
Euler and Heuristic Reasoning 

Man-Keung Sin 

Who, What and Why? 

The title of this article begs answers to the following questions: Who was Euler? What is 
heuristic reasoning? Why are the two related? I shall answer them in the next three sections. 
But my aim in this discussion goes far beyond that, indeed even far beyond what my capability 
will allow me to achieve; for I wish very much to convey the message that whai we shall 
discuss here constitutes a correct way to do mathematics, to study mathematics and to teach 
mathematics. I shall return to the last point towards the end of the article. 

Who was Euler? 

The first question is easy to answer since biographies of Euler .can be found in many books, such 
as [3, 5, 14, 17]. Leonhard Euler was in the opinion of many the greatest mathematician (and 
physicist) of the eighteenth century. He was born in Basel, Switzerland on Aprill5, 1707. At the 
age of 13 he entered the University of Basel where he had the good fortune to study mathematics 
under the eminent mathematician Johann Bernoulli (1667-1748). Later in his life, he was fond 
of recollecting this pleasurable experience and acknowledging a debt to his teacher. He said 
[ 14, p. 342], "I soon found an opportunity to gain introduction to the famous professor Johann 
B~rnoulli, whose good pleasure it was to advance me further in the mathematical sciences ... 
ana wherever I should find some check or difficulties, he gave me free access to him every 
Saturday afternoon and was so kind as to elucidate all difficulties, which happened with such 
greatly desired advantage that whenever he had obviated one check for me, because of that 
ten others disappeared right away, which is certainly the way to make a happy advance in the 
mathematical sciences." At the age of 15, Euler received his first university degree and two 
years later his master's degree in philosophy. In 1727, he competed for the chair of physics at 
University of Basel and lost. Having had the good fortune not to win the chair of physics at 
Basel, Euler went to the Academy of St. Petersburg in Russia and spent thirteen very productive 
years there until 1741. In 1738, three years before leaving Russia, a violent fever destroyed the 
sight of his right eye. At the age of34, Euler left Russia and moved to the Academy of Berlin in 
Prussia. He stayed there until 1766, in which year he returned to the Academy of St. Petersburg. 
At about the same time he lost sight of the other eye. An unsuccessful operation performed in 
1771 resulted in near total blindness in the remaining years of his life. On September 18, 1783, 
Euler was working as usual. He spent that afternoon calculating the law of ascent of balloons. 
After dinner he outlined the calculation of the orbit of the newly-discovered planet Uranus. 
Then he played with his grandson. While playing with the child and drinking tea, he suffered 
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a stroke. According to the eulogy written by his younger contemporary Marquis de Condorcet 
(1743-1794), "Euler ceased to live and to calculate" [3, p. 152]. 

Euler was the most prolific writer in the history of mathematics. Approximately one third 
of the research on mathematics, mathematical physics and engineering mechanics published in 
the last three-quarters of the eighteenth centtrry was authored by him. From 1729 onward his 
work filled about half of the pages of the publications of the Academy of St. Petersburg, not 
only until his death in 1783, but continuing on over the next fifty years! From 1746 to 1771 he 
filled about half the pages of the publications of the Academy of Berlin. Shortly after his death, 
Nicolas Fuss (1755-1825, husband of a granddaughter of Euler) compiled Euler's publications 
collecting 756 articles, of which 355 were written in the last ten years of Euler's life when he 
was nearly totally blind! The modem revision of Euler's collected works began in 1911,.and 
is not yet complete. By that time, 866 of his published articles had been collected, and it is 
estimated that over seventy large quarto volumes, each containing 300 to 600 pages, will be 
required to print them. And this collection does not yet include some 3000 pages of manuscripts 
and notes he left behind in Russia, about 3000 letters of personal correspondence, and some 25 
volumes of expository books or treatises he wrote, several of which became important textbooks 
which nurtured generations of mathematicians who came after him. 

Euler's contribution to mathematics can perhaps be glimpsed in the numerous terms, for
mulae, equations and theorems that bear his name. In 1983, the November issue of Mathematics 
Magazine, published as a tribute to Euler, contained a glossary of 44 such items [18, pp. 316--
325]. Marquis de Condorcet observed in his eulogy of Euler, "All th~ noted mathematicians of 
the present day [late eighteenth centtrry] are his pupils: there is no one of them who has not 
formed himself by the study of his works, who has not received from him the formulas, the 
method which he employs; who is not directed and supported by the genius of Euler in his 
discoveries" [18, p. 258]. 

What is Heuristic Reasoning? 

