Pt
& 4

: Vf’a MatBomatica = Historicat Reseanch and n@mﬂon(,m‘ﬁ, ‘

ERE

,_fj_eachg” edifed by R. Gallinger, MaiR. Aszo. 4marzz, 1996, fp-32/-330

here is a question which a college mathematics
teacher always wants to have an answer for but
is afraid students may ask: why can’t .e® (or

o)

sinz/z,...) be integrated? To be precise, why are their
indefinite integrals not elementary functions? This esoteric
fﬁ topic of integration in finite terms is seldom explained in

class. This article attempts to outline its development from
Joseph Liouville’s papers in the 1830s to its revival after
almost a century in the work of Joseph Fels Ritt and subse-
quent authors. Pedagogically, an upsurge of interest in re-
cent years, due to progress in symbolic computation, leads
some to query: should students learn integration rules?

Int ti . F, it Introduction

n egra on In rinite At least some 30 years ago, in a beginning course in cal-

Terms: From culus there was a plethora of exercises regarding indefinite
. ] ) integrals. To some this may seem an elegant art or an amus-

LlOllVl]le S Wﬂrk ing game, but to many this presents a source for anxiety

to the Calculus and failure! It is not unusual to see some fairly artificial-

Classroom of Today looking integrals such as

/ log(cos x) tan z dz;
SIU Man-Keung
University of Hong Kong this particular one happens to be —[log(cos z))? / 2 (plus a
constant), obtained through substituting a new variable for
cos z. However, the less artificial-looking integral

/ log(cosz) dz

cannot be found using a similar means. Adding to one’s
perplexity is the fact that a similar integral,

/ cos(log z) dz,

can be found by applying the technique of integration :
by parts twice with some definess to yield the answer
z[sin(log z) + cos(log )] /2 (plus a constant). Textbooks
sometimes include the first and sometimes also the third
integral in their exercises but omit the second integral. In
this era of computer software students often ask: why are
there integrals that a machine cannot handle?! This is per-
haps a question to which every teacher in calculus wants
to know the answer but is afraid students may ask! When
we are forced into a corner—when we are confronted with
a difficult integral produced by a student out of the blue
and wish to impress upon the student that integration is an
art—we wield that typical counterexample,

T
/ e'dr  or / e—dac,
z
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and announce that there is no answer in closed form. But
what sense will students make of that? For instance, they
know that integration by parts yields the answer (z — 1)e®
(plus a constant) for the integral

/ ze® dx;

what difference does it make to have z dividing e® instead
of z multiplying e*? An analogous situation occurs when
a student wants to trisect an angle only to receive the re-
ply that in general this cannot be done, but the question
remains: why not and under what condition? Incidentally,
there is a more contextual analogy between these two ques-
tions of “impossibility”. (See the last section.) In 1835 the

integral
[Se
T

was produced by the French mathematician Joseph Liou-
ville (1809-1882) as an example of a celebrated theorem
which now bears his name. It is one of the earliest ex-
amples of an integral which cannot be expressed in finite
terms.

This article examines the story of integration in finite
terms from Liouville to modern times, including some of
its related developments and its pedagogical implications in
teaching calculus. In particular, the availability of readily
accessible software on symbolic computation compels us to
ask whether students still need to go through the pleasure
or torture, depending upon one’s inclination, of integration
rules. Looking at this page in history may shed some light
on its answer. Throughout this article, “integral” is taken to
mean indefinite integral, also known to some as antideriva-
tive or primitive. (This article is the text of a talk given at
the 7th International Congress of Mathematical Education
at Québec City in August 1992.)

Section One
What Happened in the Nineteenth Century?

Liouville is usually called the founder of the theory of in-
tegration in finite terms. In a series of papers published
between 1833 and 1835, he investigated the question of
determining whether a given indefinite integral can be ex-
pressed as a finite expression involving only algebraic, log-
arithmic, exponential, trigonometric, or inverse trigonomet-
ric functions.? From 1839 to 1841 he treated the similar
question for certain ordinary differential equations.® An im-
portant theorem (which will be stated in this section later),
now named after him, was proved by him in 1834.% Most
of his subsequent work is based upon this theorem.

