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1. Smale’s Mean Value conjecture

Let P be any polynomial; then z is a critical point of P if and only if
P'(z) =0, and w is a critical value of P if and only if w = P(z) for some
critical point z of P. A nonconstant linear polynomial has no critical
points, so throughout the paper we shall be assuming that P has degree
d, where d > 2. We begin with a result and conjecture of Smale.

Theorem 1.1 [5]. Let P be a non-linear polynomial with critical points
zj. If z is not a critical point of P then

P(z) = P(z))

Z—Zj

min < 4|P'(2)]. (1.1)

J

Smale proved this in 1981 ([5],p.33), and then asked whether one can
replace the factor 4 in the upper bound in (1.1) by 1, or even possibly by
(d—1)/d. He repeated this problem in [6] (p.289, although not in his list of
major problems). The number (d—1)/d would, if true, be the best possible
bound here as it is attained (for any nonzero \) when P(z) = 24 — Az and
z =0 in (1.1). The conjecture has been verified for d = 2, 3,4, and also in
some other special circumstances (see [4] p.159, [7] and [8]) but the general
case remains open.

It is convenient to use the notation

P(z) — P(z; 1
S(P, z) = min (2) (1) ,
J z =z [P (2)]
where P has critical points 21,...,24_1. By expressing P as a Taylor series

about zj, we see that (P(z) — P(z;))/((z — 2;)P'(z)) has a removable
singularity at z; with absolute value at most 1/2 there. Here, we shall
prove the following two results.

Theorem 1.2. Let P be a non-linear polynomial of degree d. Then for

all z,
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The factor 4 in (1.1) has been replaced by 4(?~=2)/(4=1) in (1.2), and
when P has degree five (the smallest degree for which the conjecture is
still open), this factor is approximately 2.83; in all cases it is strictly less
than 4.

Theorem 1.3. Let P be a non-linear polynomial.
(i) Let C be the convex hull of the critical values of P. If P(z) ¢ C
then

S(P,z) <3.079---. (1.3)

(il) Let D be the smallest closed disc that contains all critical values of
P, and let ( and r be the radius, and the center, respectively, of D. If
P(z) ¢ D then

(r +1P(z) = CDv/r* + |P(2) = ¢[*

S2) < 1B — (PG = O - 1)

(1.4)

The right-hand side of (1.4) is a decreasing function of |P(z) — (|, and it
tends to 1 as z — oo. It shows, for example, that if |P(z) — ¢| > 5r then
S(P,z) < 1.5297....

Our proofs depend on the use of the hyperbolic metric which does not
seem to have been applied in this context before. Smale’s proof of Theorem
1.1 uses Koebe’s 1/4-Theorem. In [7] (p.439) Tischler refers to Smale’s

R

proof and asks ”whether the inverse branches of polynomials satisfy a
stronger version of the Koebe 1/4-Theorem”. Now Koebe’s Theorem is
equivalent to a statement about the hyperbolic metric, and by using this (a
more flexible tool than Koebe’s Theorem) we obtain Theorem 1.2. Section
2 contains some elementary remarks, and in Section 3 we discuss the hy-
perbolic metric. The proof of Theorem 1.3 is simpler than that of Theorem
1.2, so we prove Theorem 1.3 in Section 4 and Theorem 1.2 in Section 5. In
Section 6 we broaden the discussion and try to place Smale’s conjecture in
the context of a certain class of entire functions (that includes all polynomi-
als). We shall see that the conclusion of Theorem 1.2 remains valid in this
larger class, and that Smale’s theorem and conjecture are closely related to
the problem of comparing certain conformal metrics in the complex plane.