This question is harder to answer. Fortunately someone else has already written much on it. Of 
course I am referring to the famous mathematician-mathematics educator and great mathematics 
teacher George P6lya (1887-1985), whose three fascinating books [11, 12, 13] should be on the 
reading list of every teacher of mathematics. Those who love a formal definition of "heuristic 
reasoning" will be disappointed. The very term itself connotes an air of many-sidedness and 
informality. Perhaps the best way to explain is to illustrate its many aspects via examples. 
Nevertheless I shall still quote two instructive passages from P6lya: 

Mathematical thinking is not purely "formal"; it is not concerned only with axioms, 
definitions, and strict proofs, but many other things belong to it: generalizing from 
observed cases, inductive arguments, arguments from analogy, recognizing a mathe
matical concept in, or extracting it from a concrete situation. [13, vol.2, pp. 100-101] 

Heuristic reasoning is reasoning not regarded as final and strict but as provisional 
and plausible only, whose purpose is to discover the solution of the present problem . 
. . . Heuristic reasoning is good in itself. What is bad is to mix up heuristic reasoning 
with rigorous proof. What is worse is to sell heuristic reasoning for rigorous proof. 
[12, p. 113] 
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Why Euler and Heuristic Reasoning? 

I plan to illustrate the many aspects of heuristic reasoning via examples taken out of Euler's 
works. But why Euler? This brings us to the third question. Every mathematician practices 
heuristic reasoning to some extent. But unlike most authors who only present the final product 
in a neat and polished form which may invite awe and admiration but not necessarily add to 
understanding, Euler explained how he proceeded in his reasoning and described, sometimes in 
illuminating details, his process of discovery. Marquis de Condorcet noted: 

He [Euler] preferred instructing his pupils to the little satisfaction of amazing them. 
He would have thought not to have done enough for science if he should have failed 
to add to the discoveries, with which he enriched science, the candid exposition of 
his ideas that led him to those discoveries. [II, vol. I, p. 90] 

P61ya said: 

Naturally enough, as any other author, he [Euler] tries to impress his readers, but, 
as a really good author, he tries to impress his readers only by such things as have 
genuinely impressed himself.. .. We can learn from it a great deal about mathematics, 
or the psychology of invention, or inductive reasoning. [II, vol. I, p. 90] 

In this respect Euler's works are particularly instructive. 

Example I. We choose as our first example sections 133-140. in Euler's book Introductio in 
analysin infinitorum (1748) [7, pp. 106-113], which was hailed by C. B. Boyer [14, p. 346] 
as "the foremost textbook of modern times." Euler started with the formula 

(cosz ± isinz)n = cosnz ± isin nz 

(which is a result due to Abraham de Moivre (1667-1754) in 1730) to obtain 

(cosz + isinz)n +(cos z- isinz)n 
cosnz = 

2 
. (cosz + isinz)n- (cosz- isinz)n 

sm nz = 
2
i 

He developed them as binomial series to obtain 

n(n- 1) 2 • 2 
cosnz = (cosz)n- (cosz)n- (smz) 

1. 2 
n(n- 1)(n- 2)(n- 3) 

+ (coszt-4 (sinz)4 - .. · 
1·2·3·4 

sinnz = '?:(cosz)n-l(sinz)- n(n - 1)(n- 2) (cosz)n-3 (sinz)3 + .... 
1 1·2·3 

He then let z be infinitely small and n be infinitely large, but keeping nz of finite magni
tude, say equal to v. He used the facts that sin z = z = vjn and cos z = 1 to rewrite the two 
formulas as 

v2 v4 
cos v = 1 - -- + ,--c--c--c 

1·2 1·2·3·4 
v3 v5 

sin v = v - --- + -:--c:---::---c--::: 
1·2·3 1·2·3·4·5 
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These are of course the correct power series for the sine and cosine functions. But the argument 
used is of the heuristic sort, viz. by formal manipulation. This technique, based on a trust in 
the power of symbols, was a prominent feature of eighteenth century mathematics. 

Then in section 138, Euler "derived" his famous formula fore'"· By the same reasoning 
outlined above, he obtained 

cosv = 

sinv = 

(1 + ivjn)" + (1- ivjn)" 
2 

(1 + ivjn)"- (1- ivjn)" 
2i 

In a preceding chapter he had already proven that (1 + zjn)" = ez. Hence the two formulas 
could be rewritten as 

which gave 

cosv = 
2 

eiv - e-iv 
sin v = ---c-,--

2i 

eiv=cosv+isinv, e-iv=cosv-isinv. 

He then went on to obtain 

v= .2:_ 1 [cosv+isinvl = .2:_ 1 [1+,itanvl· 
2i oge cosv- isinv 2i oge 1- itanv 

In an earlier section he had proved the infinite series 

(
1+x) 2x 2x3 2x5 2x7 

log, 1-x =T+3+5+7+··· 

(due to James Gregory (1638-1675) in 1668), so he had 

tanv (tanv)3 (tanv) 5 (tanv)' 
v = -1-- 3 + 5 - 7 + .... 

Letting t = tan v, he got 

t t 3 t5 t7 

v=1-3+5-7+···. 

Putting t = 1, so that v = rr /4, he obtained the infinite series 

1r 1 1 1 
-=1--+---+··· 
4 3 5 7 

which was a well-known series discovered by Gottfried Wilhelm Leibniz (1646-1716) and 
published in his "De vera proportione circuli" (1682). This technique of partial confirmation 
is another feature of heuristic reasoning. If the method yields a result which has been proved 
to be correct through other means, then the former result sounds more convincing, even though 
the method is still questionable. 