However, history seldom, if ever, proceeds in a lin-
ear manner, and mathematical development has its root in
tradition. In this case, the predilection for certain types of
curves had long been a tradition with the ancient Greeks,
as pointed out in the following passage in René Descartes’
La Géométrie:®

“The ancients were familiar with the fact that the

problems of geometry may be divided into three

classes, namely, plane, solid and linear problems.

This is equivalent to saying that some problems

require only circles and straight lines for their

construction, while others require a conic section

and still others require more complex curves. I

am surprised, however, that they did not go fur-

ther, and distinguish between different degrees of

these more complex curves, nor do I see why they

called the latter mechanical, rather than geomet-

rical.”
Descartes singled out among these complex curves those
whose “relation must be expressed by means of a sin-
gle equation”,% that is, those curves that are graphs of a
polynomial equation f(z,y) = 0, and to classify them ac-
cording to the degree of the corresponding polynomial. He
disregarded the other complex curves that cannot be so ex-
pressed. Later, Isaac Newton, Gottfried Wilhelm Leibniz,
and others called the former type algebraic curves and the
latter type transcendental curves. Both were accepted as
genuine mathematical objects. However, while Newton felt
no qualm in resorting to infinite series, Leibniz preferred
to reduce transcendental expressions to certain elementary
but finite forms.” He once discussed the possibility of re-
ducing the quadrature problem to that of the hyperbola and
the circle, or in terms of functions, of representing an inte-
gral by algebraic, logarithmic, trigonometric functions and
their inverses.® In the eighteenth century, largely due to
the influence of Leonhard Euler’s Introductio in analysin
infinitorum (2 volumes, 1748), the prominent roles of ele-
mentary functions were established. Leibniz’s question be-
came the problem of integration in finite terms. At about the
same period, interest in the problem arose in another quar-
ter, namely, computation of the so-called elliptic integral.®
A typical example is the integral

1—k%z?
V1= x2/1— k222

in finding the perimeter of an ellipse. Nobody at the time
could compute such integrals.

Johann Bernoulli first answered Leibniz’s question.
In Acta Eruditorum for 1702 he integrated some rational
functions by the method of partial fractions and asserted

dr
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that the integral involves only trigonometric or logarithmic
functions.!® By 1750 this theorem was an acknowledged
fact, although a definitive proof involving factorization of
a polynomial awaited a rigorous proof of the Fundamental
Theorem of Algebra supplied by Carl Friedrich Gauss half
a century later. For the benefit of exposition in this article,
it is instructive to cast this theorem in a language familiar
to the calculus classroom of today.

A rational function is a function of the form
P(z)/Q(z) where P(z), Q(z) are polynomials with real
coefficients and Q(z) # 0. To determine integrals of ratio-
nal functions it suffices to compute the integrals

dz
[ @i ro
dz

= p2 _
/(a:z2+b:r+c)’" (@#0,A =b%—-4ac<0),

and
zdx
(az? + bz +c)™

It turns out that

dz 1
az+b g 8l th)

(@#0,A =b*—4ac <0).

/ dz = - 1 form>1
(az+b)™ ~  (m—1)a(az + bym—1 ’

/ _ 2 tan—l 2az + b
ar?+br+c /A v-a]’

‘ dz _ 2az +b

(az?+bz +c)™ = (m—1)(=A)(az? + bz + c)™—1

2(2m - 3)a dr
(m—1)(-4) J (az?+ bz +c)™-1

form > 1,

+

Iog(a.a: +bx+c)——

/ax2+b:c+c /az2+ba:+c’

/' . bz + 2¢
(az? + ba: +c)™ (m - 1)A(az? + bz + c)m-1!

(2m — 3)b dz
(m-1)A J (az? + bz + ¢)™-1

form > 1.

+

If we work in the domain of complex numbers, then we can
dispense with inverse trigonometric functions because these
can be represented in terms of the logarithmic function, and
we can rephrase the answer as:

gg”; dz = V(z)+Cylog Uy (z) + - - + C, log Un(z),
where V(z),U;(z),...,Un(z) are rational functions and