2. The normalized problem
It is clear that if a(z) = az + b, where a # 0, then S(ao P, z) = S(P,z2),
where o denotes the composition of functions (although we often omit this

2



symbol and write, for example, aP). Likewise, as the critical points of Poa
are a '(z;), we readily find that S(P o a,a"!(z)) = S(P,z). Suppose
now that we are interested in the value S(P,(). We let 8(z) = z + (,
a(z) = a(z = P(¢)) and Q = ao P o fB; then S(Q,0) = S(P,(), and
Q(0) = 0. Moreover, by choosing a appropriately, we may assume that if
w; are the critical values of @, then min; |w;| = 1. To summarize, to show
that S(P,z) < K, it suffices to assume that

PO)=0, P(0)#0,  min [P(5)|=1, (2.1)

where P has critical points z;, and then show that
min{|P(z;)|/|z|: j =1,...,d— 1} < K|P'(0)|.
Note that because of (2.1), this inequality will hold if, for all 7,

1< Kz |P'(O)]. (2.2)

3. The hyperbolic metric of a simply connected domain

Any simply connected proper subdomain 2 of C supports a hyperbolic
metric Aq(z) |dz|, and if f is a conformal map of a simply connected domain
Y onto 2, then the two metrics are related by the formula

X (F(2)IF(2)] = An(2)- (3.1)

In the particular case of the unit disc D, Ap(z) = 2/(1 — |2]?) (and this
and the Riemann map of Q onto D defines A in Q). For the upper half-
plane H, Ag(z) = 1/Im(z). Now for any simply connected domain ¥ with
boundary 0%,

/\2(2) > 1

= odist(z,0%)’ (3:2)

this is a consequence of the Koebe 1/4-Theorem (see [3], p.45).

Suppose now that P satisfies (2.1), and let © be any simply connected
subdomain of C that contains P(0) (= 0) but not any critical value P(z;)
of P. Then we can define a unique single-valued branch of the inverse P!
on Q (by the condition P71(0) = 0) and if we let ¥ = P~1(Q), then P is
a conformal map of ¥ onto 2, and (3.1) holds with f = P. If we now put
z =0 in (3.1), and then use (3.2) we obtain 1 < 2dist(0,9X)\q(0)|P’(0)].
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However, as 0 € X, and as each critical point z; lies outside ¥, we see that
|zj] > dist(0,0%) for every j, and hence

1< 202 |P'(0)ra(0)- (3.3)

If we now compare this with (2.2) we obtain a variant of Theorem 1.1 in
which the factor in the upper bound in (1.1) is replaced by 2Aq(0). If we let
1 =D (as we may since (2.1) holds), and note that Ap(0) = 2, we obtain
Theorem 1.1. This is Smale’s proof written in the context of the hyperbolic
metric, and our proof of Theorem 1.2 simply depends on making a better
choice of 2.

We now illustrate these ideas by finding the hyperbolic metrics (which
we shall need later) of three specific regions.

Lemma 3.1. Let I = {x +iy : « < 0} U{z : |z] < 1}. Then \g(0) =
8/3v/3.

Proof Themap g(z) = —i(z+1i)/(2—i) maps II conformally onto {x+iy :
z < 0or y> 0} (the complement of the fourth quadrant), and h(z) = 2/3
maps this region onto the upper half-plane H. Let F = ho g; then

A (0) = Au (F(0)[F'(0)] = Xax(e™?) |g' (0)] | (9)],
and a simple computation gives the result.
Lemma 3.2. Let A={x+iy:2z>0}N{z:|z| >1}. Then

|2* + 1]

ME) = P T DRe )

Proof 1t is easy to see that if Q@ = {z=x +iy:2z >0 and y > 0}, then

Ao(z) = -2

As f(z) = (z+14)/(z — i) is a conformal map of A onto @, we see that

M@zmmmwm=&(+ﬁ|2

z—1i) |z—i]?

and a calculation gives the result.



Lemma 3.3. Suppose that 0 = C\ [ﬁ U (—oo,O)], and that = > 1. Then

z+1
A =—.
2(@) 2z(z — 1)
Proof The principal branch g(z) of v/z on Q maps Q conformally onto
A, so that
1 |z + 1

Aa(z) = A (9(2)lg' ()| = /\A(\/E)2|z|1/2 = 2|2|1/2(|z| — 1)Re (v/Z)

The result follows immediately from this.