Example II (See [2, 11, 16]). While we are discussing infinite series, it is unlikely that we can 
omit that brilliant achievement of Euler concerning the computation of 1 + ~ + b + b + · · · . 
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F,or convenience of exposition we shall adopt a modern notation and write 

00 1 
((s) = "'- (zeta function). 

£...- n' 
n=l 
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Pietro Mengoli (1625-1686) asked for the value of ((2) in !650. John Wallis (1616-1703) 
computed ((2) to three decimal places in 1655, but did not recognize the significance of 1.645. 
This problem withstood the efforts of the Bernoulli brothers. In 1731, Euler computed ((2) to 
six decimal places. In view of the slow convergence rate of the series, even numerical evaluation 
is no small task. For instance, Euler's computation motivated the discovery of what is known 
today as the Euler-MacLaurin summation formula. In 1735 Euler sharpened his calculation to 
obtain an answer 

((2) = 1.64493406684822643647 .... 

But he was not satisfied, for he wanted the exact value. Laboring on this task, he succeeded in 
1735 by "generalizing'' the factorization of polynomials to transcendental functions repres~nted 
as power series. Although this story is probably familiar to many as it occurs in several books, 
it is worth repeating. 

Let <>1, ... , <>n be roots of the equation 

a,Xn + an-!xn-l + · · · + a1X + ao = 0 

(so that a 1 , .•. , <>n are all nonzero). Then we have 

where ao i' 0, an i' 0 

anXn + an_1xn-l + · · · + a1X + ao = ao(1- xjaJ) · · · (1- x/an), 

and hence a1 = -a0 ( ~' + · · · + L). Euler treated a power series as a polynomial, only with 

more terms! He noted that 
v3 v5 

sinv=v----+ -···=0 
1·2·3 1·2·3·4·5 

has roots 0,±1T,±21T,±31T, ... , so that 

sin v v2 v4 

-v- = 1 -~ + 1·2·3·4·5- ··· =O 

has roots ±1r, ±27r, ±37r, . . . , i.e., 

x x2 

1 -~+ 1·2·3·4·5 -···=O 

has roots 1r2, (21r)2
, (31T)2 , •.•• From the relation discussed above, he obtained 

1 (1 1 1 ) 
-~ = - 1T2 + 221T2 + 321T2 + . . . , 

i.e .. , 
1T2 111 
-=1+-+-+-+···. 
6 22 32 42 

Euler applied the same technique to the equation 1 - sin x = 0 which has (double) roots 
1rj2, 1rj2, -31T/2, -31T/2, 51T/2, 51T/2, -71T/2, -71T/2, ... , i.e., 

x x 3 x5 
1 - - + --- - + · · · = 0 with these roots. 

1 1·2·3 1·2·3·4·5 
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He found 

i.e., 
1f 1 1 1 
- = 1 - - + - - - + · · · the famous series of Leibniz. 4 3 5 7 , 

He said, "For our method which may appear to some as not reliable enough, a great confirmation 
comes here to light. Therefore, we should not doubt at all of the other things which are derived 
by the same method" [11, vol. l, p. 21]. Again, partial confirmation is at work! 

The prominent feature of heuristic reasoning we discern in Euler's argument is that of 
analogy. Besides helping to discover an answer, analogy can sometimes lead to new theory. In 
this case, the analogy between factorization of polynomials and that of power series ,opened up 
the theory of infinite product and partial fraction decomposition of transcendental functions. A 
rigorous version of the argument outlined above lies in the expression 

sin X = rroo ( 1 _ --==--) ' 
x n2~2 

n=l 

which was proved by Euler in 1742. Another famous instance of an infinite product is the Euler 
Identity (presented to the Academy of St. Petersburg in l73v) 

((s) = rr(1-1/p')-', where p runs through all primes. 
p 

This analytic version of the fundamental theorem of arithmetic is the starting point of Riemann's 
theory of zeta functions. 

Euler returned to this problem of evaluating ((s) many times. In particular, he was aware 
of the heuristic nature in the 1735 argument. He later proved that 1r2 /6 was the correct answer, 
and computed ((2n) more generally in 1739. Investigations on ((n) for odd n led him in 1749 
to a discovery which was equivalent to the functional equation of the zeta function, subsequently 
forgotten for over a century until resurrected by Bernhard Riemann (1826-1866) in 1859! It is 
of some interest to note that the irrationality of ((3) was established only recently, by Roger 
Apery in 1978 [15]. 

