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1.  Introduction 

 

When one of the authors of this paper met Trevor Fletcher in the symposium “One 

Hundred Years of L’Enseignement Mathématique” held in Genève in October of 2000, he 

received a piece of excellent advice from the notable mathematics educator, namely, that a 

fundamental task of the teacher of mathematics is to let students experience the intellectual life 

that the teacher really lives.  To this date this piece of advice still rings in his ears.  Fletcher 

placed this quote (from E.E. Moise) at the forefront of his paper of forty years ago that bears the 

title “Is the teacher of mathematics a mathematician or not?” (Fletcher, 1975)  In this paper we 

attempt to answer this question.  More generally this paper is a reflection on the making of a 

“good” teacher of mathematics in terms of the nature of mathematical activities that a teacher is 

likely to be engaged in, the mental processes thus entailed, and the repertoire of mathematical 

knowledge enabling these processes to be carried out successfully.  Fletcher’s paper mentions 

four areas the professional academic training of a teacher should pay attention to: (i) translation 

of mathematics from one form to another, (ii) structural ideas as applied to elementary teaching, 

(iii) description of children’s learning processes in mathematics, (iv) applications of mathematics.  

To keep this paper within reasonable length and to provide a clearer focus we will not touch 

upon the last two areas.  For the same reasons we will not dwell too much on the pedagogical 

implementation of the four illustrative examples which we will give after having sketched a 

theoretical basis. 

 

This paper is a substantially expanded version of the text of an invited talk given by one 

of the authors at the 4
th

 Asian Mathematical Conference held in Singapore in July of 2005 (Fung, 

& Siu, 2005).  In a broad sense this paper is a footnote to the proposals from three eminent 

mathematics educators: the art of teaching and problem solving of George Pólya (Pólya, 1954a; 

1961/1965), the process of mathematising of Hans Freudenthal (Freudenthal, 1973;1991), and 

the theory of substantial learning environment of Erich Wittmann (Wittmann, 1995; 2001).  

Closely related topics are also discussed by some other authors, notably Deborah Ball and 

Hyman Bass (Ball, Lubienski, & Mewborn, 2001; Ball, Hill, & Bass, 2005: Bass, 2005).  In his 

plenary address at the ICME 2004 held in Copenhagen Bass addresses to the question of “what 

kinds of mathematical problem teachers have to solve in the course of their daily work, and what 

kinds of mathematical resources they deploy in solving those problems” (Bass, 2005).   
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2.  Some theoretical background 

 

George Pólya maintains that “ […] first and foremost, it should teach young people to 

think” (Pólya 1963).  The hard part lies not just in the thinking process but more so in engaging 

the student in active participation in the thinking process.  Pólya criticized severely the lacking 

of research experience of prospective mathematics teachers. 

 

“If, however, the teacher has had no experience in creative work of some sort,  

how will he be able to inspire, to lead, to help, or even to recognize the creative 

activity of his students?  A teacher who acquired whatever he knows in 

mathematics purely receptively can hardly promote the active learning of his 

students.  A teacher who never had a bright idea in his life will probably 

reprimand a student who has one instead of encouraging them.” (Pólya, 

1961/1965) 

 

The main thesis of Pólya is that teachers should be proficient problem solvers themselves before 

they could cultivate this quality among students.  Indeed, if nobody would like to have their 

children be taught music by someone who has never played a musical instrument, nor be taught 

drawing by someone who has never done a painting, why would they like to have their children 

be taught mathematics by someone who has never solved a mathematical problem?  Pólya went 

a step further in recommending that mathematics teacher educator should, apart from other 

requirements, “have had some experience, however modest, of mathematical research” (Pólya, 

1961/1965).  In his works, Pólya gave many examples to illustrate, albeit only implicitly, the 

importance of research capability of a teacher when confronted with a classroom problem 

solving situation (Pólya, 1954a; 1954b; 1961/1965).  We will try to append his list with some 

examples that stem from the context and organization of teaching, which carry less classroom 

problem-solving flavour, and which serve to illuminate the other less-addressed facets of 

mathematics teaching.  We want to add that there are other pedagogical needs, apart from 

demonstrating a genuine problem solving process, which require the teacher to be a proficient 

mathematical problem solver.  These needs also tap on the teacher's ability to pose, analyze, and 

solve problems, yet not necessarily in exactly the same way as what the professional 

mathematician does. 