Ch,...,C, are constants. The statement of Liouville’s ba-
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sic theorem resembles this expression. In order to describe
his result, it is first necessary to see what Liouville meant
by “finite explicit functions”, or, in modern day terms, “el-
ementary functions”.
A function y = f(z) is called algebraic if it is a root
of a polynomial equation, that is, y™ + A,_,(z)y™"! +
-+ A1 (z)y + Ao(z) = 0 for some positive integer n and
rational functions A,_1(),..., Ai(z), Ao(z). (Example:
¥ = V1 + 22.) Logarithms and exponentials of algebraic
functions are called transcendental monomials of the first
kind. (Example: y = log(1 + z2).) A function that is ot
algebraic but is an algebraic function of z and transcenden-
tal monomials of the first kind is called a transcendental
function of the first kind. (Example: y = /T + &2 .) Loga-
rithms and exponentials of transcendental functions of the
first kind are called transcendental monomials of the sec-
ond kind. (Example: y = log /T + e%.) A function that
is not algebraic nor transcendental of the first kind but is
an algebraic function of z and transcendental functions of
the first kind and transcendental monomials of the second
kind is called a transcendental function of the second kind.
(Example: y = (1+22)e(1+2) 4 log \/T ¥ €=.) In this way
Liouville defined recursively transcendental functions of
the nth kind, and he called all functions defined in this
way finite explicit functions. In 1834 he proved the fol-
lowing result:!!

Liouville’s Theorem. Let y be an arbitrary al-
gebraic function of z. If the integral [ydzx is
expressible in finite explicit form, then

/ydz=t+Alogu+Blogv+---+C’logw

where A,B,...,C are constants and t, u
v, ..., w are algebraic functions of .

With this theorem Liouville could establish that certain el-
liptic integrals are not expressible in finite explicit form,!2
a topic which drew much attention at the time and which
started Liouville’s interest in the theory of integration in
finite terms. In 1835 he generalized his theorem to the fol-
lowing form:!3

Liouville’s Generalized Theorem. Let y and z,
etc. be functions of x, which satisfy differential
equations of the form gz = p, % = gq, etc,
where p and q are algebraic functions of z,y,
and z, etc. Further, let P be an algebraic func-
tion of z,y, and z, etc. If [ Pdx is expressible
in finite explicit form, then

/Pd:r= t+ Alogu+ Blogv +--- + Clogw
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where “A, B,...,C are constants and t, u,

v, ..., w are algebraic functions of T, y, and
z, etc.

With this generalized theorem, Liouville could demonstrate
that certain integrals of the form [ ye” dr, among them

the integral / %—dw, are not expressible in finite explicit

form.14

Actually, several eighteenth- and- early nineteenth-
century mathematicians had mentioned or even claimed to
have proved results of the same nature. Some of these antic-
ipated Liouville’s ideas and might well have inspired his
work.1® Among early investigators were Alexis Fontaine
(1764) and Marie-Jean Marquis de Condorcet (1765).
About Fontaine, Liouville commented that the method was
“in reality nothing but a laborious groping whose least fault
is its disheartening length”; about Condorcet he commented
that the “theorems lack demonstrations and some of them
lack exactness”.1® As to the impossibility of expressing cer-
tain elliptic integrals in finite explicit form, Pierre Simon
Laplace (1812) first claimed to possess a proof, but he did
not publish rigorous proofs of the theorems he claimed to
have found. The real contender to Liouville’s priority as
the founder of the theory of integration in finite terms is
Niels Henrik Abel, who wrote on the subject about 1823.17
Unfortunately, this paper of Abel met a fate worse than that
of his famous Paris Academy Memoir on elliptic functions
(1826)—the latter at Jacobi’s insistence was published in
1841, fifteen years after Abel submitted it to the Paris
Academy and twelve years after his death,!® but the former
paper seems to be completely lost.!® By piecing together
clues from other papers of Abel, Jesper Lutzen is of the
opinion that Abel had most of the ideas needed for a more
systematic exposition of the theory of integration in finite
terms, but, because of Abel’s early death the job was left
for Liouville. Although Liouville did not know of Abel’s
contributions when he began his investigation and so was
not directly inspired by ideas of Abel, he made ample use
of them after having learned of Abel’s contributions.?®

After this work on indefinite integrals, Liouville
turned to solutions of ordinary differential equations in fi-
nite terms. The complexity of the problem can be seen from
the length of elapsed time between setting himself the task
in 1834 and the publication of his first paper on this topic
in 1839,2! more than double the period he needed to de-
velop his theory of integration in finite terms. Although the
three papers he produced fell short of his original ambitious
project, they contained beautiful results. The last paper in
1841 concluded his published work in the subject. In it he
answered an age-old problem about the Riccati equation:

the equation 2 + ay? = bz™ can be solved by quadra-
tures only for m = —4n/(2n £ 1) where n is a positive
integer.??

