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¥ Mathematics, history of mathematics, mathe-
,‘ \\\ matics teachers--this triad, containing the

common word '"mathematics," should form a close-
knit whole. Yet, in the mind of quite a number
of people the three are unrelated, By "mathe-
matics" we include all activities involved in
acquiring mathematical knowledge, namely, study-
ing mathematics already established, keeping in-
tormed on what'goes on in mathematics., discuse
sing mathematics with colleagues, solving mathe-
matical problems, applying mathematics to other
disciplines, Creating or discovering (depending
on how one looks at it) new mathematics, By
"history of mathematics" we include the study of
the evolution of mathematics, as a whole culture,
or in a particular field, or even as an individ-
ual topic. We might also include the explora-
N tion of how mathematical ideas
| A might have been developed (a
el practice against which & trué his-
"~,;. ST e S torian of mathematics may express
' displeas-  (Continued on page 3)
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ure). By "mathematics teachers" we allude to the teaching
of mathematics., However, besides mere transmission of
knowledge we also include the sharing of the excitement
afforded by certain mathematical ideas, the awareness of

the power as well as the limitation of mathematics, and

the good habits in mathematical thinking. A lot of mathe-
maticians, deeply involved in their subject, produce good
and significant research, but they are not as enthusiascic -
in their teaching, regarding teaching more as a means‘tb””‘j

earn their bread to sustain research than as part of their "~

career, Concerning history of mathematics, they may feel
indifferent or even mildly disdainful, because they do not
regard it as mathematics proper, but only as frills for
those who are incapable of doing real mathematics., There
also are 2 lot of mathematicians, serious about their
teaching, who put into it quite an amount of time and en-
ergy. They can certainly handle what they have to teach
well, and know it inside out, but they do not consider it
essential to maintain some kind of mathematical research.
(Here the word ""research" 1is used to mean any work which
contains an element of creative thinking, thereby keeping
one mathematically "fit," Thus it includes, besides re-
search in the usual sense of the word, activities such

as writing an expositcry article, interpreting known re-
sults in new light, or solving problems posed in various
mathematical periodicals,) Concerning history of mathe-
watics, they seldom pay attention because they do not think
it can help in the classroom, at the most only as a minor
anecdotal decoration. This brings us back to the assertion
made at the beginning of this article. Let us examine more
closely the relations among the three.

Needless to say, what makes a good teacher (in any sub-
ject) 1s not just a question of how much one knows and how
well one knows it. Edwin E. Moise once summed it up pretty
well in the following passage (from Amer. Math. Soec.
Nocices, 20 (1973), p. 219): "Teaching 1s a very ambiguous
interpersonal relation. The teacher i1s a performer, an
expositor, a task-master, a leader, a judge, an advisor, an
authority figure, an interlocutor, and a friend. None of
these roles are easy, and many of them are mutually incon-
gruous. Thus, maturity as a teacher includes complex de-
velopment of personality." Having said this, we shall con-
fine our discussion to the subject-matter. But even at
that we would not like to limit ourselveg to the mere "know-
how." So, what do we mean by a learned teacher? A learned
teacher should possess the following qualities: (1)
abiliecy, (i1) knowledge, (1ii) wisdom. They differ from
one another but are closely related, each complementing the
other two. An eighteenth century Chinese scholar, Yuan
Mel, once said (but referring to a literary context),
"Knowledge is like the bow, ability like the arrow; but it
is wisdom which directs the arrow to bull's eye." However,
throughout school days, it seems that only knowledge, and
for some lucky ones perhaps abilicy as well, are stressed;
but wisdom 18 rarely placed on-equal footing. It is per-
haps one reason to account for the parqdox“ghat although
machematics is universally recognized 3s a most basic,
important, useful and encompassing,digcibgine; it'is'also
the least understood, the most misunderstood and the most
neglected subject by the public. One does not have toibe
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an artist to know what painting or sculpture is; one does
not have to be a writer to know what poem or novel is;
one does not have to be a musician to know what symphony

or song is; one does not have to be a scientist to know
what planet or virus is; but if one is not a mathemati-
cian, one may never_&now what function, postulate, group,
manifold are. Most pPéople know who Picasso, Shakespeare,
Beethoven, Einstein are; but how many (outside of the
mathematical circle) know of Euler, Gauss, Riemann, not

to mention mathematicians living in our century? 1If a

mathematician makes a new acquaintance in a party, chances:

are that the response is 'Oh, you are a mathematician.
You should balance my checkbook for me. I am never good
at math." or "Good, you are a mathematician. Tell me
how to break the casino.” As working mathematicians we -
know better what we actually do in mathematics.

