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Nobody can hope to do justice, in one short article, to the twomillennia of in-
digenous mathematical development in China up to the end of the 16th century.1

This article attempts only to convey a general flavour of ancient Chinese mathe-
matics and illustrate some of its characteristic features through a few examples.
An annotated bibliography is provided at the end for the reader’s convenience.2

Characteristic Features of Ancient Chinese Mathematics

The characteristic features of ancient Chinese mathematics can best be appre-
ciated by looking at the work of the ancient Chinese mathematicians. Evidenced
in their choice of topics is a strong social relevance and pragmatic orientation,
and in their methods a primary emphasis on calculation and algorithms. However,
contrary to the impression most people may have, ancient Chinese mathematics is
not just a “cook-book” of applications of mathematics to mundane transactions.
It is structured, though not in the Greek sense exemplified byEuclid’s Elements.
It includes explanations and proofs, though not in the Greektradition of deductive
logic. It contains theories which far exceed the necessity for mundane transactions.

(a) (b) (c) (d)

Figure 1

We start with some ideograms (characters) related to mathematics. In ancient
classics the term mathematics (ó.) was often written as “the art of calcula-
tion” (Õ�) or “the study of calculation” (Õ.) indicating a deep-rooted basis in
calculation. The ideogram for “number” and “to count” (ó) appeared on oracle
bones about 3000 years ago, in the form of a hand tying knots ona string (see
Fig. 1a). The ideogram for “to calculate” (Õ) appeared in three forms, accord-
ing to Shuowen Jiezi(Analytic Dictionary of Characters) by Xu Shen (AD 2nd
century). The first is a noun, composed of two parts, “bamboo”on top and “to ma-
nipulate” in the bottom, with the bottom part itself in the form of two hands plus
some (bamboo) sticks laid down on a board, some placed in a horizontal position
and some placed in a vertical position (see Fig. 1b). The second is a verb, also
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written with the parts of bamboo and hands (see Fig. 1c). The third, somewhat
more puzzling, is in the form of a pair of ideogramatic parts pertaining to religious
matters (see Fig. 1d). It is a tantalizing thought that the subject of mathematics in
ancient China was not exactly the same subject as we understand it today. Indeed,
in some ancient mathematical classics we find mention of “internal mathematics”
and “external mathematics”, the former being intimately tied up withYijing (Book
of Changes), the oldest written classic in China.3

Besides its appearance in these ideograms, the theme of calculation permeated
the whole of ancient Chinese mathematics. This is best illustrated by the calculat-
ing device of the counting rods. Ample evidence confirms the common usage of
counting rods as early as in the fifth centuryBCE, and these probably developed
from sticks used for fortune-telling in even earlier days. The earliest relics from
archaeological findings are dated to the second centuryBCE These were made of
bamboo, wood and even metal, bone or ivory and were carried ina bag hung at
the waist. The prescribed length in the literature (verifiedby the relics) was from
13.86 cm to 8.5 cm, which shortened as time went on. The cross-section changed
with time, from circular (of 0.23 cm in diameter) to square sothat the rods became
harder to roll about. One mathematically extremely interesting feature is the oc-
currence of a red dot on a counting rod to denote a positive number, and a black
dot to denote a negative number. These counting rods were placed on a board (or
any flat surface) and moved about in performing various calculations.

The Chinese adopted very early in history a denary positional number system.
This was already apparent in the numerals inscribed on oracle bones in the Shang
Dynasty (c. 1500BCE), and was definitely marked in the calculation using count-
ing rods in which the positions of the rods were crucial. Ten symbols sufficed to
represent all numbers when they were put in the correct positions. At first only
nine symbols were used for the numerals 1 to 9, with the zero represented by an
empty space, later by a square in printing, gradually changed to a circle, perhaps
when the square was written by a pen-brush. To minimize errorin reading a num-
ber, numerals were written alternatively in vertical form (for units, hundreds,. . . )
and horizontal form (for tens, thousands,. . . ). In a much later mathematical classic,
Xiahou Yang Suanjing(Mathematical Manual of Xiahou Yang) of the fifth century,
this method for writing counting rod numerals was recorded as:

Units stand vertical, tens are horizontal, hundreds stand,thousands lie down.
Thousands and tens look the same, ten thousands and hundredslook alike.
Once bigger than six, five is on top; six does not accumulate, five does not
stand alone.