As for indefinite integrals, the general problem of Li-
ouville remained unanswered: “Given a finite explicit func-
tion of z; how does one determine in a finite number of
steps whether its integral is also a finite explicit function?
If the answer is in the affirmative, how does one com-
pute its integral?” It remained unanswered until 1970 when
Robert H. Risch rounded off the problem by giving such
an algorithm.23

Section Two
What Happens in the Twentieth Century?

On March 30, 1834, Liouville wrote in his notebook that
“we must begin to collect the material for a great work
entitled Essai sur la théorie de l'intégration des formules
différentielles en quantités finis”.2* He listed the content of
the first part of this projected book, which however never
materialized. His work on the solution of the Riccati equa-
tion in finite terms (1841) concluded his published work
in the subject, and the subject more or less disappeared for
nearly a century! In some sense, the comprehensive work
which Liouville never published found its realization in the
book Integration in Finite Terms: Liouville’s Theory of El-
ementary Methods (1948) by the American mathematician
Joseph Fels Ritt.2

Between the work of Liouville and Ritt there were
activities going on in the field, mainly in Russia. This
work was referred to in an appendix to The Integration
of Function of a Single Variable by the British mathe-
matician Godfrey Harold Hardy in 1905.26 Hardy’s book
recreated interest in this near forgotten subject, and the
Russian school began to add to Liouville’s theory. Interest-
ingly, while Hardy’s approach was more function—theoretic
than Liouville’s original work, that of the Ukraine-born
Swiss mathematician Alexander Ostrowski in 1946 was
more algebraic than Liouville’s original work.?” This alge-
braic approach using the notion of field extension pointed
to the way of extracting the algebraic ingredients of the in-
vestigation, thereby furnishing a simpler and more general
treatment by which the original problem was eventually
solved.

For thirty years, almost up to his death in 1951, Ritt
produced a series of papers and books, including the 1948
classical account just mentioned, which gave impetus to
the subject and opened up a new field christened “dif-
ferential algebra” (by Ritt’s student and successor Ellis
R. Kolchin).2® This trend in differential algebra which




deals with differential equations, is covered in the next
section. Let us continue with the trend, which deals with
 indefinite integrals. Although Ritt was at heart an analyst,
he promoted the algebraic outlook of Ostrowski and (in
Kolchin’s words) “made a great effort to meet the alge-
braist half way”.2% In 1968 Maxwell Rosenlicht published
the first purely algebraic exposition of Liouville’s the-
ory on functions with elementary integrals,3° and in 1970
Robert Risch furnished an algorithm for solving the general
problem.3! Rosentlicht§ approach can be regarded as the
algebraic approach, which had gradually developed out of
the initial analytic approach in Liouville’s work, pushed to
its extremes.

In the language of abstract algebra, we define a differ-
ential field to be a field F', together with a derivation on
F, i.e., a map of F into itself, usually denoted by a +— a’,
such that (a + b)’ = o’ + b’ and (ab)’ = a'b + ab’ for
all a,b in F. The constants of F, i.e., all elements ¢ in F’
such that ¢/ = 0, form a subfield of F. If a, b are elements
of the differential field F, a being nonzero, we call a an
exponential of b and b a legarithm of a if ¥ = a'/a.
By a differential extension field of a differential field F,
we mean a differential field which is an extension field of
F whose derivation extends the derivation on F. An el-
ementary extension field of F is a differential extension
field of F which is of the form F(¢;,...,tx) where, for

eachi € {1,..., N}, the element ¢; is either algebraic over
the field F'(¢;,...,t:_1), or a logarithm or an exponential
of an element of F(t;,...,t;—;). We can now state the

theorem proved by Rosentlicht32:

Liouville’s Theorem. Let F be a differential
field of characteristic zero and o € F. If the
equation y¥' = a has a solution in some ele-
mentary differential extension field of F hav-
ing the same subfield of constants, then there
are constants ci,...,c, € F and elements
V,U1,...,U, € F such that

a=v"+c1(u)/u1) + -+ ca(ul /un).