 

Regarding the learning of mathematics, Hans Freudenthal drew our attention to the 

process of mathematising which, in his opinion, should form the basis of the organization of 

mathematics and its teaching (Freudenthal, 1973; 1991).  He regarded the process of 

mathematising as the path leading to the re-invention of mathematics by the learner.  

Freudenthal once said, “Children should repeat the learning process of mankind, not as it 

factually took place but rather as it would have done if people in the past had known a bit more 

of what we know now.” (Freudenthal, 1991)  This seemingly paradoxical and baffling passage 

would be better understood when read together with Freudenthal’s elaboration that a pupil should 

re-invent mathematics through a process in which the pupil is engaged in an activity where 

experience is described, organized and interpreted by mathematical means.  The crucial word is 

“re-invent”, which implies that teaching is a kind of guided learning through exploration and 

discovery by the students but not just a rambling on their own.  As such, the teacher has to 

design the classes with care and preparation.  Just like a good tour guide, the teacher has to be 
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sufficiently knowledgeable and flexible to face unexpected twists and turns, so the teacher must 

know more than what is to be taught.  It follows readily that the context in which the 

mathematics to be learned is re-invented, the curriculum structure within which a specific topic 

is visited or re-visited, and the platform on which teaching is carried out, are not, in any sense, 

less important than the cognitive state of the learner.  To this end, the teacher must take into 

account the context in which learning takes place, the structure of the curriculum within which a 

specific topic is studied, as well as the process of mathematising through which mathematical 

knowledge is re-invented.  Moreover, there is an implicit requirement on the design of teaching 

that stresses an evolutionary perspective.  It follows that design of teaching should take good 

care of students' experience, knowledge background, and mode of thinking (including common 

mistakes). 
 

It fits in well with what Erich Wittmann proposes as a “substantial learning environment”.  

Wittmann proposed a systemic-evolutionary approach to mathematics education, which rests 

upon the engagement of both the teacher and the students in a substantial learning environment 

characterized by the following properties (Wittmann, 2001): 

 

   (1).  It represents central objectives, contents and principles of teaching mathematics 

        at a certain level.   

   (2).  It is related to significant mathematical contents, processes and procedures 

        beyond this level, and is a rich source of mathematical activities (italics 

        original). 

   (3).  It is flexible and can be adapted to the special conditions of a classroom.   

   (4).  It integrates mathematical, psychological and pedagogical aspects of teaching 

        mathematics, and so it forms a rich field for empirical research  

 

Wittmann went a step further to argue that mathematics education should be viewed as a 

systemic evolutionary design science, the core of which is the production and rigorous scrutiny 

of teaching units.  He calls any flexible instructional design that covers central objectives, 

contents and principles of teaching mathematics at a certain level, and relates to significant 

mathematical contents, processes and procedures beyond this level, a substantial learning 

environment (Wittmann, 1995, 2001).  Coupled with Freudenthal's notion of mathematsing, we 

take the stand that a substantial environment should be a rich source of mathematical activities 

through which students are engaged in the process of mathematising.  In order that substantial 

learning environments could be developed and applied in the classroom, capability of the school 

teacher in carrying out research is important, not in the usual manner taken by a researcher of 

mathematics, but in terms of the teacher's ability to mathematise the learning context, design 

illustrative examples, scrutinize concepts and arguments, and sequence teaching in a sensible 

way.  Hence, a school teacher cannot confine his or her attention to the content of the school 

textbook but has to know more and better.  There is a popular saying: “To give a glass of water 

to a student, the teacher has to have a bucket of water.” 

 

To be able to surf freely in such a substantial learning environment, a teacher needs to 

possess a certain frame of mind, a certain attitude, and a certain store of knowledge.  In (Siu, 

Siu, & Wong, 1993) this kind of teacher is referred to as “scholar-teacher”.  Will a mathematics 

major that graduates with academic distinction necessarily be such a teacher?  It seems that the 
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answer is not always in the affirmative.  What is needed besides the mastery of the knowledge 

of the subject?  This point has already been discussed by Lee Shulman by introducing the 

notions of subject matter knowledge and pedagogical content knowledge (Shulman,1986).  