For instance, 1996 would have been written as

Calculation using counting rods has several weak points: (1) The calculation
may take up a large amount of space. (2) Disruption during thecalculation causing
disarray in the counting rods can be disastrous. (3) The calculating procedure is
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not recorded step by step so that intermediate calculationsare lost. Counting rods
evolved into the abacus in the twelfth-thirteenth centuries, and by the fifteenth cen-
tury the abacus took the place of counting rods. The weak points (1) and (2) were
removed by the use of the abacus, but (3) remained, until the European method of
calculation using pen and paper was transmitted in the beginning of the seventeenth
century. However, calculation using counting rods had its strong points. Not only
did the positions of the counting rods display numerals conveniently, but also the
positions in which these rods were placed on the board afforded a means to allow
some implicit use of symbolic manipulation, giving rise to successful treatment of
ratio and proportion, fractions, decimal fractions, very large or very small num-
bers, equations, and so on. Indeed, the use of counting rods was instrumental in
the whole development of algorithmic mathematics in ancient China.

Even a casual reading of a few mathematical classics will disclose the unmistak-
able features of social relevance and pragmatic orientation. From the very begin-
ning mathematical development was intimately related to studies of astronomical
measurement and calendrical reckoning. The first written text containing serious
mathematics,Zhoubi Suanjing(Zhou Gnomon Classic of Calculation) compiled
at about 100BCE—with its content dated to earlier times, was basically a text in
astronomical study. In an ancient society based on agriculture, calendrical reckon-
ing was always a major function of the government. Along withthat, mathematics
was performed mainly for bureaucratic needs. A sixth century mathematics clas-
sic actually carried the titleWucao Suanjing(Mathematical Manual of the Five
Government Departments). The titles of the nine chapters of the most important
mathematical classicJiuzhang Suanshu(Nine Chapters on the Mathematical Art),
which is believed to have been compiled some time between 100BCE and 100CE,
speak for themselves. These are (1) survey of land, (2) millet and rice (percentage
and proportion), (3) distribution by progression, (4) diminishing breadth (square
root), (5) consultation on engineering works (volume of solid figures), (6) im-
partial taxation (allegation), (7) excess and deficiency (Chinese “Rule of Double
False Positions”), (8) calculating by tabulation (simultaneous equations), (9) gou-
gu (right triangles). The social relevance of the content ofmathematical classics
was so plentiful that historians have found in the texts a valuable source for trac-
ing the economy, political system, social habits, and legalregulations of the time!
The emphasis on social relevance and pragmatic orientation, in line with a basic
tenet of traditional Chinese philosophy of life shared by the class of “shi” (intel-
lectuals), viz. self-improvement and social interaction,was also exhibited in the
education system in which training in mathematics at official schools was intended
for government officials and clerks.4

Finally let us come to the issue of mathematical proofs. “If one means by a proof
a deductive demonstration of a statement based on clearly formulated definitions
and postulates, then it is true that one finds no proof in ancient Chinese mathe-
matics, nor for that matter in other ancient oriental mathematical cultures.. . . But
if one means by a proof any explanatory note which serves to convince and to en-
lighten, then one finds an abundance of proofs in ancient mathematical texts other
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than those of the Greeks.”5 The Chinese offered proofs through pictures, analo-
gies, generic examples, and algorithmic calculations. These can be of pedagogical
value to complement and supplement the teaching of mathematics with traditional
emphasis on deductive logical thinking.

