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Abstract

Abstract: We consider entire functions of the form f = 3" a;e%, where a;(# 0),
g; are entire functions and the orders of all a; are less than one. If all the zeros of
f are real, then f = 93" a;e", where h; are linear functions. Using this result, we
can prove that f = aje? if all zeros of f are positive, which also generalizes a result
obtained by A. Eremenko and L.A. Rubel.

1 Introduction and Main Results.

For i+ > 1 and z € C, let g;(z) be entire functions. Let a;(z) be a non-zero entire
function with p(a;) < 1, where p(g) denotes the order of an entire function g. Let B
denote the class of entire functions of the form

n
f=> ae”,
i=1

where €% 79 is non-constant for i # 7.

If all the a; are polynomials, then such f is said to be in the class B. Clearly, B is a
proper subset of Bj.

Let Z(g) be the zero set of an entire function g. In [?], by using H.Cartan’s theory of
holomorphic curves, A. Eremenko and L. A. Rubel proved the following theorem.

Theorem A. Let f € B. If Z(f) is a subset of the positive real axis ,except possibily
finitely many points, then f = pe9, where p is a polynomial and g is an entire function.

Therefore, it is natural to ask whether we can say something about the form of f if
f € B and Z(f) is a subset of the real axis. By adapting some of the arguments used in
[6] and Nevanlinna value distribution theory for functions meromorphic in a half plane,
we can answer this question even for the case f € Bj. In fact, we obtained the following
results.
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Theorem 1 .  Let f € By. If Z(f) is a subset of the real axis ,except possibly finite
points, then f(z) = eI Z” La;i(2)e?, where b; € C, g and a;(# 0) are entire functions
with p(a;) < 1.

Using theorem 1, we can generalize theorem A to the following theorem .

Theorem 2 . Let f € By. If Z(f) is a subset of the positive real axis, except possibly
finite points, then f = ae9, where g,a are entire functions with p(a) < 1.

Our basic tool is J.Rossi’s half-plane version of Borel theorem. J.Rossi proved this
version in [?] by using Tsuji’s half-plane version of Nevanlinna theory. Therefore, we shall
start with the basic notations of Tsuji’s theory (c.f. [4],[7]); assuming the readers are
familiar with the Nevanlinna Theory and its basic notations (c.f. [3]).

Let n,(t,00) be the number of poles of f in {z : |z — %| < L |2| > 1}, where f is
meromorphic in the open upper half-plane. Define

Nu('f',OO) :Nu(lraf) = /rm
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) (a#00) and

Remark 1: We can also define my(r, f), N;(r, f), T;(r, f) for functions meromorphic
in the open lower half-plane in the obvious way.

Lemma 1 [7]. Let f be meromorphic in Imz > 0(< 0). Definemqag(r, f) = 5- fﬁ log™|f(re?)|df.
Then

Lemma 2 [?]. Let n > 2, S = {fo,..., fn} be a set of meromorphic functions such that
any proper subset of S is linearly independent over C. If S is linearly dependent over C,
then for all r except possibly on a set of finite measure,

O{Z (r,1/ fi) + Nu(r, fi)] + logTu(r) + logr},

where T, (r) = max{T,(r, fi/f;)] 0<i,j <n}.



Remark 2: If we replace my(r, f), Ny(r, f) and T,(r, f) by the standard Nevanlinna
functionals m(r, f), N(r, f),T(r, f) in lemma 2, we shall obtain the orginal full-plane ver-
sion of Borel theorem.

Lemma 3 [?]. Let g; be a transcendental entire function and h be a non-zero entire
function such that T(r,h) = o(T(r,g;)) as r — oo, for 1 < i < n. Suppose Y i, gi(z) =
B(2), then Y, 5(0,g) < n— 1.

Lemma 4 . Forn > 2 and each 1 <1 <mn, let a; denote a non-zero entire function with
p(a;) < 1 and b; be a non-zero complex number . Then, there exists a positive constant A
such that for sufficiently large v, T(r,a1(2) + 3" 5 ai(z)eb?) > Ar.