These notions, explicated by Shulman, complement and supplement the viewpoints raised by the 

three mathematics educators outlined above (Shulman, 1986).  Deborah Ball and Hyman Bass 

introduce the term mathematical knowledge for teaching, by which they mean “the mathematical 

knowledge, skills, habits of mind, and sensibilities that are entailed by the actual work of 

teaching” (Bass, 2005).  In addition, “in mathematics proper, mere technical knowledge is not 

the objective. Emphasis should be placed on relationship between topics, the ‘interface’ between 

advanced mathematics and elementary mathematics, the critical and the evaluative function in 

appreciating the power, the beauty and the limitation of mathematics.” (Siu, Siu, & Wong, 1993) 

 

To be a ‘scholar-teacher’ a school teacher in mathematics would do well to engage in 

research.  We like to go a step further to elaborate, through examples, the following statement: 

“If the process of mathematising is the major orientation of teaching, and that teaching is seen to 

be the design and management of substantial learning environments, then the research capability 

of the teacher is important, not in the usual spirit taken by researchers of mathematics, but in 

terms of the teacher’s ability to analyze teaching material, design teaching sequence, and make 

sensible pedagogical decision.  We reiterate that this kind of research, though similar in spirit as 

that of researcher in mathematics, can be quite different in form and content. This is because a 

school teacher has to explain mathematics in a language and at a level of sophistication suitable 

to the mental development of school pupils.  Mathematics learn in the university provides the 

background and the general upbringing in the discipline, but it needs research experience of the 

kind we like to stress to enable a teacher to design the teaching sequence in the classroom to 

enhance learning and understanding.  This kind of research in mathematics will enable a teacher 

to design the teaching sequence and to enhance the learning and understanding in the classroom.” 

(Fung, & Siu, 2005; Siu, 2007)  

 

3.  The kind of research we have in mind 

 

For a didactical design we borrow from Herbert Simon the terms inner environment and 

outer environment (Simon, 1996).  The former consists of the internal logic upon which the 

design is made, the pedagogical concern implied by the cognitive background of the targeted 

learners, and the constraints imposed by the physical environment in which teaching is carried 

out.  The latter includes the teaching materials, instructions given the teacher, the interactions 

thus generated, and the physical environment where teaching actually occurs.  Good teachers do 

need to solve a variety of mathematical problems, ranging from the architecture of the inner 

environment to the implementation of teaching in the outer environment.  The four examples 

given in this paper focus on the former, which constitutes a substantial portion of the preparation 

work of a good teacher, and which attracts relatively less attention in the research community.  

On comparing the problem solving activity of a research mathematician and a mathematics 

teacher, we arrive at the following features summarized in the following table: 
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Research mathematician’s 

problem solving activity 

Teacher’s problem solving 

activity 
Tackling problems at the frontier of the 

academic discipline  

Tackling problems arising from instructional 

needs 

Tackling problems which have not been 

solved before in the literature 

Tackling problems which may or may not 

have not been solved before in the literature 

Usually strive for the most general format Sometimes specific methods applied to handle 

a particular case is more preferred 

Could use whatever mathematical knowledge 

available in the literature 

Constraints restricting the use of certain 

mathematical knowledge or tool often appear 

Elegant development is often preferred For the sake of mathematising, the most 

elegant line of development is sometimes 

deliberately avoided 

 

One important message underlying this comparison is that two kinds of activity resemble each 

other to a great extent, though the level of sophistication and knowledge base of the two are 

significantly different. 

 

To carry out the kind of research described above we should note a certain amount of 

unidentified subtlety regarding the relation between the learning of advanced mathematics and 

the teaching of school mathematics.  Almost a century ago, Felix Klein was very much aware of 

the so-called “double discontinuity” between school and university mathematical experience 

(Klein, 1908/1924): 

 

“The young university student found himself, at the outset, confronted with problems which did 

not suggest in any particular, the things with which he had been concerned at school.  Naturally 

he forgot these things quickly and thoroughly.  When, after finishing his course of study, he 

became a teacher, he suddenly found himself expected to teach the traditional elementary 

mathematics in the old pedantic way; and, since he was scarcely able, unaided, to discern any 

connection between this task and his university mathematics, he soon fell in with the time 

honored way of teaching, and his university studies remained only a more or less pleasant 

memory which had no influence upon his teaching.” (Klein, 1908/1924) 

 

One of the authors empahasizes this university-school interaction in a presentation at the 

ICMI Centennial Symposium held in Rome in March of 2008 (Menghini, Furinghetti, Giacadri, 

& Arzarello, 2008).  See also (Buchholtz, Leung, Ding, Kaiser, Park, & Schwarz, 2013).  The 

situation is not unlike a lift going up and down a building with four floors — kindergarten on the 

ground floor, primary school on the first floor, secondary school on the second floor and 

university on the fourth floor.  The lift serves to soften the “double discontinuity”.  