Finally, we shall need the results in Lemmas 3.1, 3.2 and 3.3 after the
sets there have been rescaled by a positive factor r. These results are found
by applying the map z — rz, and they are as follows :

(a) if M, ={z+iy:x<0}U{z:|z| <r} then Am,(0) = 8/(3/3r);
(b)y ifA={z+iy:z>0}Nn{z:]|z| >r} then

2% + 77

M P ke )

(c) if @, =C\[{z:]z] <r}U(-0,0)], and = > r then

xr+r

Ae, (z) = 2w —1)

We shall reserve the notation IL., A, and €, for these sets for the rest of
this paper.

4.  The proof of Theorem 1.3

First, we take any point ¢ that is not a critical point of P, and for which
P(¢) ¢ C, and prove (1.3) with z replaced by (. Let @ be the polynomial
defined by

Q(z) = P(z+¢) = P(0).

Then Q(0) = 0 and the critical points of ) are the points w;, where
w; = z; — (. It follows that the critical values of () lie in a half-plane
bounded by a line through the origin, and we may assume that this half-
plane is the right half-plane given by = > 0. As Q(0) = 0, Q(0) is not a
critical value of P and so the nearest critical value to 0 is, say a distance r
away from the origin. It follows that we can define a single-valued branch
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of @71 on the region II, defined above and so (exactly as before) for all j

we have
1 <271, (0)[w; [ 1Q'(0)].

This gives, for some 7,

16
N =r < ——|w. '0,
Q)| =7 < 2yl 1QO)
which, in turn, yields
S(P,¢) = S(Q,0) < <5 = 3.0792..
S ER S SR T '

This completes the proof of Theorem 1.3(i).

Next, we prove Theorem 1.3(ii). By replacing P(z) by P(z) — (, we
may suppose that ¢ = 0, so that the smallest closed disc that contains all
critical values of P is of the form {z : |z| < r}. Thus we want to prove
that (1.4) holds when |P(2)| > r.

Suppose now that |P(z)| > r; in fact, there is no harm in actually
assuming that P(z) > r. There is a single-valued branch g of P~! defined
on ., and if we let ¥ = g(Q,) we see that P is a conformal mapping of
Y onto €2,. Thus

- , (P(2) 4+ 7)|P'(2)]
As(2) = da. (PP < Spasmpry =y

Because X is simply connected, and none of the critical points z; of P lie
in ¥, we have

LD e
2|z — z;| — 2dist(z,0%) — S
and consequently,
1 (P(z) +7)|P'(2)]

|z —z;] = P(2)(P(z) —7)
Because {z : |z| = r} is the circumcircle for the finite set of critical values
of P, there must be a critical value, say P(c), of P lying on the closed
semicircle {re?? : —r/2 < 0 < m/2}. Then |P(z) — P(c)|* < r? + |P(2)|?
so that

P - PO _ (¢ +IPE)A PGP
SEA) < L) POPE —r)

IN

This completes the proof of Theorem 1.3.
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5. The proof of Theorem 1.2
In order to prove Theorem 1.2 we note from (3.3) that it suffices to take
any P that satisfies (2.1), and then construct a simply connected domain

Q that contains 0 but not any critical value of P, and which is such that
A (0) < 2/4'/(@=1) " We shall now show how to do this.

Consider the d — 1 critical values P(z;) of P; from (2.1) these all lie
outside the unit disc D. Let R; be the ray of the form {re? :r > 1} that
passes through P(z;) and take 2 to be the complement of U;R; in C. It
may happen that two or more of the P(z;) lie on the same ray Ry ; in this
case we draw additional rays so that in all cases, & = C\(Ry U---UR4_1),
where here the R; are disjoint. Let g be the domain of this type (with
exactly d — 1 radial slits) in which the R; emanate from the (d — 1)-th
roots of unity. We shall complete the proof of Theorem 1.2 by proving the
following result which shows that Qg (with the symmetrically placed slits)
is the extremal case among all radially slit domains. For brevity, we let
n=d-1.