Example Ill (See [8, 9, 11, 13]). For a change, Jet us leave analysis and go to geometry. In 
a Jetter of November, 1750 to Christian Goldbach (1690-1764), Euler mentioned some results 
he noticed in his investigation on polyhedra: 

Recently it occurred to me to determine the general properties of solids bounded by 
plane faces, because there is no doubt that general theorems should be found for them, 
just as for plane rectilinear figures, whose properties are: (1) that in every plane figure 
the number of sides is equal to the number of angles, and (2) that the sum of all the 
angles is equal to twice as many right angles as there are sides, less four. Whereas 
for plane figures only sides and angles need to be considered, for the case of solids 
more parts must be taken into account, namely 

I. the faces, whose number = H; 
II. the solid angles, whose number = S; 
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III. the joints where two faces come together side to side, which, for lack of an 
accepted word I call 'edges', whose number = A; 

IV: the sides of all the faces, the number of which all added together = L; 
V: the plane angles of all faces, the total number of which= P. [4, p. 76] 
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Again, analogy is at work. It is natural to ask what are analogies of facts we know about 
a polygon in the case of a polyhedron. "Sides" become "faces," for they both serve to bound 
the object under investigation. What about "sides of a face" then? Euler distinguished between 
"side" (latus) and "edge" (acies) and even emphasized this in his letter. For a polygon, we need 
only know the number of sides (E), which is equal to the number of vertices (V). It follows 
as a theorem that the sum of all interior angles of a convex polygon is equal to (V- 2)7r. For 
a polyhedron, we need to know more parameters. What Euler denoted by H, S, A are today 
usually written respectively as F (number of faces), V (number of vertices), E (number of 
edges). It is no longer true that the number of faces must be equal to the number of vertices. 
However, there is an analogous result for the sum of interior angles. Euler stated this as Theorem 
II in his letter: The sum of all plane angles is equal to four times as many right angles as 
there are solid angles, less eight, that is = 4S - 8 right angles. Using contemporary notation, 
L <> = (2V - 4)7r where a runs through all interior angles of all faces. In this connection 
it is extremely interesting to look at Theorem 6 mentioned in that same letter: In every solid 
enclosed by plane faces the aggregate of the number of faces and the number of solid angles 
exceeds by two the number of edges, or H + S = A + 2. Ag~in in contemporary notation, 
it says that V - E + F = 2, the famous Euler formula: Today we know that this formula is 
valid for a certain class of polyhedra only. At that time, Euler did not yet see the subtlety, but 
apparently he was talking about a convex polyhedron without explicitly stating the fact. 

After illustrating his theorems with an example, Euler concluded [ 4, p. 77], "I find it 
surprising that these general results in solid geometry have not previously been noticed by 
anyone, so far as I am aware; and furthermore, that the important ones, Theorem 6 and II, are 
so difficult that I have not yet been able to prove them in a satisfactory way." His statement 
is correct as far as ancient Greek mathematics is concerned, but it is incorrect in that Rene 
Descartes (1596-1650) had found similar results in 1639. However, Descartes' manuscript was 
discovered and published in 1860, so Euler could not have known about Descartes' work! 
Today we honor both mathematicians by referring to that strikingly beautiful formula as the 
Euler-Descartes formula. It is interesting to note that Theorem 6 and Theorem II are equivalent 
since L" = 2(E- F)1r. In the form of Theorem II, which is comprehensible to any ancient 
Greek mathematician, the result looks like one that should not have escaped the attention of 
Greek mathematics. But throughout the centuries in which Greek geometry flourished, the result 
did not appear anywhere. In view of the fact that Theorem II is equivalent to Theorem 6, the 
reason is quite simple. Theorem 6 concerns the combinatorial properties of a polyhedron rather 
than its metrical properties and so lies completely outside the Greek mathematicians' field of 
interest. No wonder it never found its way into Greek mathematics. Indeed, this formula opened 
up a new page in the history of mathematics and motivated the new branch of mathematics 
called topology. 

In the years after Euler wrote the letter, he devoted two memoirs to those two important 
theorems. He gave a proof, later found to be insufficient. Augustin Louis Cauchy (1789-1857) 
gave a proof in I 811 which met the standard of rigor of his day. (It is still nowadays presented 
in most popular accounts as a proof of the formula.) Quite a number of counterexamples were 
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discovered after Cauchy's proof was given. They indicated inadequacy not only in the proof, 
but even in the formulation, viz. What is a polyhedron? The proof now usually offered in 
a topology text is that due to Karl George von Staudt (1798-1867) and produced in 1847, 
already a whole century after Euler discovered it! An instructive and enlightening dialogue 
with generous historical footnotes about this formula, written by lmre Lakatos (1922-1974) 
[9], is strongly recommended for additional reading. Following P61ya's idea [13, val. 2, section 
15.6], let us try to reconstruct Euler's trend of thought with the aid of historical documents. 
Suppose the goal is to find an analogne of the formula I: a = (V - 2)1f for a polygon with 
V vertices. As possible choices we can investigate I: a where a runs through: (i) dihedral 
angles of the polyhedron, (ii) solid angles of the polyhedron, (iii) plane angles of all faces of 
the polyhedron. As an exercise, readers can convince themselves that (i) is not a good candidate 
since even for a tetrahedron, I: a will depend on the shape of the tetrahedron as evidenced by 
the two tetrahedra illustrated in Fignre Ia (while I: a for a triangle does not dep~nd on the 
shape of the triangle). For the same reason, (ii) is not a good candidate either, as evidenced by 
the two tetrahedra illustrated in Fignre I b. 