Engagement in “research” by a school teacher is like maintenance of the lift to keep it running in 

good shape! 

 

4.  Some selected examples 

 

The remaining part of this paper is to examine, through the selection of suitable examples, 

some questions a teacher is likely to be confronted with and the mental processes thus initiated 
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during instructional planning.  Collectively these examples serve to illustrate the features 

outlined in the table of the previous section.  Before going to specific examples gleaned from 

our teaching experience in the classroom let us first look at two examples gleaned from ancient 

historical documents that illustrate the underlying theme. 

 

The first example is about a very ancient artifact, a famous Babylonian tablet known as 

Plimpton 322 that dated back to the Old Babylonia Kingdom around the 18
th

 century B.C.E.  

When it was first discovered, people thought that it was simply a page of business transaction, 

because the columns of numbers that were imprinted on the tablet looked erratic (see Figure 1, 

where the incorrect engraved numbers are corrected in brackets). 

 

 
 

Figure 1 

  

In 1945 two historians of mathematics, Otto Neugebauer and Abraham Sachs, came up with the 

astounding discovery that the tablet is a table of the so-called Pythagorean triplets, three sides of 

a right triangle all in integers, and even arranged in some nice order! 

 

There have been different theories concerning the origin of this tablet.  This is not the 

place to go into a discussion of this controversial problem in the study of history of mathematics.  

We find a theory, offered by the Oxford historian of mathematics Eleanor Robson in 2001, 

particularly pertinent to this paper.  She says, “Mathematics is, and always has been, written by 

real people, within particular mathematical cultures which are themselves the products of the 

society in which those writers of mathematics live. […] I present an alternative interpretation. 

[…] My argument does not rest on Holmesian internal mathematical inferences alone, but 

instead draws on cultural, linguistic, and archaeological evidence too.  […] So we are left, […], 

with an educational setting for mathematical creativity: new problems and scenarios designed to 

develop the mathematical competence of trainee scribes.” (Robson, 2001)  It is a repertoire for 

designing problems to develop the mathematical competence of trainee scribes — to set up 

problems involving right triangles with integral sides for ease of computation!  If that is true, 

then Plimpton 322 is perhaps the oldest extant document of the kind of “research” we have in 

mind to be carried out by school teachers! 

The second example is well-known, namely, the proof of the Pythagorean Proposition (in 

Chinese textbooks known as the Gou-gu Theorem) in Euclid's Elements (Proposition 47 of Book 

I).  However, we like to look at it from a pedagogical rather than from a historical or 

mathematical viewpoint.  Let ΔABC be a right triangle with BC as the hypotenuse and let 
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squares ABHI, BCEF and ACJK be erected on each side and outside of the triangle.  The 

proposition says that ABHI and ACJK add up to BCEF (in area).  In the proof in Book I of 

Elements (Heath, 1925) a perpendicular line is dropped from A to BC, cutting BC at D and FE at 

G.  AF and CH are constructed (see Figure 2a). 

 

 
(a) (b) 

Figure 2 

 

The crux of the proof is to show that ABHI = BDGF ; by showing that ABHI = 2 ΔHBC and 

BDGF = 2 ΔABF and that ΔHBC = ΔABF (because the two triangles are actually congruent).  A 

similar argument shows that ACJK = CDGE.  Hence ABHI + ACJK = BDGF + CDGE = BCEF.  

So far, so good, until when a curious pupil asks, “How come you drop that perpendicular line AD 

and construct the lines AF, CH?"  A more general result, logically speaking the same result, 

appears as Proposition 31 in Book VI of Elements: A polygon on the hypotenuse BC of a right 

triangle ΔABC is equal to the sum of similar and similarly situated polygons on the other two 

sides (Heath, 1925).  The proof looks quite different (at first sight).  Drop a perpendicular line 

(again?) from A to BC, cutting BC at D (see Figure 2b).  The crux is to show that CB : BA = AB : 

BD and CB : CA = CA : CD by showing that ΔCBA ~ ΔABD and ΔCBA ~ ΔCAD.  From this we 

obtain 𝐶𝐵2 ∶  𝐴𝐵2 = 𝐶𝐵 ∶ 𝐵𝐷 and 𝐶𝐵2 ∶  𝐶𝐴2 = 𝐶𝐵 ∶ 𝐶𝐷 .  Because BD + CD = CB, we 

conclude that 𝐴𝐵2 +  𝐶𝐴2 =  𝐶𝐵2  , which is to be proved. 