Theorem 5.1. For any domain Q of the form C\(R; U---U R,,), where
the rays R; are distinct, we have

Ao (0) < A, (0) = 2/44/™, (5.1)

Proof First we prove that A\q,(0) = 2/4'/". We know that F given by
F(z) = —42/(1—2)? maps D conformally onto C\[1, +0c0), that z — 2" is
a n-fold covering map of D onto itself that is branched only at the origin,
and that z — 2™ is a n-fold covering map of y onto C\[1,+00) that
is branched only at the origin. Now let D* = D\{0}, and note that any
two unbranched n-fold coverings of * differ from each other by a home-
omorphism (this is Corollary 4.22 on p.70 of [9]). In our case (above) the
homeomorphism is necessarily analytic, and this shows that the conformal
map F : D — C\[1,+o0) lifts to a conformal map G defined by

in _ (_4)1/n2+_”

G(z) = [F(z")]
(for some choice of the n-th root) of D onto . We deduce that
2 = An(0) = Aa, (0)|G' (0)| = 4/ Aq, (0)

as required. We remark that the existence of G can also be derived from
elementary complex analytic arguments, and we can even give an explicit
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formula for G—'. Indeed, the composition of the maps z +— 1/z, z + 2"/2,

2 2422 =1, 2= 22" and z — 1/z (taken in this order) maps the
sector {z : —27/n < argz < 0} conformally onto the sector {z : —27/n <
argz < 0, |z| <1}, and this can be extended (by repeated applications
of the Reflection Principle) to give the desired mapping.

It remains to prove that Aq(0) < Ag,(0), and our proof of this is based
on the following result of Dubinin [1], p.270.

Theorem 5.2. Suppose that 0 < r < 1, and let (1,...,(, be n distinct
points on the unit circle. Let D denote the region obtained by removing
from D the n radial slits {¢t(; : r <t <1}, j =1,...,n, and let Dy be
this region in the case when the (; are the n-th roots of unity. Let f be
the unique conformal map of D onto D with f(0) =0 and f'(0) > 0, and
let fo be the corresponding map for Dy. Then f'(0) < f5(0).

We need to convert this into information about hyperbolic metrics, and
as Ap(f£(0))]f'(0)] = Ap(0) and similarly for fo, we see that

Ap(0) < Ap,(0). (5.2)

Next, we need to consider the limit of a sequence of domains described
in Theorem 5.2. For R > 1 we now let

D(R)={z€C: 2| < R}\ | J R;,

j=1

where R; is the radial slit {¢(; : 1 < ¢ < R} in the disc {|z| < R}. Simi-
larly, we let Do(R) be the corresponding slit disc when the (; are the n-th
roots of unity. As the inequality (5.2) is true for any r in (0,1) (where
r is as described in Theorem 5.2) we can take r = 1/R and apply the
map z — Rz to obtain the corresponding inequality between the hyper-
bolic metrics of D(R) and Dy(R). We now appeal to the following result
(Theorem 1, [2]).

Lemma 5.3. Suppose that D,, is an increasing sequence of domains whose
union is D, and suppose that C\D contains at least two points. Let A,
be the hyperbolic metric on D,,, and let A be the hyperbolic metric on
D. Then for any z in D, \,(z) is defined for all sufficiently large n., and
An(z) = A(z).



Finally, let
a=0c\ g 1> 13,
j=1
and let €y be the corresponding region when the (; are the n-th roots of

unity. Then, appealing to Lemma 5.3 and the inequality corresponding to
(5.2) but applied to D(R) and Do(R), we see that

Ao (0) < A, (0))

and this completes the proof of Theorems 5.1 and 1.2.