Jiuzhang Suanshu

Jiuzhang Suanshuis the most important of all mathematical classics in China.It
is a collection of 246 mathematical problems grouped into nine chapters. There is
good reason to believe that the content ofJiuzhang Suanshuwas much older than
its date of compilation, as substantiated by an exciting archaeological finding in
1983 when a book written on bamboo strips bearing the titleSuanshu Shu(Book on
the Mathematical Art) was excavated6 . It is dated at around 200BC and its content
exhibits a marked resemblance to that ofJiuzhang Suanshu, including even some
identical numerical data which appeared in the problems. The format ofJiuzhang
Suanshubecame a prototype for all Chinese mathematical classics inthe subse-
quent one-and-a-half millennia. A few problems of the same category were given,
along with answers, after which a general method (algorithm) followed. In the very
early edition that was all and no further explanation was supplied—perhaps it was
to be supplied by the teacher. Later editions were appended with commentaries
which explained the methods, corrected mistakes handed down from the ancients,
or expanded the original text. The most notable commentatorof Jiuzhang Suanshu
was Liu Hui (c. third century), some of whose works will be examined in the next
section.

The format ofJiuzhang Suanshumay lead one to regard the book as a medley of
recipes for solving problems of specific types. Indeed many who studied from the
book in accordance with the official system in ancient China might have actually
regarded the book as such and thus resorted to rote learning just like in recita-
tion of other classics. This may explain why only a handful ofmathematicians
of some standing were produced from the tens of thousands of “mathocrats” who
went through mathematical training in the official system during two millennia,
while most noted mathematicians in history were either self-educated or studied at
private academies7.

However, upon closer scrutiny, the text reveals itself as quite different from a
book of recipes. The body of knowledge contained in a classicsuch asJiuzhang
Suanshuis structured around several themes, the two main themes being the con-
cept of “lu” (£, ratio) in arithmetic and the concept of “gou-gu” (9ô) right
triangle) in geometry. A brief description on how ratio forms a backbone for most
chapters will now be given, while right triangles will be left to the next section.
In the commentary of Chapter 1, Liu Hui gave a definition: “a ratio is a rela-
tion between numbers.”8 He continued to offer a working definition of ratio by
representing it as a reduced fraction. To reduce a fraction the rule of “reciprocal
subtraction,” known to Westerners as the Euclidean algorithm, was introduced.

If both numerators and denominators are divisible by 2, thenhalve them both.
If they are not both divisible by 2, then set up the numbers fornumerator and
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denominator respectively continually and alternately subtracting the smaller
from the larger, and seek their equality.

This is a good illustration of how the calculation itself is already a proof (or con-
vincing argument), as can be seen from Problem 6 of Chapter 1:

Reduce the fraction49
91

.

(49, 91) → (49, 42) → (7, 42) → (7, 35)

→ (7, 28) → (7, 21) → (7, 14) → (7, 7).

Hence49 = 7 × 7, 91 = 7 × 13, and 49

91
= 7

13
. At the beginning of Chapter

2 Liu Hui explained the so-called “Rule of Three” (also foundin contemporary
Indian manuscripts), which enables one to apply the conceptof ratio to a number
of situations, including distribution in direct proportions or in inverse proportions
(Chapters 3, 6), formulation and treatment of problems in excess and deficiency,
i.e., the method of “double false positions” (Chapter 7), and systems of simultane-
ous linear equations (Chapter 8). Although the Chinese terminology “fangcheng”

which is the title of Chapter 8, was adopted as a translation for “equation”
towards the end of the last century (and has become a standardterm today) for
a wrong but historically interesting reason,9 the spirit of Chapter 8 lies rather in
the direction of ratio than in the direction of equation. In the light of ratios, the
technique amounting to the modern matrix method by Gaussianelimination arises
naturally.

In ending this section consider an example after the style ofJiuzhang Suanshu
which blends together social relevance, ratio and even an application in statistical
sampling. It is Problem 6 of Book 12 ofShushu Jiuzhang(Mathematical Treatise
in Nine Sections) by Qin Jiushao, published in 1247:

When a peasant paid tax to the government granary in the form of 1534 shi of
rice, it was found out on examination that a certain amount ofrice with husks
was present. A sample of 254 grains was taken for further examination. Of
these 28 grains were with husks. How many genuine grains of rice were there,
given that one shao contains 300 grains?

(In the mensuration system of the Song Dynasty,1 shi = 10 dou = 100 sheng =
1000 he = 10000 shao. According to tradition recorded inJiuzhang Suanshu, a
grain of rice with husk was counted as half a grain of rice.) The answer was given to
be4,348,346,456 grains, out of the original1534× 10000× 300 = 4,602,000,000
grains.

