. Riemann (Grundlagen fiir eine allgemeine Theorie der Funktionen einer
verénderlichen complexen Grosse, 1851)  Let us suppose that z is a variable quantity
which can assume, gradually, all possible real values then, if to each of its values there
corresponds a unique value of the indeterminate quantity w, w is called a function of z;
and if, as z continuously passes through all the values lying between two fixed values,
w also continuously changes, then this function is said to be continuous within this

interval. ... Obviously, this definition establishes, entirely, no law between the single
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values of the function as, if this function has been defined for a certain interval, the
manner of its continuation outside of the interval is completely arbitrary. {2, p. 215;
41, p. 75]

o H. Hankel (Untersuchungen iiber die unendlich oft oszillierenden und unstetigen Funk-
tionen, 1870):  yis called a function of z when to every value of the variable quantity
z within a certain interval there corresponds a definite value of y, no matter whether
y depends on z according to the same law in the entire interval or not, or whether
the dependence can be expressed by a mathematical operation or not. ... This purely
nominal definition, which in the following I will associate with the name of Dirichlet
because it reverts fundamentally to his works on Fourier series which clearly demon-
strated the indefensibility of all the older concepts, is however no longer sufficient for
the needs of analysis, in that functions of this kind do not possess general properties,
and with this all relationships between the values of the function for various values of
the argument fall to the wayside. [2, pp. 197-198]

Dirichlet (Sur la convergence des $eries trigonométriques qui servent & représenter
une fonction arbitraire entre les limites données, 1829) proved that if a function f has
only finitely many discontinuities and finitely many maxima and minima in (—L, L), then
F is represented by its Fourier series on (—L, L). In proving this one has to have a clear
understanding of the function concept. Dirichlet was the first to take seriously the notion
of a function as an arbitrary correspondence. As an example of a function that does not
satisfy his conditions, he gave the celebrated ‘Dirichlet function’: f(z) = ¢ if = is rational
and f(z) = d if z is irrational, ¢ # d.

Riemann (Uber die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe,
written in 1854) further investigated the problem on representation by use of Fourier series
and in the course of this investigation developed his theory of integration. As an important
example he gave an integrable function which is not continuous, indeed, with infinitely

many points of discontinuity in any (small) interval [19, pp. 157-158]:

fz) = ¢(x) + $(22) /2% + ¢(32) /3% + ---  where ¢(x) is the

difference between z and its nearest integer (zero if = is half-way).

Riemann’s work marked the beginning of a theory of the mathematically discontinuous.
According to Thomas Hawkins, ... the history of integration theory after Cauchy is
essentially a history of attempts to extend the integral concept to as many discontinuous
functions as possible; such attempts could become meaningful only after the existence of

highly discontinuous functions was recognized and taken seriously.” [22, p. 3]
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In 1872 Weierstrass startled the mathematical community with his famous example

of a continuous nowhere-differentiable function:

f(z)= E b" cos(a™nz)

where a is an odd integer, b a real number in (0,1) and ab > 1+ 3x/2 [25, p. 956].

A host of such “pathological” examples of function brought about a change of em-
phasis in the late 19th century. Luzin described this change as: “ ... the main difference
between methods of studying functions within the framework of mathematical analysis and
theory of functions is that classical analysis deduces properties of any function starting
from the properties of those analytical expressions and formulae by which this function is
defined, while the theory of functions determines the properties of function starting from

that property which a priori distinguishes the class of functions considered.” [46, p.81].

But not every mathematician was happy about this change. Henri Poincaré had said:
“Formerly, when a new function was invented, it was in view of some practical end. To-day
they are invented on purpose to show our ancestors’ reasonings at fault, and we shall never
get anything more than that out of them. If logic were the teacher’s only guide, he would
have to begin with the most general, that is to say, with thé most weird, functions. He
would have to set the beginner to wrestle with this collection of monstrosities.” [38, pp.
125-126]. This prompts us to ask: What role is played by examples/counter-examples in
the development of mathematics? in the teaching and learning of mathematics? In light
of Poincaré’s saying, are ‘pathological’ examples good or bad in pedagogy? (But certainly,

history can provide the motivation and a sense of history will help.)