By choosing F" to be the field C(z, e9(?)), the field of com-
plex rational functions of z with e9(*) adjoined, Rosentlicht
recovered from the theorem above a criterion due to Liou-
ville: If f(z), g(2) are rational functions of 2, f(z) being’
nonzero and g(z) being non-constant, then [ f(z)e9*)dz
is elementary (that is, contained in some elementary ex-
tension field of C(z)) if and only if f = a’ + ag’ for
some rational function @ = a(z) in C(2).3® An equiva-
lent formulation for the equality is that the integral is of
the form a(z)e9(*) for some rational function a(z). Let us
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apply the criterion to [ £ dz for which the equation to
look at is 1/z = a’ + a, which has no solution in C(z)
(by comparing the order of poles). Hence [ 92: dz is not
elementary. At this point it is desirable to offer an answer
to the query about integration in finite terms for students
in a calculus class. We will use this same example, but
try to refrain from introducing the language of differential
field extension and to bypass the employment of knowledge
about order of poles. We take as our starting point Liou-
ville’s criterion: The integral [ f(z)ed(*)dz is elementary
if and only if it is of the form a(z)ed*) where a(z) is
a rational function. This effectively lands us back on, the
familiar ground of polynomials. Suppose [ & dz is ele-
mentary, then [ % dz = a(z)e® for some rational function
a(z). Differentiating both sides and using the Fundamental
Theorem of Calculus, we have 1/z = (P/Q) + (P/Q)
where a(z) = P(z)/Q(z) with P = P(2), Q = Q(z) be-
ing polynomials with no common factor and Q # 0. After
differentiating P/Q and simplifying terms, we obtain

Q(Q-zP' - 2P) = -zPQ". (#)

Since @ # 0, Q has a zero a of positive multiplicity m.
We now divide our discussion into two cases: (i) @ # 0 and
(ii) @ = 0. Suppose « # 0. Since P, Q have no common
factor, P(a) # 0. Hence « is a zero of multiplicity m — 1
of the polynomial on the right-hand-side of (#), but o
is a zero of multiplicity at least m of the polynomial on
the left-hand-side of (#). This is a contradiction. Suppose
a = 0; then we can write @ = z™R for some polynomial
R 3 0 which has no common factor with P and R(0) # 0.
Equality (#) becomes

—2zPR'.

R(z™R -~ zP' — zP+mP) = (##)

By choosing a zero 8 # 0 of R of positive multiplicity, we
can repeat the former argument to (#+#) for R, P instead
of Q, P to obtain a contradiction. Hence [ e; dz is not
elementary.34

These new developments in the early 1970s, coupled
with the advent of computers since the 1960s, led to rapid
progress in symbolic integration, which in turn stimulated
research in the theory of integration in finite terms and its
related topics. In a survey titled Symbolic integration: The
stormy decade, written in 1971, Joel Moses said,3°

“In the beginning of the decade [1960s] only hu-
mans could determine the indefinite integral to
all but the most trivial problems. The techniques
used had not changed materially in 200 years.
People were satisfied in considering the problem
as requiring heuristic solutions and a good deal

% Neodg ane frore
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of resqurcefulness and intelligence. There was no
hint of the tremendous changes that were to take
place in the decade to come. By the end of the
decade computer programs were faster and some-
times more powerful than humans, while using
techniques similar to theirs. Advances in the the-
ory of integration yielded procedures which in
a strong sense completely solved the integration
problem for the usual elementary functions.”

Then in another survey titled Symbolic integration—The
dust settles?, written in 1979, A.C. Norman and J.H. Dav-
enport said,3®
“... the last decade [1970s] has seen a great deal
of consolidating work, with experimental pro-
grams being refined into practical tools and ab-
stract mathematical techniques reduced to work-
able algorithms.”

The titles of these two articles indicate substantial advance
from 1971 to 1979. Much is still happening in this field
today.

Section Three
Related Work: Galois Theory of Differential
Equations

A related problem to integration in finite terms is that of
solutions of differential equations. Liouville made some
progress but stopped in the early 1840s. Subsequent de-
velopments in this direction are not as closely related to
Liouville’s theory, and their extensions and ramifications
are so diversified and dynamic that their discussion falls
outside the scope of this article. Let us just look at some
highlights to appreciate how various mathematical strands
are woven into a grand mathematical tapestry.