Some Examples and Their Solution Methods10

(1) Problem 14 of Chapter 9 ofJiuzhang Suanshuis a word problem on right
triangles:

Two persons A (Jia) and B (Yi) stood at the same spot. In the time when A
walked 7 steps, B could walk 3 steps. B walked east and A walkedsouth.
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After 10 steps south A turned to walk in a roughly northeast direction to meet
B. How many steps had each walked (when they met)?

The rule that follows the problem essentially gives the ratio of the lengtha, b, c of
the three sides of a right triangle withc as that of the hypotenuse, viz.

a : b : c =
1

2
(m2 − n2) : mn :

1

2
(m2 + n2),

wherem : n = (a + c) : b. In this problem,m = 7, n = 3 anda = 10. Hence
a : b : c = 20 : 21 : 29 andb = 101

2
, c = 141

2
. The mathematical meaning of this

result goes much deeper than just an answer to the problem as it stands, for it offers
a way to generate the so-called Pythagorean triplets, i.e.,(positive) integersa, b, c
with a2+b2 = c2. While no explicit formula for Pythagorean triplets was stated by
the ancient Chinese, they were quite well-versed in these problems in which their
Greek contemporaries were also interested, and in ancient Chinese mathematics
arithmetic and geometry were intertwined through calculation. The achievement
becomes all the more astounding if one notes that the ancientGreeks were aware of
the notions of prime number and factorization while their Chinese contemporaries
were not. Instead, the Chinese adopted a geometric viewpoint by looking for two
quantities with suitable geometric interpretation in terms of whicha, b, c can each
be rationally expressed. In the case of Problem 14, the two quantities are the sum
of the length of one side and the hypotenuse(a + c) and the length of the third
side(b). The explanation offered by Liu Hui can be illustrated as in Figure 2. In
his commentary Liu Hui actually described in detail how to make use of colored
pieces and to reassemble them for a convincing argument. If the original diagrams
of the commentary were extant, they would make nice visual aids!

From Figure 2 we can see that

c : a : b = S : T : U

= 1

2

[

(a + c)2 + b2
]

: (a + c)2 − 1

2

[

(a + c)2 + b2
]

: (a + c)b.

Hence

a : b : c = 1

2

[

(a + c)2 − b2
]

: (a + c)b : 1

2

[

(a + c)2 + b2
]

= 1

2
(m2 − n2) : mn : 1

2
(m2 + n2),

where(a + c) : b = m : n.
The influence of this prototype classic ofJiuzhang Suanshucan be found in later

work, for example Problem 2 of Chapter 5 ofShushu Jiuzhangby Qin Jiushao,
published more than a thousand years later:

A triangular field has sides of length 13 miles, 14 miles and 15miles. What
is its area?

The solution was given in the book as (in modern day mathematical notations)

(Area)2 =
1

4

[

A2C2 −

(

A2 + C2 − B2

2

)2
]
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a

b
c

a c

c

a

c

c

c

a c

c

c

a

a

c

b

a c+

S

T

U

Figure 2

whereA, B, C are the length of the three sides in decreasing magnitude. This is
a rare gem in Chinese mathematics because this was perhaps the one occurrence
of a triangle other than a right triangle in all Chinese mathematical texts before
the transmission of Euclid’sElementsinto China.11 A probable derivation of the
formula by Qin Jiushao is as follows.12 First note that, from our preceding example,

a

b
=

1

2

[

(a + c)2 − b2
]

/(a + c)b,

so that

a =
1

2

[

(a + c) −

(

b2

a + c

)]

.

Construct a right triangle with sides of lengtha, b, c (c is the hypotenuse) where
a, c are lengths as shown in Figure 3. SinceC2 − a2 = h2 = B2 − c2, we have
B2 − C2 = c2 − a2 = b2. Hence

a =
1

2

[

(a + c) −

(

b2

a + c

)]

=
1

2

[

A −
B2 − C2

A

]

=
1

2

[

A2 + C2 − B2

A

]

.