Although Euler declared in Book I of “Introductio ... ” that the most general form
of a E-continuous function is a power series, later he expressed his confidence in the
fact that his E-discontinuous functions are not generally analytic. Dirichlet proved in
1829 that certain continuous functions can be expanded as its Fourier series. It was then
believed that all continuous functions can be so expanded until Paul du Bois-Reymond
proved in 1876 that there exists a contimuous function whose Fourier series diverges at a
point. However, in 1885, Weierstrass proved his celebrated theorem that every continuous
function is the limit of a uniformly convergent sequence of polynomials. Ulisse Dini posed
(“Fondamenti per la teorica della funzioni di variabili reali”, 1878) the question “if every
function can be expressed analytically, for all values of the variable in the interval, by a
finite or infinite series of operations on the variable.” René Louis Baire (Sur les fonctions
de variables réelles, 1899) called the class of continuous functions class 0; and for any
countable ordinal «, the class of functions not in any of the preceding classes, but are

representable as limits of sequences of functions in preceding classes class o. For example,

13

the Dirchlet function is of class 2, viz.

1 if z is rational
x(z) = mhm ”l_i_,néo(cos mlwz)’" = { rona

—>00 0 if z is irrational.

Henri Lebesgue (Sur les fonctions représentables analytiquement, 1905) showed further
that: (i) a function is analytically representable if and only if it is of Baire class & for
some countable a, (ii) for every countable a, there exists a function of Baire class a; a
function is of Baire class a for some countable a if and only if it is Borel-measurable,
(iii) there exists a measurable function that is not of any Baire class, i.e. not analytically
representable.

This investigation led to discovery of logical /philosophical difficulties inherent in the
universal, hence nonalgorithmic, definition of a function. Hermann Weyl, in his “Philoso-
phie der Mathematik und Naturwissenschaft” of 1927 said: “Nobody can explain what
a function is, but that is what really matters in mathematics: “A function f is given
whenever with every real number a there is associated a number b (as for example, by the
formula b = 2a + 1). b is said to be the value of the function f for the argument value
@”. Consequently, two functions, though defined differently, are considered the same if,
for every possible argument value a, the two corresponding function values coincide.” [45,

p.8]. For more detail, read [12; 35; 36, section 2.3].

Function As a Correspondence

With the impact of Cantor’s set theory and development in algebra, the notion of
a function as a mapping became dominant towards the end of the 19th century. Let us
sample a few definitions in this light.

o R. Dedekind (“Was sind und was sollen die Zahlen”, 1887): By a mapping of a
system S a law is understood, in accordance with which to each determinate element
s of S there is associated a determinate object, which is called the image of s and is
denoted by ¢(s); ... [41, p. 75].

e G. Peano (Sulla definizione di funzione, 1911}): ... the function is a special relation, by
which to each value of the variable there corresponds a unique value. One can define

in symbols;

Functio = Relatio Nu [y; zeu - z; zeu -D,,,y,, -y=ug] [41,p.76].

C. Carathéodory (“Vorlesungen iiber reelle Funktionen”, 1917):  The modern concept

of function coincides with that of a correspondence [6, p. 71].

F. Hansdorff (“Grundziige der Mengenlehre”, 1914; “Mengenlehre”, 1937):
Ordered pairs make possible the introduction of the concept of function, ... [21, p.
16].
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o K. Kuratowski (“Topologie”, 1933; “Introduction to Set Theory and Topology”, 1961):
Let X and Y be two given sets. By a function whose arguments run over the set X
(domain) and whose values belong to the set Y (range) we understand the subset f of
the cartesian product X X Y with the property that for every = € X there exists one
and only one y such that < z,y >€ f. The set of all these functions f is denoted by
YX. We usually write y = f(z) instead of < z,y >€ f [26, p. 47].

o N. Bourbaki (“Théorie des ensembles” (fascicule de résultats), 1939): Let E and F
be two sets, which may or may not be distinct. A relation between a variable element
z of E and a variable element y of F is called a functional relation in y if, for all z € E,
there exists a unique y € F which is in the given relation with z. We give the name
of function to the operation which in this way associates with every element ¢ € E
the element y € F which is in the given relation with z; y is said to be the value of
the function at the element z, and the function is said to be determined by the given

relation. Two equivalent functional relations determine the same function [3, p. 351].