The Norwegian mathematician Sophus Lie conceived
and carried out a much broader programme of application
of group theory to differential equations. A rich variety of
ideas and problems contributed to Lie’s creation of a the-
ory of continuous groups in the winter of 1873-74.37 In
subsequent years Lie developed his theory thoroughly in
a series of books and articles.3® The theory of Lie groups
and Lie algebras, as the theory has come to be known, is
today a fundamental part of mathematics which is in touch
with a host of mathematical areas and applications,3° but
its original inspirational source was the field of differential
equations. Like a beginning student in calculus today, math-
ematicians around the mid-nineteenth century saw the art
of solving differential equations as a variety of special tech-
niques. The profound insight Lie had was that these spe-
cial techniques are subsumed under one general procedure

based on the invariance of the solutions of the differential
equation under a continuous group of symmetries. To study
these continuous groups, Lie made the fundamental step of
assigning to each continuous group through “infinitesimal
transformations™ a corresponding vector space with a mul-
tiplication which is “anti-associative”, thus switching the
problem to the study of a more manageable object. From
these notions come what we call today Lie groups and Lie
algebras.

Lie tried to assign continuous groups to differential
equations in the same spirit as in Galois’s work on alge-
braic equations, although perhaps he did not have a full un-
derstanding of Galois’s work.%® He proved that those equa-
tions which correspond to solvable continuous groups have
solutions by quadratures. Lie’s theory of differential equa-
tions was popular, and its exposition even found its way
into the curriculum of many universities. For instance, it
was presented in the popular famous texts Cours d’Analyse
de I’Ecole Polytéchnique by Camille Jordan (1887) and
Traité d’Analyse de la Faculté des Sciences de Paris by
Emile Picard (1891-96).4! However, the topic faded after
the global, abstract formulation of Lie groups and Lie alge-
bras championed by Elie Cartan gained dominance. Later
emphasis on numerical solutions after the advent of com-
puters further diminished the attractiveness of Lie’s original
scheme. Only much later in the twentieth century was inter-
est in that idea rekindled when mathematicians and physi-
cists sensed the significant role played by symmetry.42

A more refined “Galois theory of differential equa-
tions” was that proposed by Emile Picard (1883, 1887)
and Emest Vessiot (1891, 1892) for homogeneous linear
ordinary differential equations. In 1948 Kolchin wrote his
seminal paper, Algebraic matric groups and the Picard-
Vessiot Theory of homogeneous linear ordinary differen-
tial equations, and placed the theory in its natural setting,
the Ritt theory in differential algebra.* By studying what
he meant by a Picard-Vessiot extension and a Liouvillian
extension of a differential field, he characterized those dif-
ferential equations which are solvable by quadratures. A
self-contained clear exposition of this theory was provided
by Irving Kaplansky.** Kolchin’s work opened up the the-
ory of linear algebraic groups and pushed forth research in
differential algebra started by Ritt.*5 An account of mod-
ern differential Galois theory was given by Michael Singer
recently.®® In recent years there is an upsurge of interest
in effective algorithms in differential algebra because of
advances in symbolic computation on a computer.*?




Section Four
Morals of the Story

Toni Kasper remarked at the conclusion of his succinct
account of integration in finite terms:*®

“Risch makes the interesting suggestion that
some features of his algorithm are suitable for
presentation to calculus students. No calculus text
at present provides this material, an omission that
not only leaves the story of finite elementary in-
tegration incomplete, but deprives the calculus
student of some valuable insights.”

I am more interested in the last clause, and have a broader
but less technical aim in mind. In the second and third
sections of this article, I attempt to embellish the story
with pertinent mathematical pointers to suggest a possible
way of bringing this esoteric topic, seldom explained in
class, into the calculus classroom. The notion of field ex-
tension is admittedly too advanced for an ordinary calculus
class. However, with tactful exposition it is possible to at
least get the general idea across,*® just as it is possible to
explain to a high-school class the impossibility of trisect-
ing a general angle by straight edge and compasses—in
some sense the two problems bear analogy in that they are
both (in Kaplansky’s words) “pre-Galois” theories which
involve only basic properties of differential fields and or-
dinary fields respectively.®® In the fourth section of this
article, I attempt to exhibit several rich strands of ideas
which are related to the topic and which develop into fun-
damental parts of mainstream mathematics. With carefully
worked out embellishment these ideas can be introduced
into relevant courses on a more advanced level to enhance
understanding. Such use of history has been pointed out by
Frederick Rickey who said:®!