Mathematics is too vast and too old (yet forever new)
a subject so that when school children learn of achieve-
ments of modern scilences in the present century, their
mathematics lessons basically cover what had been done up
to the sixteenth and seventeenth centuries. Even at uni-
versities, most students study mathematics that was done
up to the beginning of the nineteenth century; only a
few math majors may go beyond that. Thus, machematics
gradually acquires a language of its own, which can sound
quite obscure to one not with that training. It must
also be admitted that mathematics demands abstract think-
ing so that one must put in the requisite amount of time
and effort to really understand it. Not everyone is
willing to do so (and there is no need for so many mathe-
maticians anyway). Thus, in schools, mathematics teach-
ing tends to emphasize the technical content with the
advantage that a reasonable amount of knowledge can be
transmitted in the time allotted so that students can
learn this language and skill in a reasonably short time.
However, in so doing, the cultural aspect is bound to be
neglected. Students may be totally unaware that mathe-
matics has its life, that it has a past as well as a
ruture, that it is not just a mess of neatly packed but
lifeless formulae and theorems. When I began my grad-
uate study, one day I ran into a former classmate of
school days. I told her I was working in mathematics.
She looked surprised and asked, "You mean there are still
things to do in math? I though everything had been dis-
covered in calculus!' Four years back she was a top
student in mathematics in our class.

Therefore, a well~balanced mathematics curriculum
should address three aims: (i) training of the mind,
(11) transmission of technical knowledge, (iii) awareness
of the cultural aspect. If the reader is willing to bear
with a looser usage of vaguer rerms, we shall character-
ize the three aims as: (i) abilicy, (ii) knowledge, (iii)
wisdom, which brings us back to our srarting point. It
1s not easy to define precisely these terms. Hopefully
they can become clearer as we proceed. We shall not dis-
cuss (1) either because people like Pélya have said and
done so much on it that whatever added can oaly give the
reader a feeling of "dé}a-vu." We shall come right down
‘to (i1) and (1ii), which combine to ccmnstitute "scholar-
ship." This scholarship can be acquired through a warp-
woof approach with the discussion of development of math-
ematical ideas as the warp and the exploration on the
nature and meaning of mathematics as the woof. In either
one, history of mathematics plays a guiding role.

A mathemadics teacher may say, "These are big issues,
but they have ‘no bearing upon my day-to-day teaching. All
I want to do is to teach well. Why should I bother about

philosophical issues such as the nature and meaning of math-

ematics? All I want to teach is mathematics of our days.
Why should I bother about how people did it two thousand
years ago?'"’ Isithis really so? It 1s not to be denied
that the nature: and’ meaning of mathematics is a philosoph~
ical issue, anﬁﬁa controversial one at that. Different
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people have different views. But that is healthy, and we
are not to look for a '"model answer." However, that is no
excuse for shunning the question, and it is not true that
it has nothing to do with one's teaching. Whether one is
conscilously aware of it or not, or whether ome likes it or
not, the way one views mathematics will be reflected in
one's teaching. If one views mathematics as a mere tool,
one would easily give the class formulay after formula with
lots of routine worked examples. If one views mathematics
as a purely logical system, one would easily adopt a dry
(albeit clear) definition-theorem~corollary format. If one
views mathematics as something more than that, then one
would teach in a different style. As to the past develop-
ment of mathematics, 1t is not dead mutton but can help to
develop in us a mathematical "taste" which in turn can im-
prove our teaching in an indirect way, for it shows how
mathematics evolves, what laws of evolution mathematics
follows, what the ebb and flow of mathematical trends at
various times were. It can also help in a more direct way,
as the rest of this paper purports to discuss.