The afore-mentioned definitions all have their basis in set theory. Since the 1960’s
there has been considerable discussion of a foundation for category theory (and for all of
mathematics) not based on set theory. The notion of function, in terms of composition
of functions, is axiomatized into a primitive term. It is interesting to note that this is
one example that a notation (representing a function by an arrow in topology by William
Hurewicz in about 1940) led to a concept (category theory, by Samuel Eilenberg and
Saunders MacLane in 1942) [32, p. 29]. For more detail, read [32, pp. 398-402].

In view of the development discussed above, it is instructive to ask: How can we
motivate the (modern) abstract definition of a function in teaching mathematics (or even,
how much should we teach) when most students feel that the classical definition is good
enough? Frederick Rickey cites this page of history on a formal definition of function as
an “example of how a knowledge of the history of mathematics indicates what we should
not teach” [40]. Comment on this.

Generalized Function

Euler had introduced his E-discontinuous functions for physical reasons. Later he
stressed that these inevitably emerged in solving partial differential equations. He had the
vision of the development of a calculus of E-discontinuous functions (Eclaircissemens sur
le mouvernent des cordes vibrantes, 1766):  “But if the theory [of the vibrating stxing]
leads us to a solution so general that it extends to all discontinuous as well as continuous
figures, one raust admit that this research opens to us a new road in analysis by enabling

us to apply the calculus to curves which are not subject to any law of continuity, and if
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that has appeared impossible until now the discovery is so much more important. ” [30,
p- 303]. In a second memoir (sur le mouvement d’une corde qui au commencement n’a
été ébranlée que dans une partie, 1767) he also urged others to work on these problems:
“This part, of which we so far know barely the first elements, certainly deserves the united
efforts of all geometers for its investigation and development.” {30, p. 304]. According to
Jesper Liitzen, this project was completed a little less than two centuries later: “All the ad
hoc definitions of generalized solutions from the first half of this century were incorporated
in the theory of distributions created by L. Schwartz during the period 1945-1950 as a
result of his work with generalized solutions to the polyharmonic equation. The theory of
distributions probably constitutes the closest approximation to Euler’s vision of a general
calculus one can obtain, for in that theory any generalized function is infivitely often
differentiable.” {30, p. 305].

Near the end of the last century Oliver Heaviside (On operations in physical mathe-
matics, 1892/93) had the creative imagination to differentiate the function

1 ifz>0
flz)=4q1/2 fz=0
0 ifz<0

to yield the impulse ‘function’

E(z):{o fr#o

oo fz=0.

The latter was made famous when Paul Adrien Maurice Dirac (“The Principles of Quan-
tum Mechanics”, 1930) introduced it as a convenient notation in the mathematical formu-
lation of quantum theory. What is important are not the values assumed by 6 at z, but
rather the way & and its derivatives operate on functions. It took another 15 to 20 years
for mathematicians to discover the mathematical foundations of a correct formulation of
the definition and properties of such ‘functions’ as the ‘Dirac delta-function’. Laurent
Schwartz began publishing his researches on generalized functions in 1944, subsequently
developed fully in his treaties “Théorie des Distributions” (1950/51). A distribution is a
continuous linear functional on a space D of infinitely differentiable functions (called ‘test

functions’) that vanish outside some closed interval. For more detail, read [23].

“Eadem Mutata Resurgo”

Anthony Gardiner likens the evolution of the function concept to a “creative tug-
of-war” between two mental images: the geometric and the algebraic [16, p. 256]. Israel
Kleiner adds a third — the “logic’ (correspondence) — coming in subsequently [24, p. 282].
What are the highlights of this ‘tug-of-war’ in the evolution of the function concept?
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What implications in teaching can we learn from this ‘tug-of-war’, in view of the following
saying of Richard Courant: “The presentation of analysis as a closed system of truths
without reference to their origin and purpose has, it is true, an aesthetic charm and
satisfies a deep philosophical need. But the attitude of those who consider analysis solely
as an abstractly logical, introverted science is not only highly unsuitable for beginners but
endangers the future of the subject; ... ” [8, vol. I p. vi|?

At the end of his paper [24, p. 300] Kleiner says that the function concept has been
modified, generalized and finally “generalized out of existence” (catégory theory). He
then asked: Have we come full circle? I tend to think that history does go in circles,
but in a modified sense. (See Figure 1 for a schematic suminary.) Perhaps we can better
discribe the evolution.by borrowing the motto alongside a logarithmic spiral engraved on
the tombstone of Jakob Bernoulli:

EADEM MUTATA RESURGO (I shall arise the same though changed.)