8 Using History to Teach Mathematics: An International Perspective

Finally,

(Area)2 =
1

4
h2A2 =

1

4
(C2 − a2)A2 =

1

4
(A2C2 − a2A2)

=
1

4

[

A2C2 −

(

A2 + C2 − B2

2

)2
]

.

a

b

c

a

c
B

A

C

h

Figure 3

(2) Early Chinese calculation ofπ is given in Problem 32 of Chapter 1 ofJi-
uzhang Suanshu:

A circular field has a perimeter of 181 steps and a diameter of 60 and 1/3
steps. What is its area?

The answer was given as “the area equals half the perimeter times half the diam-
eter”. This is a correct formula, as one can easily check thatA = (1

2
C)(1

2
d) =

(1

2
C)(r) = (πr)(r) = πr2. The data in this problem imply the formulaC = 3d,

which meansπ was then taken to be 3. In his commentary, Liu Hui explained why
the formula is reasonable and pointed out how to obtain a moreaccurate value for
π. He said:

In our calculation we use a more accurate value for the ratio of the circum-
ference to the diameter instead of the ratio that the circumference is 3 to the
diameter’s 1. The latter ratio is only that of the perimeter of the inscribed
regular hexagon to the diameter. Comparing arc with the chord, just like
the bow with the string, we see that the circumference exceeds the perime-
ter. However, those who transmit this method of calculationto the next
generation never bother to examine it thoroughly but merelyrepeat what
they learned from their predecessors, thus passing on the error. Without
a clear explanation and definite justification it is very difficult to separate
truth from falsity.
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In this passage we see a truly first-rate mathematician at work, who probes into
knowledge handed down and seeks understanding and clarification, thereby ex-
tending the frontier of knowledge. In modern day mathematical language Liu Hui’s
method is as follows. Put

An = area of an inscribed regularn-gon in a circle of radiusr,
an = length of a side of the inscribed regularn-gon,
Cn = perimeter of the inscribed regularn-gon.

r
q

a12

Figure 4

Starting with a regular hexagon(n = 6) and doubling the number of sides, Liu
Hui enlarged it to a regular 12-gon, then a regular 24-gon, then a regular 48-gon,
and so on, up to a regular 192-gon. He observed thatA12 = 3a6r = 1

2
C6r, A24 =

6a12r = 1

2
C12r, A48 = 12a24r = 1

2
C24r, etc. He also knew that this was not

the end but only the first few steps in an approximation process. He claimed, “the
finer one cuts, the smaller the leftover; cut after cut until no more cut is possible,
then it coincides with the circle and there is no leftover.” We see here the budding
concepts of infinitesimal and limit. He even gave an estimate, viz.

A2m < A < A2m + (A2m − Am),

as can be seen from Figure 4. With this he concluded that “ultimately” A = 1

2
Cr.

He also carried out the computation for findingA192. In doing that he first estab-
lished the formula

a2n =

√

√

√

√

[

r −

√

r2 −
(an

2

)2

]2

+ (an/2)2.

A modern computer can obtainA192 = 3.141032 (with r = 1) with error term
0.001681. Imagine how Liu Hui did it with only the help of counting rodsover 17
centuries ago, obtainingA192 = 314 64

625
(with r = 10). Effectively he calculated

π accurate to two decimal places13.
(3) The algorithmic feature of ancient Chinese mathematics canbest be il-

lustrated by the method of solving simultaneous linear congruence equations. In
abstract algebra there is a fundamental result known as the “Chinese Remainder
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Theorem”. Its name comes from a concrete instance, viz. Problem 26 of Chapter
3 of Sunzi Suanjing(Master Sun’s Mathematical Manual), (c. 4th century):

There are an unknown number of things. Counting by threes we leave 2;
counting by fives we leave 3; counting by sevens we leave 2. Find the number
of things.

The problem became quite popular and appeared under different names. In a much
later textSuanfa Tongzong(Systematic Treatise on Arithmetic) of Cheng Dawei,
published in 1592, there appeared even a poem about it: “T’ishard to find one
man of seventy out of three. There are twenty-one branches onfive plum blossom
trees. When seven persons meet, it is in the middle of the month. Discarding one
hundred and five, the problem is done.” The poem conceals the magic numbers
70 (for 3), 21 (for 5), 15 (for 7) of this specific problem, whose general answer is
2×70+3×21+2×15 plus or minus any multiple of105 = 3×5×7. In general,
the problem is to solve a system of linear congruence equations

x ≡ ai modmi, i ∈ {1, 2, . . . , N}.