Alchough many.will agree that history of mathematics
can be helpful in a general way, opinions differ when it
comes to day-to-day teaching. Some say that it is useful,
some useless; some say that it is useful in school teaching
but useless in university teaching, some the other way
round. I would say that there are three levels in the use
of history of mathematics in the classroom. The first
level is to make use of anecdotes, names, dates, events to
enliven mathematical instructiom, to "humanize" the subject,
so to speak. The second level is to make use of an outline
of the general development of a certain field, a certain
concept or a certain theory to enhance the cultural aspect
of the subject and to generate a regard for learning in
general. In this respect we should note that mathematics,
besides being a sclence, is alsc a subject in the humani-
ties which form an integral part of a liberal education.
The third level 1is for mathematics itself the most important
(but also the most difficult to attain), namely, to look for
«&wr insight and motivation in the illustrious examples from
history, thereby gaining an enlightened interpretation. In
the words of Leibniz, "its use is not just that history may
give everyome his due and that others may look forward to
similar praise, but also that the art of discovery be

promoted and its method known through iliustrious examples."

Let us 1illustrate with some examples taken from class—
room experience of the author. (As the author is teaching
in a university, some examples are at a more advanced level
although in some sense they are still akin to school level.
The author apologizes if readers find some of the examples
inappropriate.)

EXAMPLE 1. The so-called "epsilonics" is a notorious
hurdle for many students. But if we ponder over how it
arose, perhaps it would become less terrifying. Why do
we usually say, "For given €70, there is cevee, why € 7
Does € have to be small? If so, why do we mot choose
another letter which would better emphasize this point?

In fact, € need not be small, although small € is our
main concern. The letter was derived from the French word

"erreur" (error). Mathematicians in the eighteenth cen~
tury, like LaGrange, were good at approximation by itera-
tion. They had to estimate the error involved in their
computation, asking how near the estimated answer was to
the actual value after a specified number of steps of it~
eration. This technique, in the hands of nineteeath cen-
tury mathematicians, like Cauchy, was transformed into a
theory of limit. They asked in reverse how many steps were
needed to guarantee that the estimated answer was within a
certain demanded error. When viewed this way, "epsilonics"
is nothing but estimate of error, which is as natural and
as concrete as 1t can be!



EXAMPLE 2. As we all know, function is a central notion in
mathematics. It occurs in daily life as something which

varies as some other thing varies, like the temperature of
the day. For preciseness mathematicians have to adopt a
formal definition which may look imposing (and unnecessar-
ily cumbersome) to a beginner. In actual fact, mathema-
ticlans arrived at their definition only after many hundred
years of toil and puzzlement. Besides, stressing only the
relational aspect of function, as the formal definition
tends to impart, will deny students the chance to see that

function 18 also a mathematical formulation of a certain law

of change. .'A look at the development of the function con-
cept 1s helpful. The importance of the notion of function
was brought out in the seventeenth century by Descartes
and Galileo, the former from a geometric viewpoint as the
locus of a varying point, and the latter from a physical
viewpoint as the motion of a body. In 1667 Gregory de-
fined a function as a quantity obtained from other
quantities by a succession of algebraic operations or any
other operations imaginable (meaning a limit process). In
1718 (John) Bernoulli introduced the notion of "variable"
and in 1734 Euler introduced the symbol f(x) for function.
(The actual word "function" was first used by Leibniz in
1692, but in a more restricted sense as certain varying
quantity related to a curve.) By 1748, Euler still re-
garded a function as any analytical expression formed in
any manner from a varlable quantity and constants. (So are
many students in schools to-day'!) Then a great event which
exerted deep influence over analysis for the ensuing cen-
turies took place, namely, the controversial problem of the
vibrating string. D'Alembert expressed the vertical dis~-
placement of a plucked string in terms of rhe function
which described the initial shape of the string. Euler
allowed a more general class of such functions and in 1755
he redefined a function as some quantity which depended on
others in such a way as to undergo variation when the larter
was varied. (Daniel) Bernoulli attacked the problem from
a totally different angle and drew attention to the prob-
lem of representing a function by trigonometric series.
This led to closer scrutiny of the concept of a function.
In 1822 Fourier solved the problem cn trigonometric series
and his idea of a function was a succession of values or
ordinates each of which was arbitrary. In 1837 Dirichlec
defined a function y of x as: when to each value of x in ]
a given interval there corresponds a unique value of y.