 

Note two points: (1) [à la Pólya (Pólya, 1954b)]  The result boils down to one special 

case of polygons of the simplest type on the sides, namely triangles.  Do we have such a triplet 

of similar triangles two of which add up to the third?  If we allow the triangles be erected either 

outside or inside of ΔABC, then there is a very natural answer: ΔABD, ΔCAD and ΔCBA (see 

Figure 2b) !  [Now, do you see the role played by the perpendicular line from A to BC?]  (2) 

Write CB : BA = AB : BD as CB • BD = 𝐴𝐵2 and CB : CA = CA : CD as CB • CD = 𝐶𝐴2 .  

Geometrically it means that the rectangle formed by CB and BD is equal in area to the square on 

AB, and the rectangle formed by CB and CD is equal in area to the square on CA.  [Now, do you 

see how the proof of Proposition 47 in Book I arises?] 

 

The proof of Proposition 31 in Book VI is more elegant and revealing, pointing the finger 

at the main feature of ratio and proportion.  Why would Euclid prove the same result in a more 

artificial manner in Book I?  Apparently, Euclid saw the significance of the Pythagorean 

Proposition and its applications, so he wanted to have it explained as early as possible in the 

book.  A proof like that of Proposition 31 in Book VI cannot be offered unless the theory of 
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proportion is clearly explained as a prerequisite.  That is done in Book V, but that is not going 

to be easy for a beginner.  The proof of Proposition 47 in Book I employs instead the notion of 

congruence, which is easier to understand.  This is a careful and clever design of a teaching 

sequence in a fine pedagogical tradition. 

 

 

Example 1 

 

Primary school pupils learn to draw parallel lines by using the two parallel sides of a ruler.  

At a later stage of learning, pupils or the teacher may come up with a figure drawn in this way, 

bounded by two sets of parallel lines (see Figure 3).  The natural question to ask is:  what kind 

of figure is this?  Conversely, if when a secondary school pupil is asked to construct a rhombus 

the pupil produces a figure by this means, how should the teacher respond?  Should the teacher 

accept the construction, or should the teacher dismiss this as an invalid construction?  Questions 

of this type come up in a lesson because of some particular instrument (the ruler in this case) that 

appears in the classroom setting. 

 

Instead of an outright rejection of the construction, which discourages a pupil from 

further active participation and thinking in class, the teacher should capitalize on the positive 

side of the pupil’s attempt.  (Why does the construction work?  Which basic property about the 

ruler is being used?  When will this way fail to give a rhombus?  What is a rhombus?  How 

can we characterize a rhombus?)  It may lead to the rationale behind a construction by 

straight-edge and compasses, and more generally to the necessity of a mathematical proof for a 

result in Euclidean geometry. 

 

To explain the figure thus generated is indeed a rhombus, one can invoke a variety of 

mathematical tools.  If the task is given to a mathematics major, he or she can freely choose 

whatever comes up to the mind.  However, as a teacher, one has to consider the cognitive state 

of the targeted recipients.  For instance, if the explanation is to be given to primary school 

pupils who are ignorant of trigonometry, and whose knowledge of the geometric properties of 

parallelogram and rhombus is sketchy, additional restriction is thus imposed.  Precisely, the 

teacher has to prove that the diagram thus drawn is a rhombus WITHOUT applying any of the 

knowledge of trigonometric ratios or geometric properties of a parallelogram.  Calculating the 

area of the resulting figure by taking the base and height of it in two different directions is a good 

way out.  After all, using area to explain results in geometry has been a method of long tradition 

in both the East and the West, exemplified in the ancient Chinese classical text Jiuzhang Suanshu 

(The Mathematical Art of the Nine Chapters) (Chemla, & Guo, 2004) and in the ancient Greek 

classical text of Euclid’s Elements (Heath, 1925). 
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Figure 3 
 

 

Example 2 

 

How would you explain that the L.C.M. (Least Common Multiple) of n + 1 and n, 

denoted by [n + 1, n], is their product (n +1) × n?  For an undergraduate mathematics major 

this is no problem at all.  It is known that n + 1 and n are relatively prime, that is, the G.C.D. 