We are left with (iii) as our choice. Let us collect some data from the polyhedra illustrated 
in Fignre 2, 

Polyhedron 
F 

L:;a 

(a) (b) (c) (d) (e) (f) 
6 4 8 

127l" 47l" 87l" 

The pattern appears erratic! We need some gniding principle in examining experimental data so 
as to elicit valuable information which will enable us to make an informed gness. (However, we 
should gnard against preconceived ideas that can bias our thinking. We should keep an open, 

(a) (b) 

FIGURE 1 

(a) (b) (c) (d) (e) (f) 

FIGURE 2 
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objective attitude.) Note that 

where L 1 means summation over all faces and a 1 runs through all plane angles of a face; Lv 
means summation over all vertices, <>v runs through all plane angles at a vertex. But L <>v < 2rr 
for each vertex, which is a theorem for a convex polyhedron, proved in Euclid's Elements as 
Proposition 21 of Book II. A heuristic geometric argument is obtained by "flattening auf' 
that polyhedral angle onto the plane. Hence we see that La < 2V rr. Why not look at the 
discrepancy 2Vrr- La for those data in the table above? If you do, you will see immediately 
a conjectured formula for L a, which is nothing other than Theorem 6! 

Let us further apply two usual techniques in heuristic reasoning. First specialize: Is the 
conjectured formula an analogue of that for a polygon? Consider a (convex) polygon with V 
vertices. Make two identical copies and join corresponding vertices by vertical edges to form .a 
prism. The conjectured formula tells us that 

I>= (4V- 4)rr = 4Vrr- 4rr. 

But we also know that La = 28 + 2V rr where S is the sum of all interior angles of the 
polygon. Hence, we obtain S = (V - 2)rr. Next we generalize: Can we use the formula for 
a polygon to derive the conjectured formula for the polyhedron? We shall flatten the given 
polyhedron "in a special way" (so that the base polygon is convex and has N vertices). Since 

' La = 2(E- F)rr (explained earlier on), the angle sum is invariant under the flattening 
provided E, F remain unaltered. Since 

La= (N- 2)rr + (N- 2)rr + (V- N)2rr, 

we see that it simplifies to (2V- 4)rr. Although there are quite a number of objections one 
can raise against this "proof, u it makes the result even more convincing. 

One result leads to another. In the same month that Euler wrote his letter to Goldbach, he 
also presented a paper titled "Elementa Doctrinae Solidorum" to the Academy of St. Petersburg 
in which he tried to classify polyhedra. He noted, "While in plane geometry polygons can be 
classified very easily according to the number of their sides, which of course is always equal to 
the number of their angles, in stereogeomelfY the classification of polyhedra represents a much 
more difficult problem, since the number of faces alone is insufficient for this purpose" [9, p. 
6). Everybody can easily see why F alone is not enough. The three polyhedra shown below 
in Figure 3 all have F = 6. But nobody likes to say they belong to the same type. For one 

FIGURE 3 
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thing, each polyhedron has a different V, viz. 5, 8, 6 respectively. How about including both 
F and V? Still that is not enough, as the two polyhedra shown in Figure 4 demonstrate, since 
the faces are of different shapes. 

FIGURE 4 

Euler invented the term "edge" for polyhedra, which he distinguished from "side," a 
concept pertaining to polygons. It is noteworthy that he emphasized the novelty of this new 
term, possibly because he had hoped at first that it might help in the classification of polyhedra. 
Again, let us collect data from the polyhedra shown in Figure 5, 

FIGURE 5 

Polyhedron 

F 

v 
E 

(a) (b) 

6 6 
5 8 
9 12 

(c) (d) 

6 6 
6 8 
10 12 

(e) 

7 
10 
15 

(f) 

7 
10 
15 

What do you observe? Polyhedra with the same F, V seem to have the same E as well. 
Thus, it seems that E, the number of edges, contributes nothing to the classification problem; 
it does not give extra information over what can be gathered from F and V. Does that mean 
disappointment? No, it means triumph! It suggests that E is a function of F and V. Indeed, 
it looks like E increases with F, V jointly. Why not try (V + F) - E? If you do, you will 
immediately obtain that famous formula of Euler! 