“... we can falk about mathematical ideas that
are too hard to present in detail in class. The re-
sults are still important and of interest, even if
the proofs cannot be given. Black holes, quarks,
DNA, and plate tectonics are things that we have
all heard about and understand in a general way,
even though few of us know the technical details.
This is a lesson that we had better learn from
the physical scientists: Popular presentations of
scientific ideas attract students to the field, and
leaves the general public with warm feelings to-
wards it.”

To conclude I ask a'more general question: What can
we learn from the page of history we unfolded in the pre-
ceding three sections?
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1. There is a time to everything. The saying is true of
mathematical development. Liouville devoted eight years
to the study of the theory of integration in finite terms and
achieved significant accomplishments, but he discontinued
this line of research in the early 1840s. The line was picked
up by Ritt after almost a century, and Ritt became the prin-
cipal prophet and practitioner in the field of differential
algebra that grew out of it. His student Kolchin in turn
became the leader in this field. Although Kolchin’s work
significantly influenced related areas, the original interest
in integration and differential equations was more or less
confined to a small group around Kolchin in the-.1960s
and the early 1970s. Then came an upsurge of interest in
symbolic computation in which the work of Rosentlicht,
Risch, and others played an important role. Today active
research is going on in this field with journals, conferences,
and special interest groups devoted to the subject.52 How
can we explain such ups and downs? In the case of Liou-
ville, technical difficulties which seemed insurmountable
at the time might have convinced him that there was little
hope for a complete solution of the problem, that is, a gen-
eral algorithm to decide which integrals are finite explicit
functions, and an extension of the theory to the case of
differential equations. But an even greater disappointment
and discouragement might have come from the relatively
little impact his theory had in his own time. Other math-
ematicians watched passively with a general attitude “of
approval and indifference”.>3 The main reason why Liou-
ville’s theory did not appeal to his contemporaries (but did
appeal to mathematicians after a century) is the algebraic
aspect of the techniques which did not fit into the mathe-
matical community of the time. In the case of the second
revival of interest, advances in computer science are the
moving force.

2. Although skill is needed in technological advance, the
underlying theory is of primary importance. The rapid de-
velopment of computer algebra with the accompanying
rekindled interest in the theoretical aspect is a good il-
lustration of this blending of skill and theory. Another il-
lustration can be found in the story of Lie’s original in-
tention to apply his continuous transformation groups to
study differential equations analogous to Galois’s work on
algebraic equations. For a period it was a popular topic
that even found its way into the university curriculum, but
then fell into oblivion and lay dormant for nearly half a
century. The last two decades, however, witnessed a new
surge of interest and much research ac*ivity in this field by
both physicists and mathematicians. The motivation does
not lie with the skill of solving the differential equation—
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~ high speed computers and techniques in numerical analysis
can handle the job in a more efficient way—but with the
description of symmetry and invariance of the differential
equation and hence also that of the real objects modelled
by the differential equation.

3. In connection with the two points just stated, we can
now attempt to answer the question: Should students learn
integration rules? In a paper of the same title as the question
above, Bruno Buchberger proposed a didactical principle
which he named “White-Box/Black-Box Principle for us-
ing symbolic computation software in math education”.>*
A rough summary of the principle says that students should
understand an area X as a “white-box” at the stage when
area X is new to them, and should use computation soft-
ware in area X as a “black-box™ at the stage when area X
has been thoroughly studied by them. History informs us
that skills and algorithms do not come from nowhere and
that skills and algorithms, though useful and important, are
means rather than ends. In studying the process whereby
skills and algorithms are obtained, we gain insights and
understanding of the subject. The most useful “methods”
are actually “theorems.” Although it will be unwise not to
use the “black-box” when it is readily available and when
it can enhance learning, a “black-box only” approach can
be disastrous to mathematics education and even to the fu-
ture development of mathematics. An understanding of the
theory of integration in finite terms in its historial context
can perhaps convince students that calculus is not just a
cookbook of recipes but is in itself a beautiful subject with
a close relationship to exciting modern development.