Mathematicians were led to investigate linear congruencesbecause of calendrical
reckoning and had become quite deft in handling them. Already in this specific
problem we can see a very significant step made, viz. reduction of the problem
to solvingx ≡ 1 modmi, x ≡ 0 modmj for j 6= i (the solution to the original
problem being a suitable “linear combination” of the solutions of these different
systems). The investigation was completed by Qin Jiushao who named his method
the “Dayan art of searching for unity” in hisShushu Jiuzhang(1247). He showed
how to find a set of magic numbers for making the “linear combination”. Consider
the case when themi’s are mutually relatively prime, using modern notations. (Qin
Jiushao also treated the general case.) It suffices to solve separately single linear
congruence equations of the formkb ≡ 1 modm by puttingm = mi and b =
(m1 · · ·mN )/mi. The key point in the method Qin Jiushao employed to findk
is to find a sequence of ordered pairs(ki, ri) such thatkib ≡ (−1)iri modm
and theri’s are strictly decreasing. At some pointrs = 1 but rs−1 > 1. If s
is even, thenk = ks will be a solution. Ifs is odd, thenk = (rs−1 − 1)ks +
ks−1 will be a solution. This sequence of ordered pairs can be found by using
“reciprocal subtraction” explained inJiuzhang Suanshu, viz., ri−1 = riqi+1 +ri+1

with ri+1 < ri (the process will stop before one reaches the caseri+1 = 0), and
put ki+1 = kiqi+1 + ki−1. (Put k

−1 = 0, r
−1 = m, k0 = 1, r0 = b.) The

way the ancient Chinese performed the calculation was even more streamlined and
convenient, since they put consecutive pairs of numbers at the four corners of a
board using counting rods, starting with

1 b

0 m
, going to

k 1

∗ ∗
.

The procedure was stopped when the upper right corner becamea 1, hence the
name “searching for unity”. A typical intermediate step will look like
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ki ri

ki−1 ri−1

−→
ki ri

ki−1 ri+1

−→
ki ri

ki+1 ri+1

, if i is even

or

ki−1 ri−1

ki ri

−→
ki−1 ri+1

ki ri

−→
ki+1 ri+1

ki ri
, if i is odd.

One can see how the positions on a board of counting rods help to fix ideas. In
fact, the procedure outlined inShushu Jiuzhangcan be phrased word for word as a
computer program!
(4) An example on the lighter side is Problem 34 of Chapter 3 ofSunzi Suanjing:

One sees 9 embankments outside; each embankment has 9 trees;each tree
has 9 branches; each branch has 9 nests; each nest has 9 birds;each bird has
9 young birds; each young bird has 9 feathers; each feather has 9 colours.
How many are there of each?

The problem, an easy exercise in raising a number to certain powers, is not of much
interest in itself. What is interesting is the frequent occurrence of such problems
of a recreational nature in all mathematical civilizations. The medieval European
mathematician, Leonardo Fibonacci posed a problem in his book “Liber Abaci”
(1202)14:

Seven old women went to Rome; each woman had seven mules; eachmule
carried seven sacks; each sack contained seven loaves; and with each loaf
were seven knives; each knife was put up in seven sheaths. Howmany are
there, people and things?

It reminds us of a children’s rhyme: “As I was going to Saint Ives, I met a man with
seven wives. Every wife had seven sacks. Every sack had sevencats. Every cat had
seven kits. Kits, cats, sacks and wives, how many were there going to Saint Ives?”
And then there was that similar Problem 79 in the oldest extant mathematical text,
the Rhind Papyrus of ancient Egypt (c. 17 centuryBC)15:
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Houses 7
Cats 49
Mice 343
Heads of wheat 2301
Hekat measures 16807