Induction and Deduction 

Induction is a kind of heuristic reasoning. It is the process of discovering general laws by the 
observation and combination of particular instances. (In this respect, "mathematical induction" 
is not induction; it is deduction.) It helps us to discover an answer, but it cannot yield the final 
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say, which has to be gained by deductive reasoning. Euler was very clear about this point. He 
once said: 

It will seem not a little paradoxical to ascribe a great importance to observations even 
in that part of the mathematical sciences which is usually called Pure Mathematics, 
since the current opinion is that observations are restricted to physical objects that 
make impression on the senses .... The kind of knowledge which is supported only 
by observations and is not yet proved must be carefully distinguished from the truth; 
it is gained by induction, as we usually say. Yet we have seen cases in which mere 
induction led to error. [II, vol. I, p. 3] 

I shall illustrate his warning with examples again taken from his works. In a letter dated 
December, 1729 to Euler, Goldbach asked, "Is Fermat's observation known to you, that all 
numbers 22• + 1 are primes? He said he could not prove it; nor has anyone else done so to 
my knowledge" [16, p. 172]. Euler's reception was at first cool, but in June, 1730 he suddenly 
caught fire and started to read Fermat's work seriously, and this began his life-long interest in 
number theory. The numbers Fn = 22• + 1 referred to in the letter are now known as Fermat 
numbers. Around 1640 Pierre de Fermat (1601-1665) mentioned the conjecture that all Fermat 
numbers were prime. Indeed, we see that 

F, = 5, F2 = 17, F3 = 257, F4 = 65537 

are all prime. In 1732, Euler by studying the factors of a2• + b2n, showed' that 

F5 = 4294967297 = 641 x 6700417 

and showed the conjecture to be false. As another example, take the curious property of the 
polynomial X 2 + X + 41 that Euler discovered in 1772, viz. it yields a prime number for 
X = 0, 1, 2, ... ,39. Can we conclude from these forty consecutive affirmative answers that 
it will always produce prime numbers for all values of X? No; it is false for X = 41. How
ever, coincidence is rare in mathematics. The existence of coincidence demands, and implies, 
explanation. In this very case, the coincidence is related to the discriminant of the quadratic 
polynomial, viz. -163. For a more startling example, let us look at this question: Is 1 + 1141y2 

ever a square for y i' 0? It can be rephrased as the diophantine equation x2 - 1141y2 = 1, 
one particular instance of the so-called "Pell equation" (which was misnamed by Euler in 1730 
although it has nothing to do with John Pell (1611-1685); in fact it was considered in India as 
early as the seventh century!). It so happens that the smallest y i' 0 which gives an affirmative 
answer is 30,693,385,322,765,657,197,397,208. Even with a supercomputer, experimental evi
dence will always indicate a negative answer! But actually there are infinitely many y's which 
supply an affirmative answer! 

However, Euler, being fallible, did commit errors at this game of guessing. He once made 
the following conjecture which generalized "Fermat's Last Theorem": x] + · · · + x~ i' yn if 
1 < m < n (n 2: 3) for integral values x 1 , ... ,xm, y. This was refuted by L. J. Lander and T. 
R. Parkin in 1967, almost two centuries later. Their counterexample is 

275 + 845 + 1105 + 1335 = 1445
. 

Recently, N. Elkies found a counterexample for the case n = 4, 

26824404 + 153656394 + 187967604 = 206156734 
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(The conjecture is true for n = 3.) Another famous misjudgement of Euler is his 1779 conjecture 
on the nonexistence of orthogonal Latin squares of order 2n, n odd. It was refuted by Roy 

Chandra Bose, Ernest Tilden Parker and S. S. Shrikhande in 1958. 

Example IV (See [1, 11, 16)). The final example I shall discuss is a profound discovery of 
Euler in number theory, which appeared in a 17 4 7 memoir. It offered a "most extraordinary 
law of the numher concerning the sum of their divisors" [11, vol. I, p. 91]. For ease of 
exposition we shall adopt today's notation a(n) = sum of all divisors of n. For instance, 
a( 6) = 1 + 2 + 3 + 6 = 12 and a( n) = 1 + n if and only if n is a prime. At the beginning of 
the memoir Euler said, "Till now the mathematicians tried in vain to discover some order in the 
sequence of the prime numbers and we have every reason to believe that there is some mystery 
which the human mind shall never penetrate .... I am myself certainly far from this goal, but 
I just happened to discover an extremely strange law governing the sums of the divisors of the 
integers which, at the first glance, appear just as irregular as the sequence of the primes, and 
which, in a certain sense, comprise even the latter. This law, which I shall explain in a moment, 
is, in my opinion, so much more remarkable as it is of such a nature that we can be assured of 
its truth without giving it a perfect demonstration" [11, vol. I, p. 91]. The last sentence sounds 
paradoxical to someone trained in mathematics. How can one be assured of a theorem without 
proving it? Let us see how Euler explained this phenomenoiL · 

Euler devised a table of a(n) for n in the range 1 ~ n ~ 99. It does look pretty erratic: 

n 0 I 2 3 4 5 6 7 8 9 
0 I 3 4 7 6 12 8 15 13 
10 18 12 28 14 24 24 31 18 39 20 
20 42 32 36 24 60 31 42 40 56 30 
30 72 32 63 48 54 48 91 38 60 56 
40 90 42 96 44 84 78 72 48 124 57 
50 93 72 98 54 120 72 120 80 90 60 
60 168 62 96 104 127 84 144 68 126 96 
70 144 72 195 74 114 124 140 96 168 80 
80 186 121 126 84 224 108 132 120 180 90 
90 234 112 168 128 144 120 252 98 171 !56 