STATIC EKINEMATIC/GEOMETRIC ¢ ALGEBRAIC-

MORPHISM €————— ARROW
: : ANALYTICALLY

» g
ORDERED PAIRS I ’ / REPRESENTABLE FUNCTION

CORRESPONDENCE —— MAPPING

/

‘ | FOURIER SERIES
CONTINUOUS/DISCONTINOUS :
FUNCTION T

™

(EULER) DISCONTINUOUS —(EULER) CONTINUOQUS
FUNCTION FUNCTION

ANALYTICAL EXPRESSION

TABLE OF g MOTION » POWER SERIES
VALUES CURVE

Figure 1

EXERCISES

1. A commentary by Liu Hui (c. 3rd century) on Problem 1 of Chapter 7 of “Jiu Zhang
Suan Shu” (Nine Chapters on the Mathematical Art) suggested an explanation of the
solution via a viewpont of functional dependence {rather than solving simultaneous
equations). By making up a table of z (number of persons), S (total sum according to
the first rule), S’ (total sum according to the second rule) and S —S’, explain how the
solution can be obtained.  Problem 1 of Chapter 7 is as follows: “A certain number
of persons want to buy an article. If each contributes 8 dollars (m), there will be an
excess of 3 dollars (n). If each contributes 7 dollars (m'), there will be a deficiency of
4 dollars (n'). How many person (z) are there? How much is the cost of that article

(¥)?" The solution is given as z = (n+n')/(m~m') and y = (mn' +m'n)/(m—m').

2. State a theorem on power series which can be regarded as the modern version of “an-

alytical continuity” mentioned in the section “From 14th Century to 18th Century”.

3. Fill in the detail of Euler’s expansion of the logarithmic function as a power series
outlined below {15, Book I, pp. 94-95]:
For the base a, log, = is the exponent y such that a¥ = z.
Write a® = 1 + ke where ¢ is infinitely small. (In hindsight, what is k?)
Let N = y/e, then

av=(a€)N=(1+ke)N:1+N(k—y) +M(@)z+---

N 1-2 N
- 1 N(N-1),2 2
=1+ky+ 7o Ky* +
ky k2 yz ks ys

N is infinitely large, so a¥ :1+F+ 71 —I—-—-m——}—v--
Euler introduced the famous number e as the value of a for which k =1, i.e.
1 1 1
e=1+§i+ﬁ+§i+”.

Write 14 z = a¥ = a™¥* = (1 + ke) so that log, (1 + z) = Ne.
1+ke=(1+2)YV, s0e=[(1+2)/N —1]/k and log,(1 + z) = N[(1+2)¥ — 1]/k.
Put k = 1 so that a = e, write log, as simply log, then log(1+z) = N[(1+z)Y/¥ —1].

By the expansion into binomial series (Exercise), Euler obtained

mo-tgpgplps L
log(14+2z)==2 i +3 +

4. Find a E-continuous function which is not continuous. Find a E-discontinous function

which is continuous. What do we call a E-continuous function to-day? What do we
call a E-discontinuous function to-day?

Is the definition of E-continuous function ambiguous? Discuss Cauchy’s example
given in 1844, viz. f(z) = Vz? [46, p.73].
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In 1787 Louis Arbogast wrote a paper which won a prize offered by the Academy of
St. Petersburg concerning ‘arbitrary function’. He called a curve “discontiguous” if
the different parts of the curve do not join with each other [46, p.71]. What do we
call the function of such a curve to-day?

. Work out the following examples given by Fourier in 1870:

Extend f(z) = /2 defined on [0,x] into an odd function on [—, 7] and compute its
Fourier series. Extend f(z) = z/2 defined on [0, 7] into an even function on [—w,]
and compute its Fourier series. (Note that two different expressions represent the

same thing on the domain [0,#].)

. Discuss the mathematics in Weierstrass’ example of a continuous nowhere—differentiable
function mentioned in the section “Function Concept in the 19th and 20th Cen-
turies”. (See pp. 351-352 of E.C. Titchmarsh’s “The Theory of Functions” (2nd
edition, 1939).)

. Explain why the Dirichlet function is of (Baire) class 2.

. Discuss the following example of Cauchy (1823) which shows that even a function
infinitely differentiable at a given point can fail to be analytic at that point [46, p.74].

_ exp(-1/z*) if z#0
f(z)"{o if z=0.
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