The proof of lemma 4. It is not difficult to prove for n = 2. Assume n > 3. Let
9(2) = a1(2) + £ 5 ai(2)eb and G(2) = a1(2) + X715 ai(2)eb. Then T(r,G) = O(r) for
large r. From g = G 4 a,e?* and a simple calculation give

(anbp + aly — an,G'|G)e™* = ¢’ — gG'/G.
It is well-known that (for large r) T'(r,G'/G) = o(T(r,G) and T(r,¢') < AT (Br,g),where
A, B > 1. Hence,

1
%|bn|r ~ T(r, eb”‘z) <T(r,¢'—gG"|G)+T(r,anby+a,—a, G /G)+O(1) < CT(Br,g)+o(r)

Therefore, for large r, T'(r,g) > Ar for some suitable positive constant A.

2 Proofs of Theorems.

The proof of theorem 1.  f € By implies that f = > I, ajexpg;, where a;(# 0) ,g; are
entire functions with 7'(r,a;) = O(r°) for some fixed positive € < 1.

If n=1, then we are done. For n > 2, Given that exp(g; — g;) is non-constant for
1 # j. From these and using the full-plane version of Borel theorem, we can show that the
functions f; = ajexpg; are linearly independent. Set fo = f, then the set {fo,....f,} will
satisifies the independence criteria of Lemma, 2.

Given that Z(f) is a subset of the real axis, except possibly finite points. Therefore,
Ny(r,1/fo) = O(logr). For 1 < i < n, we also have N, (r,1/f;) = O(rc), since

ety < [ = N )+ O() = 00

Nu(r1/£) = [

It follows from lemma 2 that T,(r) = O(r®) and hence Ty(r, fi/f;j) = O(r°) for all

Za] Since T’u.(ra fl/f]) = Nu('ra fz/f]) + m’u.(ra fl/f])? we also have mu(’ra fl/f]) = O(TE)'
Similarly, m;(r, fi/ f;) = O(r€). Now,

T(t, fi/ fj) = N(t, fi/ ;) +m(2, fi/ f;) = O(t°) + mox(t, fi/ ;) + Mz 2x(t, fi] f5)-



Then by Lemma 1, we have

TS 1) 4y _ -
T(r, £/ £;)0(1/r?) < / !
Consequently, T'(r, f;/f;) = O(r?~€). This implies that the order of exp(g; — g;) is less
than 2 and hence equal to one.
Now, f = e (a1 + Y jpa;e?i79), where g; — g1 is linear for 2 < ¢ < n. This also
completes the proof.

The proof of theorem 2. Let f € By such that Z(f) is a subset of the posi-
tive real axis, except possibly finite points. By Theorem 1, either (i)f = ae? or (ii)
f(z) = 9@ (a1 (2) + S, a;(2)eb?), where g,a;(# 0) are entire functions, p(a;) < 1 and
the b;’s are non-zero complex numbers. We only need to consider case (ii).

Let G(2) = a1(2) + X1y ai(2)e¥* h = —a1,g1 = —G, gi(z) = a;(z)e’* for 2 < i < n.
Then Z(G) = Z(f) , >i1 9i(2) = h(z) and T'(r,h) = o(T'(r,9;)) as r tends to infinity for
1 <i<mn. By Lemma 3 ,>" 6(0,g9;) <n—1. Since 6(0,¢;) = 1 for ¢ > 2, it follows that
5(0,G) = 4(0,91) = 0.

Hence there exists an unbounded sequence {r;} such that N(r;,0,G) >
Lemma 4,

00 00 . °°lT lG OOlAi
/ Mdtz/ MdtZ/ Mdtz/ 2 rdt:lA>0.
r 12 r t2 r 12 r 2 2

%T(’T‘Z‘, G). By

Therefore, [;° Wdt does not converage and hence the genus of G is at least one.
Now, G is an entire function of finite order with a genus at least one, which has at most
finitely many non-positive zeros. By a result of A.Edrei and W.Fuchs [1], 6(0,G) > 0,

which is a contradiction. Hence f must equal to the required form, ae9.

Remark 3: It is obvious that Theorem A can also be derived from the present argu-
ments by assuming that the coefficients a;(z)s are polynomials in Theorem 2.
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