(Greatest Common Divisor) of n + 1 and n, denoted by (n + 1, n), is equal to 1.  It is also known 

that (A, B) × [A, B] = A × B.  As a corollary we have [n + 1, n] = (n + 1) × n.  But do we 

really need to rely on such “advanced” knowledge to understand it?  What happens if the 

question appears in a primary school classroom?  Can we help a primary school pupil to 

discover the result?  Of course, in a primary school classroom, instead of n + 1 and n, the 

question would be phrased for specific numbers, say, 5 and 4.  Indeed, usually a typical specific 

but well-chosen example may serve the purpose of explanation even better. 

 

In primary school, an array of beads is often used as a manipulative to explain the 

concept of Least Common Multiple.  The L.C.M of positive integers A and B, denoted by  

[A, B], is the smallest integral multiple of A that is also an integral multiple of B.  The sum of 

beads in any number of (vertical) lines each with n + 1 beads is naturally a multiple of n + 1.  

By arranging beads in lines each with n + 1 beads one readily sees that the least number of lines 

needed to make the sum of beads become a multiple of n is indeed n.  This is because each line 

has one bead left over after counting off n beads.  This tells us that the L.C.M. of n + 1 and n is 

equal to (n + 1) × n (see Figure 4). 
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Figure 4 

 

From this it is not hard to see, by grouping into groups of n beads in each line with kn + 1 beads, 

the L.C.M. of kn + 1 and n is equal to (kn + 1) × n, that is, [kn + 1, n] = (kn + 1) × n.  This is 

because each line has one bead left over after counting off kn beads.  The argument is very 

much similar to that as before (see Figure 5). 

 

 
 

Figure 5 
 

It is obvious that the L.C.M. of kn and n, k being a positive integer, is equal to kn, that is, 

[kn, n] = kn.  Hence, what is left to be done is to find out what happens in between, that is, what 

the L.C.M. of kn + r and n, where 0 < r < n, is.  The case of r = 1 has just been accomplished 

above.  Following this trend of reasoning, we count off kn beads in each line with kn + r beads 

so that r beads are left over.  The total number of beads left over will first become a multiple of 

n when it reaches [n, r], meaning that [n, r]/r lines have been taken.  This tells us that  

 

[kn + r, n] = (kn + r) × [n, r]/r. 

 

Noting that the pair of numbers in [n, r] are respectively smaller than the corresponding pair of 

numbers in [kn + r, n] we see that the procedure can be repeated to arrive at a final answer, 



11 

 

which is the formula [A, B] × (A, B) = A × B.  (The detail will be left to the reader, or see 

(Fung, 2004).) 

 

An interesting feature of this kind of investigation is the natural involvement of the 

important concept known as the Euclidean algorithm.  The Euclidean algorithm has been hailed 

as the most ancient and most important algorithm in mathematics, introduced in ancient Greek 

geometry in connection with the theory of anthyphairesis [reciprocal subtraction] (Fowler, 

1987/1999) and in ancient Chinese mathematics in connection with reduction of fractions by the 

method of geng xiang jian sun [alternate diminution] (Chemla, & Guo, 2004).  We are almost 

forced into carrying out the process of dividing A by B to leave either nothing or some left-over 

strictly smaller than B.  By repeating the process it is but a stone’s throw away to see why  

(A, B), the G.C.D. of A and B, is a linear combination of A and B.  In number theory a useful 

consequence of this reasoning is the result that A and B are relatively prime if and only if there 

exist x and y such that Ax + By = 1.  At the tertiary level in abstract algebra the extension of this 

notion to that of a Euclidean Domain, or more generally to that of a Principal Ideal Domain or 

even more generally to that of a Bézout Domain, would then come as no surprise.  This is one 

illustration of how suitably designed discussion can be carried out at various levels from the 

primary school classroom to the university lecture hall, and at each level the questions are as 

much instructive for the teacher as they are for the students. 

 

 

Example 3 

 

The first encounter of the formula for the area of circle is often in senior primary school 

or junior secondary school.  Pupils are usually convinced of the validity of the formula by the 

following argument which appears in many textbooks:  When two identical copies of the circle 

are cut into more and more identical sectors, the sectors thus formed can be spread out and fitted 

together into a figure that approaches a rectangle with one side of length r and the other side of 

length approximating the circumference (see Figure 6).  In the limiting case, the circle has area 

equal to half the area of the limiting rectangle with sides of length r and 2πr (see Figure 7). 