19607

David Hilbert (1862–1943) once said, “Mathematics knows noraces.. . . For math-
ematics, the whole cultural world is a single country.”16
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1 At the end of the sixteenth century the first wave of dissemination of European science in China
began. What happened after the sixteenth century, the vicissitude of indigenous mathematical devel-
opment and its integration with transmitted western mathematics, form a fascinating topic in itself,
but will not be discussed in this article.
2 This article is based on an introductory lecture scheduled for the conference on História e Educação
Matemática (Braga, Portugal, 24–30 July 1996). Circumstances prevented the author from attending.
The lecture was instead given by Mr. Chun-Ip Fung, to whom theauthor owes his thanks.
3 A typical passage can be found in the preface toShushu Jiuzhangby Qin Jiushao (1247). The
discussion in this article will be confined to “external mathematics” owing to the author’s ignorance
of the aspect of “internal mathematics”.
4 For further discussion of mathematics education in ancientChina, see: M. K. Siu, Mathematics
education in ancient China: What lesson do we learn from it?Historia Scientiarum, 4–3 (1995), 223–
232. See also Chapter 1 in: F. Swetz,Mathematics Education in China: Its Growth and Development,
MIT Press, Cambridge 1974.
5 This is quoted from: M. K. Siu, Proof and pedagogy in ancient China: Examples from Liu Hui’s
commentary onJiuzhang Suanshu, Educational Studies in Mathematics, 24 (1993), 345–357. The
paper contains a number of illustrative examples.
6 It was reported in, for instance: Li Xueqin, A significant finding in the history of ancient Chi-
nese mathematics: A glimpse at the Han bamboo strips excavated at Zhangjiashan in Jiangling (in
Chinese),Wenwu Tiandi, 1 (1985), 46–47.
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7 Such a statement has to be taken with a grain of salt! A better perspective can only be gained
when one views mathematical development against a broader socio-cultural background at the time.
In particular, the community of “mathematicians” in ancient China was not a well-defined recog-
nized group of scholars. The author is in the process of studying, in collaboration with A. Volkov,
mathematical activities in ancient China in this wider context.
8 Compare this with Definition 3 of Book 5 of Euclid’sElements: “A ratio is a sort of relation in
respect of size between two magnitudes of the same kind”.
9 This might have to do with the promulgation of the thesis of “Chinese origin of Western knowledge”
in the Qing Dynasty in an effort to reassert the role of indigenous mathematics. A detailed discussion
is beyond the scope of this article.
10 Specific reference to each problem is omitted. Most statements of these problems are translated by
the author. But there do exist translated texts forSunzi Suanjing(L. Y. Lam and T. S. Ang,Fleeting
Footsteps: Tracing the Conception of Arithmetic and Algebra in Ancient China, World Scientific,
Singapore, 1992),Shushu Jiuzhang(U. Libbrecht, “Chinese Mathematics in the Thirteenth Century:
The Shu-shu Chiu-chang of Ch’in Chiu-shao, MIT Press, Cambridge, 1973) andJiuzhang Suanshu
(K. Vogel, “Neun Bücher Arithmetischer Technik”, Friedr.Vieweg & Sohn, Braunschweig, 1968).
A French translation and an English translation ofJiuzhang Suanshuare under preparation.
11 One naturally calls to mind the formula by the Greek mathematician Heron of Alexandria (c. 1st
century), viz.

(Area)2 = S(S − A)(S − B)(S − C)

whereS = (A + B + C)/2. Indeed, the two formulas are equivalent.
12 It is interesting to compare it with the proof of Heron by synthetic geometry, which can be found
in, for instance: I. Thomas,Greek Mathematical Works, II, Harvard University Press, 1939; reprinted
with additions and revisions, 1980, pp. 471–477.
13 It is interesting to compare this computation ofπ with that by Archimedes, which can be found
in, for instance: R. Calinger (ed),Classics of Mathematics, Moore Publishing, 1982; Prentice-Hall,
1995, pp. 137–141.
14 See: H. Eves,An Introduction to the History of Mathematics, 4th edition, Holt, Rinehart & Win-
ston, New York, 1976, pp. 43–44.
15 See: A.B. Chace,The Rhind Mathematical Papyrus, Mathematical Association of America, Ober-
lin, 1927–29; reprinted by the National Council of Teachersof Mathematics, Reston, 1978, p. 59.
16 See: Constance Reid,Hilbert, Springer-Verlag, Heidelberg, 1970, p.188.