To emphasize the arbitrariness he gave as an example the
now famous Dirichlet function, y(x)=c if x is rational

and y(x)=d if x 1s irrational. For most students this
workable definition of a function is good enough. To go on
with mathematics we need to polish it further, but is it not
more motivational to introduce the notion of funetion this
way?

EXAMPLE 3. In 1678 Leibuiz announced a "law of continuity,”
saying that if a variable at all stages enjoyed a certain
property, its limit would enjoy the same property. Up to
early nineteench century mathematicians still believed in
it. Guided by this principle, Cauchy proved the following
result in 1821: If {;fn'} is a sequence of continuous

functions and £ is the limit of {f }, f.e. lim £ (x)=
n M-z=oa

f(x) for each x, then f is continuocus. In a calculus class

I would present his proof as follows. For sufficiently

large u, |fn(x)-f(x)!-< €. For sufficiently large n,

[¢ (xrh)-fGeth) [< € . Choose a specific u so that both
o
inequalities hold, hemcelf (0)-£Go) | +] ¢ Gern)-feormbe 26

- for sufficiently small‘h .
For this £ , [ £ Gerhy-f (0| < e |

Hence, for sufficiently small lhl, we have
feCern)-£0l € [eCern) =€ Gern) | + Y £ Gern)=£ ol +
Fe (0-£(x) | < 3¢

Thus f is continuous at x.
even more plausible.

Looking at a picture, this is

X X+h

Figure 1

While many students are still nodding their heads, I would
tell them that Fourier's work on trigonometric series at

-about the same time indicated that certalin very discontin-

uous functions could be represented as limits of trigomo-
metric polynomials! Cauchy could not see what was wrong
and for a time these contradictory results coexisted! I
then ask the class to wrestle with the "proof" to find out
what 1s amiss. If they can spot it, so much the better.
If they cannot spot it, I tell them aot to feel bad as
Cauchy could not spot it either. It was left to Seidel to
find the mistake twenty six years later. To each x there
1s certainly some Nx for which lfn(x)—f(x”<efor all

:1:> Nx. But what we must seek is one single N that works

for all x. We may not be able to do so. (This is the

point to slip in counter-examples.) How can we patch up

the argument? An easy way out 1s to impose that condition
on { fn } » and that 1s the notinn of "uniform convergence."

A precise definition can now follow. The moral is: Quite
a number of definitions, notions, theorems arise from
bungled proofs.

EXAMPLE 4. It is a well-known fact that for two relatively
prime integers A,B, there exist integers m,n such that
mA+nB=]. An abstract way of saying it 1s to note that the
ring of integers is a principal ideal domain because it is
an euclidean domain. It sometimes saddens me to wartch a
student who knows how to prove the fact just wmentioned but
who feels at a loss when asked to find m,n such that, say
1452@+245n=1, If mathemaricians had known this (more
accurately, the main idea to 1t) for over two thousand
years, there will be an easier and more intuitive explana-
tion for an unsophisticated student. Indeed, the proof

was written down clearly in the very beginning of Rook
Seven of Euclid's "Elements." Armed with this proof I step
into the classroom with scissors and ribbons. Show the
class two pleces of ribbon of pre-designated integral
length. Measure the smaller into the larger uncil there is
a left-over piece. Cut this off and measure it into the
smaller until there 1s a second left-over plece. Cut this
off and measure ir into the first left-over piece until
there is a third left-over plece. Repeat until a left-over
plece measures exactly into the preceding left-over plece.
It 1s intuitively clear (particularly 1if one arranges to
have theprocedure terminate after two or three steps) that
the final left-over piece is the largest piece that measures
exactly into the two original pieces. Now, we can start

to write down precisely what is going on and explain the
so-called euclidean algorithm.,

