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Abstract

In this paper, we shall show that the constant in Smale’s mean value theorem can

be reduced to two for a large class of polynomials which includes the odd polynomials

with nonzero linear term.
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1 Introduction and Main result.

Let P be any polynomial; then b is a critical point of P if and only if P ′(b) = 0, and v is

a critical value of P if and only if v = P (b) for some critical point b of P .

In 1981 Steve Smale proved the following interesting result about critical points and

critical values of polynomials.

Theorem A ([3]). Let P be a non-linear polynomial and a be any given complex number.

Then there exists a critical point b of P such that

∣∣∣∣
P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)| (1)

or equivalently, we have

min
b,P ′(b)=0

∣∣∣∣
P (a)− P (b)

a− b

∣∣∣∣ ≤ 4|P ′(a)|. (2)

Smale then asked whether one can replace the factor 4 in the upper bound in (1) by

1, or even possibly by (d − 1)/d. He also pointed out that the number (d − 1)/d would,

if true, be the best possible bound here as it is attained (for any nonzero A,B) when

P (z) = Azd − Bz and a = 0 in (1). The conjecture has been verified for d = 2, 3, 4, and

also in some other special circumstances (see [1], [4] and the references there).

It is easy (see [1]) to show that Smale’s conjecture is equivalent to the following:
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Normalised conjecture: Let P be a monic polynomial of degree d ≥ 2 such that

P (0) = 0 and P ′(0) 6= 0. Let b1, . . . , bd−1 be its critical points. Then

min
i

∣∣∣∣
P (bi)

bi

∣∣∣∣ ≤ N |P ′(0)| (3)

holds for N = 1 (or even (d− 1)/d).

Let Md be the least possible value of N such that (3) holds for all degree d polynomials.

Recently, in [1], it was shown that Md ≤ 4(d−2)/(d−1). In this paper we shall prove that

for a very large class of polynomials (which includes the non-linear odd polynomials), one

can take N = 2 in (3).

Theorem 1 Let P be a polynomial of degree d ≥ 2 such that P (0) = 0 and P ′(0) 6= 0.

Let b1, . . . , bd−1 be its critical points such that |b1| ≤ |b2| ≤ · · · ≤ |bd−1|. Suppose that

b2 = −b1, then

min
i

∣∣∣∣
P (bi)

bi

∣∣∣∣ ≤ 2|P ′(0)|. (4)

Corollary 1 If P is a nonlinear odd polynomial with nonzero linear term, then (4) holds

for P .

Proof of Corollary 1. If P is a non-linear odd polynomial (that is, P (−z) = −P (z)),

then P (0) = 0. Hence, P (z) = zkQ(z2) for some odd number k ≥ 1 and non-constant

polynomial Q with Q(0) 6= 0. Since the linear term of P is nonzero, P ′(0) 6= 0. Clearly,

P ′(z) = R(z2) for some suitable polynomial R. Therefore, we can take b2 = −b1 and apply

Theorem 1 to complete the proof.

Proof of Theorem 1. We may assume that P (bi) 6= 0, for all i, for otherwise, we are

done. Therefore, r = mini{|P (bi)|} > 0 as there are only finitely many critical values. Let

D(0, r) be the open disk with center w = 0 and radius r. Then D(0, r) contains no critical

values of P . Since P (0) = 0 and P ′(0) 6= 0, by the inverse function theorem, P−1(z) exists

in a neighbourhood of 0 with P−1(0) = 0. By the Monodromy Theorem, P−1(z) can be

extended to a single valued function on the whole D(0, r).
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Let f : D(0, 1) → C be defined by f(z) = P−1(rz). Then f is an univalent function

and omits all the bis. This will give some restrictions on the size of |f ′(0)| which is equal

to r/|(P ′(0)|. In fact, we have the following result of Lavrent’ev.

Theorem B ([2]). Let 0 ≤ θ ≤ 2π. Suppose f : D(0, 1) → C is an univalent function

which omits the set A = {Re{θ+(2πj)/n}i | 1 ≤ j ≤ n}, then

|f ′(0)| ≤ 41/nR.

Recall that |b1| ≤ |b2| ≤ · · · ≤ |bd−1|, so mini{|bi|} = |b1|. Since b2 = −b1, we can take

n = 2 in Theorem B. Now

mini

∣∣∣P (bi)
bi

∣∣∣ 1
|P ′(0)| ≤ mini{|P (bi)|}

mini{|bi|}|P ′(0)|

= r
mini{|bi|}|P ′(0)|

= |f ′(0)|
mini{|bi|}

= |f ′(0)|
|b1|

≤ 4
1
2 |b1|
|b1|

≤ 2

and we are done.

Remark. From the proof of Theorem 1 and Corollary 1, it is easy to see that if for

some kth root of unity w we have p(wz) = wp(z) identically and p′(0) 6= 0 (for example,

polynomials of the form zQ(zk), Q(0) 6= 0), then (3) holds with N = 41/k. Of course for k

at least 3 there are not so many of these polynomials, but interestingly for the conjectured

extremal example of p(z) = Azn −Bz this holds with k = (n-1).
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