The Mathematical Gazette

97.21 Some more on Estermann and Pythagoras

A geometric Pythagorean interpretation of Estermann's slick proof of the irrationality of $\sqrt{2}$ [1] is offered by this author [2] with some added remarks by Shiu [3]. This note illustrates the same proof with figurate numbers, again after the Pythagorean fashion. I first learnt of this 'proof without words' from van Maanen [4], who in turn referred to a paper by Waschkies [5].

The picture (see Figure 1) is that of a $p \times p$ square array of dots containing two $q \times q$ square arrays of dots situated diagonally in the upper right-hand corner and the lower left-hand corner, where it is assumed that $\sqrt{2} = p/q$ in *lowest terms*. This means $p^2 = 2q^2$, that is, the $p \times p$ square (*ABCD*) is equal (in the number of dots) to the two $q \times q$ squares (*EYFD* and *GBHZ*), which overlap in an $s \times s$ square (*XYWZ*). Hence, the $s \times s$ square is equal to the two $r \times r$ squares in the upper left-hand corner and the lower right-hand corner (*AGXE* and *WHCF*), which means $s^2 = 2r^2$, or $\sqrt{2} = s/r$. But s < p and r < q, contradicting the choices of p, q!

Note that p = 2r + s and q = r + s, so that s = 2q - p and r = p - q, which is Estermann's proof in the form of the identity $(p - q)\sqrt{2} = 2q - p$. An intriguing feature about this 'proof without words' is this picture, which is actually impossible to draw (because $\sqrt{2}$ is irrational) but which leads to a proof (by contradiction) in an arithmetic setting!

References

- 1. T. Estermann, The irrationality of $\sqrt{2}$, *Math.Gaz.*, **59** (June 1975) p. 110.
- 2. M. K. Siu, Estermann and Pythagoras, *Math. Gaz.*, **82** (March 1998) pp. 92-93.
- 3. P. Shiu, More on Estermann and Pythagoras, *Math.Gaz.*, **83** (July 1999) pp. 267-269.

The Mathematical Gazette

- 4. J. van Maanen, 'Telling mathematics', an activity that integrates, in Actes de la troisième université d'ètè européenne sur l'histoire et l'épistémologie dans l'éducation mathématique, July 1999, ed. P. Radelet-de Grave, Université catholique de Louvain, Louvain-la-Neuve, 2001, pp. 411-419.
- 5. H.-J. Waschkies, Eine neue Hypothese zur Entdeckung der inkommensurablen Grö β en durch die Griechen, *Archive for History of Exact Sciences*, **7** (1971) pp. 325-353.

MAN KEUNG SIU

Department of Mathematics, University of Hong Kong e-mail: mathsiu@hkucc.hku.hk