(The table is self-explanatory. For instance, the entry in the row labelled 40 and column labelled 
7 is a(47) = 48. Entries in boldface print correspond to primes.) He then gave the rule, viz. 
the recurrence relation 

a(n) = a(n- 1) + a(n- 2)- a(n- 5)- a(n- 7) 

+ a(n- 12) + a(n- 15)- a(n- 22)- a(n- 26) 

+ u(n- 35) + u(n- 40)- u(n- 51)- u(n- 57)+··· 

where (i) the signs + and - each arise twice in succession, (ii) the sequence continues as long 
as the number under the sign u is nonnegative (so the sequence stops somewhere), (iii) if u(O) 
turns up, it is to be interpreted as n, (iv) the sequence I, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 
... follows the pattern in which differences between consecutive terms are I, 3, 2, 5, 3, 7, 4, 
9, 5, 11, 6, .... As illustration, Euler computed a few examples to convince the reader of the 
validity of his rule. He then said, "The examples that I have just developed will undoubtedly 
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dispel any qualms which we might have had about the truth of my formula." He continued, "I 
confess that I did not hit on this discovery by mere chance, but another proposition opened the 
path to this beautiful property-another proposition of the same nature which must be accepted 
as true although I am unable to prove it" [ 11, vol. I, p. 95]. 

What Euler referred to is his investigation on the infmite product f1;:'= 1 (1 - xn) = 
(1- x)(l- x2)(1- x3) · · • in 1741. This investigation was motivated by a combinatorial 
problem concerning the partitions of an integer raised in 1740 by Philipp Naude (1684-1745). 
By actually computing the product, Euler observed that the pattern came out as 

To an untrained eye this pattern may look irregular. But Euler noticed that alternate exponents 
formed two sequences, viz., 

1, 5, 12, 22, 35, 51, ... , and 2, 7, 15, 26, 40, 57, .... 

The first sequence is that of pentagonal numbers of the general form n(3n- 1)/2 (so called 
by the Pythagoreans (c. fifth century B.C.) since they are the numbers of vertices of pentagons 
of proportionately increasing sizes as illustrated in Figure 6). 

The second sequence is obtained from the first by adding respectively I, 2, 3, 4, ... , i.e., 
with the nth term being n(3n + 1)/2. Thus, Euler observed that the remarkable formula might 
~W: • 

= = 00 rr (1- xn) = 1 + 2)-l)nxn(3n+l)j2 + L(-1)nxn(3n-l)/2 
n=I n=I n=I 

00 

= L ( -1)nxn(3n+l)/2 
n=-oc 

According to Euler,"this is quite certain, although I cannot prove it" [1, p. 279]. However, 
he did prove it ten years later. He could not possibly guess that both series and product would 
be part of the theory of elliptic modular functions developed by Carl Gustav Jacob Jacobi 
(1804-1851) eighty years later! Let us return to his 1747 memoir. He said, "As we have thus 
discovered that those two infinite expressions are equal even though it has not been possible to 
demonstrate their equality, all the conclusions which may be deduced from it will be of the same 
nature, that is, true but not demonstrated. Or, if one of these conclusions could be demonstrated, 
one could reciprocally obtain a clue to the demonstration of that equation; and it was with this 
purpose in mind that I maneuvered those two expressions in many ways" [11, vol. I, p. 96]. 

• 0 
FIGURE 6 
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The last sentence indicates another aspect of heuristic reasoning, viz. try to look at a problem 
from different points of view and be sensitive to hints of possibly hidden interrelationships. 

Euler applied calculus to "explain" his proposed rule which involved only discrete integers. 
He assumed that the observation about the equality of the series and product was correct, i.e. 

s = (1- x)(1- x2)(1- x 3 ) ... = 1- x- x2 + x 5 + x7 - x 12
- x 15 + .... 

Then logs= log(1- x) + log(1- x2 ) + log(1- x 3 ) +···from the product, hence 

Also, 

from the series, so 

1 ds 1 2x 
sdx=-1-x-1-

xds x 2x2 

-sdx = 1-x + 1-

3x2 

1-

+"·, 

~ 4 6 11 u -=-1-2x+5x +7x -12x -15x + ... 
dx 

x ds x + 2x2 - 5x·' - 7x7 + 12x12 + 15x15 

s dx = -;;1--=-x---'xi2 -:+-x's<'+-:-x-'o;7-:_-'-x"•2'_'-x'•"s '+-.-.-.-
Putting t = - ~ ~~, he obtained from (I) by expanding each term as a geometric series 

t = x + x2 + x 3 + x4 + x5 + x6 + x7 + x8 + · · · 

+2x2 +2x4 +2x6 +2x8 + .. · 

+3x3 +3x6 + ... 

+4x4 + 4x8 + .. · 

+ 5x5 + .. · 

+6x6 + ... 

+ .. ·. 