EXAMPLE 5. In a letter to Eratosthenes, Archimedes said:
" ... judging from the fact that any circle is equal to a
triangle with base equal to the circumference and height
equal to the radius of the circle, I apprehended that, in
like manner, any sphere is equal to a cone with base equal



to the surface of the sphere and height equal to the
radius." This gives a beautiful instance of reasoning by
analogy. It 1is easily checked that this analogy actually
gives the correct formula for the volume of a sphere
(provided you know the formula for the surface area of a
sphere). Pursuing along this analogy I got an interesting
heuristic argument for the statement Archimedes made, but
that turns out to contain a flaw (pointed out to me by
Brendan McKay of Canberra). However, the battle is not
completely lost as it leads to a discussion of the theory
af indivisibles used by mathematicians of the sixteenth
and seventeenth centuries in Europe and by mathematiclans
of the third to fifth centuries in China.

Figure 2

EXAMPLE 6. In Chapter Five of "Jiu Zhang Suan Shu" (Nine
Chapters on the Mathematical Art), the most important
mathematical treatise in ancient China, it was written
that the volume of a pyramid was obtained by multiplying
the breadth, length, height, then dividing by three. 1In
Liu Hui's famous commentary written in the third century,
an elegant proof was given. It would be a convincing
explanation for a class without calculus background
(although of course the argument would have ‘to coatain a
germ of calculus)., Liu Hui noted that if a rectangular
parallelepiped was divided in halves by a slanting plane
through opposite edges, each was a triangular prism,
which could be furthar split up into a pyramid and a tet-
rahedron.

Figure 3

It suffices to show that the pyramid is twice as large as
the tetrahedron. Liu Hul demonstrated this by cutting the
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pyramid into two smaller pyramids (of the same shape) plus
four triangular prisms, and the tetrahedron ‘into two
smaller tetrahedra (of the same shape) plus two triangular
prisms (identical to those obtained before).

VA

Figure 4

Thus, apart from the smaller pyramids and the smaller tet~-
rahedra, one is twice as large as the other. But the pro-
cedure can be repeated for a pair of smaller pyramid and
smaller tetrahedron. Liu Hui used essentially an infini-
tesimal argument to conclude that the pyramid is twice as
large as the tetrahedron. In his own words: ‘'the smaller
they [meaning a pair of pyramid and tetrahedron:] are
halved, the finer are the remaining. The extreme of fine-
ness 1s called subtle. That which is subtle is without
form. When it 1s explained in this way, why concern one-
self with the remainder?" We may criticize him for
asserting an infinitesimal as actually zero, but his argu-
ment is basically correct, and moreover remember that he
lived one thousand seven hundred years before us'

In conclusion, as the title suggests, the triad of
mathematics, history of mathematics and mathematics
teachers 1s an inseparable whole. Here, history of mathe-
matics is to be understood in a broad sease. It is neithar
the type of research which befits an historian of mathe-
matics, nor is it merely a chronological order of events,
a list of names and a stock-pile of anecdotes. It should
mean the evolution of mathematical ideas and knowledge,
the men and women who were responsible for them, the times
and climate which nurtured (or perhaps stifled) them, and
the impact and influence they exerted upon contemporary
soclety. And when old mathematics can enlighten new math-
ematics (or vice versa), it is pardonable and desirable
(with due apology to historians) to relate and interpret
them. We should strive after a sense of history, which
becomes strong through continual study and thinking, sc
strong that the history of mathematics becomes part of
mathematics itself. We should do so because it contributes
to our ability and scholarship. It is our duty as mathe-
matics teachers to pass on to our students (1) ability,
(11) knowledge, (iii) wisdom. Hermann Weyl once said,

"We do not claim for mathematics the prerogative of a
Queen of Science, there are other fields which are of
the same or even higher importance in education. But
mathematics sets the standard of objective truth for
all intellectual endeavors; sclence and technology
bear witness to its practical usefulness. Besides
language and music, it is one of the primary mani-
festations of the free creative power of the human mind,
and it is the universal organ for world-understanding
through theorecical construction. Mathematics must
therefore remain an essential element of the knowledge
and abilities which we have to teach, of the culture
we have to transmit, to the next generation."