6. Equivalence of conformal metrics

Suppose that f is holomorphic in a domain 2 in C and let a be a point
in Q. Let d(a, f) be the radius of the largest open disc, say A(a, f), with
centre a on which f is injective. Clearly, every critical point z; of f lies
outside this disc, and so satisfies |z; — a| > d(a, f), but note that there
need not be any critical points on dA(a, f). If we now remove the critical
points from  to form

O ={zeQ: f'(z) #0},

then z — d(z, f) is positive and continuous on * and so defines a metric
|dz|/0(z, f) there.

We shall now carry out a similar construction in the range of f. Suppose
that a € Q*. Then f'(a) # 0 and so we can define a local inverse function
f~' at f(a) by insisting that f~'(f(a)) = a. Now let o(a, f) be the
radius of the largest open disc, say X(a, f), with centre f(a) on which
this branch of f~! is freely continuable with values in . We now define a
second metric on Q* namely |f'(z)||dz|/o(z, f). Our first result shows that
these two metrics are equivalent to each other with constants independent
of the region.

Theorem 6.1. If f is holomorphic on 2, then, for all z € (0,

FOl 147G
100 f) S0 ) = o f)

Further, each inequality here is attained for some f and ().

Proof We shall prove (6.1) with z replaced by a. For brevity, we shall
write b= f(a), A = A(a, f), and similarly for §, ¥ and o.
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As the inverse of the conformal map f : A — f(A) is single-valued
on the disc with centre b and radius dist(b,0f(A)), we see that o >
dist (b,0f(A)). Thus

f'@l o 1f(a)

2000, 1) = 20 (5,07 = @ O (@] =Ra(@) =

o(a, f)’

and this is the first inequality in (6.1).

The second inequality follows by considering the conformal map f~! :
¥ — f~1(X), which gives

A (OO = Asb) = =
together with |(f=1)'(8)| = 1/|f'(a)|, and
A=) (F710)) = Ap-r(m) (@) 1 > o

= 2dist (a,0f~1(X)) ~ 26(a, )’

To show that the lower bound is sharp, note that the function f(z) =
(1+2)%/(1 - 2)? is a conformal map of D onto C\(—o0,0]. It is easy to
see that §(0,f) =1 =0(0, f), and f'(0) = 4, and this demonstrates that
the lower bound is sharp. The sharpness of the upper bound follows by
considering f~!.

We shall now show that Theorem 6.1 contains Smale’s Theorem 1.1.

Corollary 6.2. Suppose that P is a nonconstant polynomial and that z
is not a critical point of P. Then there is a critical point ¢ of P such that
P(c) € 0S(P(z),P), and |P(z) — P(c)| < 4|P'(2)||z — ¢|. In particular,
S(P,z) < 4.

Proof Theorem 6.1 gives
o(2, P) < 4P'(2)[6(z, P) < 4|P'(2)] |2 — %]

for every j, as no critical point of P can lie in A(z, P). Now for polynomi-
als (but not, in general, for entire functions) there must be a critical value,
say P(c), where ¢ is some critical point of P, on 8%(P(z), P). Thus

IP(2) = P()| = 0(2, P) < 4P'(2)| | — cl.
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The proof is complete.

Let us now consider a class of entire functions that properly includes non-
constant polynomials. Nonconstant polynomials are n-sheeted branched
coverings of C onto itself, and we shall now consider the more general class
of unlimited branched coverings of C onto itself. In addition to containing
all nonconstant polynomials, this class contains such functions as P(cos z)
and P(sin z), for any nonconstant polynomial P, and cos+/z. With this
class we can obtain an improvement in the upper bound in Theorem 6.1.

Theorem 6.3. Suppose that f is an unlimited branched covering of C
onto itself with d — 1 critical values, where d > 2. If z is not a critical
point of f, then

1 (a—2)/(d—1) [f'(2)]
5en =" o f)

The proof is exactly as for the proof of Theorem 1.2. If we repeat the
proof of Corollary 6.2 we see that Theorem 6.3 contains Theorem 1.2 as a

special case.
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