(1) 

(2) 

Each power of x arises as many times as its exponent has divisors, and each divisor arises as a 
coefficient of the same power of x. (For example, terms involving x6 yield x6 +2x6 +3x6 +6x6 

with 1, 2, 3, 6 being all the divisiors of6.) Hence, t = o-{l)x+o-(2)x2 +o-(3)x3 +o-(4)x4 +· · · . 
From (2) he obtained 

t(l- x- x2 + x5 + x7
- x12 - x15 + · · ·)- x- 2x2 + 5x5 + 7x7 -12x12 - 15x15 + · · · = 0. 

Substituting the new expression for t, he obtained finally 

0 = o-(1)x + o-(2)x2 + o-(3)x3 + o-(4)x4 + o-(5)x5 + o-(6)x6 + · ·. 

-x- o-(l)x2
- o-(2)x3 - o-(3)x4 - o-(4)x5 - o-(5)x6 - · • · 

-2x2 - cr(1)x3 - o-(2)x4 - o-(3)x5 - o-(4)x6 - · ·. 

+5x5 + o-(1)x6 + · · .. 
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The coefficient of xn is 

a(n)- a(n- 1)- a(n- 2) + a(n- 5) + a(n -7)- a(n- 12)- a(n -15) + · · ·, 
continued as long as the number under the sign a is nonnegative, and if a(O) rises, substituted 
by n. This is the rule Euler gave at the beginning. He then said [11, vol. l, p. 98], "This 
reasoning, although still very far from perfect demonstration, will certainly lift some doubts 
about the most extraordinary law that I explained here." 

Conclusion-Learning and Teaching 

In the four examples discussed, a number of features of heuristic reasoning emerge. 
• Experimental data-induction (pattern) 
• Examples/Counterexamples-understanding the problem 
• Analogy-generalization/specialization (harmony) 
• Formal manipulation-(power of symbols) 
• Converging but partial confirmation-( coherence) 

In some cases, our faith is based on certain "mystic" beliefs (in parentheses) which underlie 
the vague notion called "beauty in mathematics." A philosophical discussion will bring us too 
far afield and that is not the purpose of the present article. So I shall leave it at that. Rather I 
shall make a few comments on teaching. 

In an article titled "On learning, teaching, and learning teaching'' which appeared in volume 
70 (1963) of the American Mathematical Monthly (see also [10, pp. 539-553]), P6lya set 
down the primary aim of teaching mathematics: To teach students to think. I agree with him 
wholeheartedly. In reality, only a small percentage of all primary or secondary school pupils 
will have occasion to use much of the mathematics they learn in class in their future pursuits. 
And of these, an even smaller percentage will need really advanced mathematical knowledge as 
prerequisite to go on. (See [6, p. 77].) Thus, mere transmission of mathematical knowledge is 
no justifiable claim for having mathematics lessons for the masses. Mathematics does have its 
place and role in the curriculum, even (or more so) for mass education, but not for the content 
alone. One of the aims of education is to teach students to think. If we believe in that, then 
we should let students experience heuristic reasoning at work and cultivate in them this kind 
of working habit. Please do not get me wrong. I am NOT saying that deductive reasoning is 
unimportant. It is of course important, and it is a hallmark of mathematics since the days of 
the ancient Greeks, epitomized in the work of Euclid. It is useful, for many times we do need 
it to arrive at highly nontrivial results which we would not have guessed intuitively. What I am 
saying here is just: Do not let deductive reasoning dominate the picture. 

Furthermore, teaching is correlated with learning. Teachers who acquired whatever they 
know in mathematics passively through purely deductive and formal means will hardly pro
mote active learning in their students. Teachers who do not become excited about a surprising 
mathematical result, who are not thrilled by an illuminating explanation, an elegant proof, will 
hardly kindle enthusiasm in students. Students sometimes learn more from the attitude of their 
teachers than from the subject matter they teach. Thus, as teachers we should practice heuristic 
reasoning in our own study of mathematics, and exercise whenever and wherever appropriate 
heuristic reasoning in our teaching. Euler is a shining example of these practices. 

Andre Wei!, one of the foremost mathematicians of our time, said of Euler, 
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Perhaps his most salient feature is the extraordinary promptness with which he always 
reacted even to casual suggestions or stimuli . . . . Every occasion was promptly 
grasped; each one supplied grist to his mill, often giving rise to a long series of 
impressive investigations. Hardly less striking is the fact that Euler never abandoned 
a problem after it had once aroused his insatiable curiosity .... All his life, even 
after the loss of his eyesight, he seems to have carried in his head the whole of the 
mathematics of his day, both pure and applied. Once he had taken up a question, not 
only did he come back to it again and again, little caring if at times he was merely 
repeating himself, but also he loved to cast his net wider and wider with never failing 
enthusiasm, always expecting to uncover more and more mysteries, more and more 
"herrliche proprietates" lurking just around the next comer. Nor did it greatly matter 
to him whether he or another made the discovery. [16, pp. 283-284] 

Euler was a genius, whose height very few can hope to reach. But we can all learn from his 
enthusiasm to work, his insatiable curiosity to probe, and his determination to procure deeper 
and deeper understanding. As students of mathematics we should strive for these characteristics. 
As teachers of mathematics we should influence our students to also strive for them. 
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