Appendix

For readers who seek after mathematical details to com-
plete the story, my recommendation is Rosenlicht’s article
in the American Mathematical Monthly.5® In this Appendix
I want to give just enough details to convey the flavour of
the topic, if only to show the basic elementary aspect of
it—partial fractions used by Bernoulli. Let us try to see how
we arrive at Liouville’s criterion. Readers who do not wish
to use the language of differential field extension may think
of F as the field of rational functions and ¢ as an exponen-
tial function, as in the situation of the proof of Liouville’s
criterion. (The technique employed appears throughout the
theory, including the proof of Liouville’s Theorem.>%)

Lemma. Let F be a differential field of characteristic
zero, and F(t) a differential field extension of F having

the same subfield of constants, with t transcendental over
F.Ift'/t € F, then for any h(t) € F'[t] of positive degree,
(h(t))’ € Ft] is of the same degree, and is a multiple of
h(t) only if h(t) is a monomial.

Proof. To prove the first assertion we need only consider
the leading term so that we may assume h(t) = at™ with
a # 0 and n > 0. Suppose t' = bt with b € F. Since
(at) = d't* +nat""'t' = (¢’ +nab)t"™ and o’ +nab # 0
(or else at™, being a constant, is in F" and ¢ is thus not
transcendental over F), we see that (at™)’ is of degree n.
To prove the second assertion, suppose (h(2))' = dh(t)
with d € F and h(t) contains at least two monomial terms
amt™, ant® (@m # 0,a, # 0,m # n). By comparing
coefficients we see that al, + Mamb = damn, a, +nab=
da.,. Hence (amt™/ant™)’ = 0 so that amt™/an,t", being
constant, is in F, and ¢ is thus not transcendental over F.
Therefore h(t) must be a monomial. Q.E.D.

Proposition (Liouville’s Criterion). Let f(z), g(z) €
C(z), f(z) being nonzero and g(z) being nonconstant.
Then [ f (z)e9(3)dz is contained in some elementary ex-
tension field of C(z) if and only if f = a' + ag’ for some
a in C(2).

Proof Put F=C(z)andt= e9(2) Note that ¢ is tran-
scendental over F and '/t = g’ € F. By Liouville’s The-
orem we have

ft=7v +a(w/m)+-+enlun/ua) ()

where ¢i,...,cn € C and v,u1,...,Un € F(t), if
[ f(2)t(2) dz is contained in some elementary extension
field of C(z). We are going to show that v,u,...,Un
must be of a very special form for the terms on the right
side to add up to a polynomial in F[t]. By factoring each
u; as a power product (negative exponents allowed) of irre-
ducible elements of F[t] and using logarithmic derivatives
if necessary, we may assume the u;’s which are not in F
are distinct monic irreducible elements of F[t]. We then
expand v into partial fractions so that it is a sum of an el-
ement of F|t] plus various terms of the form k(t)/ (ht))"
where h(t) is a monic irreducible element of FIt], r a
positive integer, and k(t) a nonzero element of F[t] of
degree less than that of h(t). Thanks to the lemma, h(t)
does not divide (h(t))" if it is neither an element in F'
nor the monomial t. Suppose h(t) occurs as some u;(t),
then the fraction u’/u; is in lowest term. Look at the max-
imal r > 0 for which k(t)/(h(t))" occurs in v(t). Then
(v(t))' will consist of various terms having h(t) in the de-
nominator at most r times plus ~rk(t)(h(t))'/(h(t))r+1.




Note that the last fraction is in lowest term since h(t) does
not divide k(t) (h(t))'. But since the right side of (*) con-
tains a fraction, this contradicts the fact that the left side

is a polynomial in F'[t]. Hence h(t) cannot appear in the '

denominator of the partial fraction expansion of v(¢) and
h(t) cannot be any of the u;(t). The conclusion is: in (%)
each ¢;(u}/u;) is an element of F, and v is of the form
Y- b;t? for j ranging over some set of integers with b; € F'
Hence f = b} +b1g’ (since t is transcendental over F). Set
a = b, € F = C(z). Conversely, if f = a’ + ag’ for some
a € C(z), then, by setting t = e9(2) | we see that (at)’ = ft
so that [ f(2)e9®dz = [ ftdz = at = ae?(?), which is
elementary. Q.E.D.
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