 

 

 
 

Figure 6 
 

 

 
 

Figure 7 
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A couple of questions may come up with this argument.  First of all, is this a proof for 

the formula?  All teachers would agree this is not a proof, at best a nice heuristic argument 

which helps us to discover the formula.  Nice though it is, what about applying a very similar 

reasoning as such in the limiting case to convince somebody that π = 2 ?  This reasoning 

leading to the discovery of this wrong result is shown below. 

 

Identical semi-circles are drawn on a line segment.  On one hand, the total length of 

these identical semi-circles is equal to the one big semi-circle on the left.  On the other hand, 

when the number of these identical semi-circles increases indefinitely, the curve thus generated 

by linking these semi-circles together is getting closer and closer to the original line segment, the 

diameter of the semi-circle on the left (see Figure 8).  In the limiting case, can we conclude that 

the semi-circle on the left has length equal to the diameter on which it is drawn, so that π = 2 ?  

How come we can use the previous heuristic reasoning to get the side of the rectangle in the 

limiting case equal to the circumference but cannot use this heuristic reasoning to get the 

semi-circles in the limiting case equal to the original line segment? 

 

      

 

 

 

 
Figure 8 

 

The next question is: if the argument above is not a proof, how can we derive the formula 

for the area of a circle?  Many cautious teachers will add that a rigorous derivation of the 

formula rests upon the knowledge of calculus.  Loose ends of all these are left to a later stage.  

At senior secondary school when calculus is learnt, it is all too natural to re-visit the issue.  In 

particular, the area of a circle would be “derived” by considering the integral 

∫ √𝑟2 − 𝑥2𝑟

0
𝑑𝑥 that gives the area of one quadrant of a circle of radius r.  Almost all textbook 

on calculus contains a computation of this integral by substituting 𝑥 = 𝑟 sin 𝜃.  If one traces 

the calculation of the integral, one realizes that it relies on knowledge of the formulae 




cossin 
d

d
 and 


sincos 

d

d
.  These formulae of the derivatives of the sine and 

cosine functions are arrived at in most textbooks through the formula 1
sin

lim
0


 




 which is 

derived by making use of a geometric argument based on the formula for the area of a circle!  

Such a circular argument engineered would inevitably make obscure the basis of the validity of 

the area formula of a circle.  It is very unlikely that a learner, who is deprived of an elaborated 

derivation of the formula such as the one presented by William Chauvenet (Chauvenet, 1894) or 

by Joseph Rotman (Rotman, 1998), and who has merely learnt to follow recipe to compute 

derivative and integral, can appreciate the effort made by various civilizations over time to obtain 

the formula. 

 

There are still more questions to ask.  In this connection there is an even more basic 
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question.  In primary school the constant π is first introduced as the ratio of the circumference 

of a circle to its diameter.  After knowing the area formula of a circle we know that π is also the 

ratio of the area of a circle to the square of its radius.  Indeed, π appeared (implicitly) in ancient 

Greek mathematics as this proportionality constant (Proposition 2 in Book XII of Elements) 

rather than the proportionality constant concerning the circumference and diameter.  

(Mathematically speaking, it is harder to prove that the circumference of a circle is proportional 

to the diameter then to prove that the area of a circle is proportional to the square of its diameter.  

In the latter situation a sandwich-type argument works readily, while in the former situation it is 

not.)  It would be instructive to ask: (i) Why are the two proportionality constants the same?  

(ii) Which definition for the constant π is better?  In what sense is one better than the other?  

Some kind of research by a school teacher would then be needed.  An explanation for (i) is that 

the area of a circle is half the circumference times half the diameter.  Incidentally, this particular 

formula, 𝐴 =
1

2
 𝐶𝑟 , appeared in many ancient mathematical classics in both the East and the 

West such as Jiuzhang Suanshu (Chemla, & Guo, 2004) and Archimedes’ Measurement of a 

Circle (Dijksterhuis, 1987).  It is a special instance of the Stokes’ Theorem, an n-dimensional 

version of the celebrated Fundamental Theorem of Calculus (Siu, 2006).  So, a problem in 

primary school leads us back to university mathematics. 

 

 

Example 4 

 

In senior primary school problems having to do with the pattern of the hour hand (H) and 

minute hand (M) of a clock are not uncommon.  Let us look at the problem that asks for the 

number of times of coincidence of H and M within 12 hours, say between 12:00 noon to 12:00 

midnight (counting the last coincidence at 12:00 midnight but not counting the initial 

coincidence at 12:00 noon).  There are at least three methods. 

 

Method 1: 

 

For students capable of applying fractions to solve problems, the solution may take the 

following form:  H advances in a speed of 1 large interval per hour.  M advances in a speed of 

12 large intervals per hour.  It follows that M advances 11 more large intervals per hour.  Thus 

it takes 
12

11
 hour for M to advance 12 more large intervals ( = 1 round).  In 12 hours, this 

phenomenon appears 12 ¸
12

11
=11 times. 

 

Method 2: 

 

The initial coincidence at 12:00 noon is not counted.  From this point onward, H cannot 

catch up with M until after it reaches 1 (because when M moves to 12, H would be on 1).  So 

the first coincidence takes place between 1:00 p.m. and 2:00 p.m.  From this point onward, H 

cannot catch up with M until after it reaches 2 (for a similar reason as before).  So the 2rd 

coincidence takes place between 2:00 p.m. and 3 p.m., and so on.  The tenth coincidence takes 

place between 10:00 p.m. and 11:00 p.m.  The 11th coincidence would take place at 12:00 
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midnight.  Hence, H and M coincide 11 times. 

 

Method 3: 

 

Without assuming uniform speed of H and M and without assuming the quantitative 

relationship between the relative motion of H and M (as in an actual clock) the following 

argument is based on only two assumptions: (i) In the period of 12 hours H moves one round and 

M moves 12 rounds; (ii) at any moment M moves faster than H.  The second assumption implies 

that after a coincidence of H and M, H cannot catch up with M until after M moves one more round.  

The first assumption implies that coincidence of H and M occurs for each additional round moved 

by M.  Putting it in a more picturesque manner, think of yourself (much diminished in size) 

sitting on H and moves with it.  You would think that you are stationary but see M moving in 

rounds in a clockwise direction, passing you once in every round.  Hence, H and M coincide 11 

times. 

 

The amount of computation and the stock of mathematical knowledge required diminish 

from Method 1 to Method 3, but not necessarily the demand on mathematical maturity!  The 

sophistication in thinking and reasoning required is increasing.  From our classroom experience, 

Method 1 is common among school teachers and pupils; Method 2 also occurs; but Method 3 is 

virtually missing.  Some pupils find Method 3 difficult to comprehend and some teachers too, 

not to mention explaining it to their pupils!  If one (for instance, a mathematician) wants to get 

a complete solution, one would elaborate Method 1 to compute the actual times at which the 11 

coincidences take place.  By solving certain equations one obtains the times to be 01:05:27, 

02:10:54, … , 09:49:05, 10:54:32, 12:00:00.  (This is left as an exercise for the reader).  If one 

(again, a mathematician) wants to get an elegant solution which employs the least amount of 

information, one would take Method 3.  This shows that elegance may not be the main 

objective in carrying out the kind of research we have in mind for school teachers.  Elegant 

development is often preferred (for a mathematician).  For the sake of mathematising, the most 

elegant line of development is sometimes deliberately avoided (for a teacher). 

 

 

5.  Epilogue 

 

In this paper we try to elaborate on what a mathematics teacher needs to do or is likely to 

encounter, hoping to shed light on the mathematical preparation needed for good mathematical 

instruction.  One has to admit that a “scholar-teacher” is only an ideal role that each teacher 

would aspire to emulate, while it is unrealistic to expect, even less demand, that each teacher can 

pay so much attention to research amidst his or her already heavy teaching load and other 

administrative duties.  However, it is reasonable to expect that all teachers have this ideal role 

in mind and try to benefit from the effort of those who carry out the kind of research and produce 

helpful material for trying out in the school classroom.  The importance of this group of 

“didactical engineers” merits further attention by the community of mathematics education. 

 

As an individual a teacher in mathematics has to acquire self-confidence, not just 

confidence in coming to grips with the subject matter knowledge but also the confidence to 

realize his or her inadequacy so as to know how to think, to probe and to find out.  By his or her 
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own enthusiasm in studying and reflecting and by his or her own inquisitiveness the teacher will 

become a role model for the students.   Or else, it is easy to fall into the undesirable situation 

depicted by Magdalene Lampert: “These cultural assumptions are shaped by school experience, 

in which doing mathematics means following the rules laid down by the teacher; knowing 

mathematics means remembering and applying the correct rule when the teacher asks a question; 

and mathematical truth is determined when the answer is ratified by the teacher.” (Lampert, 

1990) 
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