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Abstract. We show that if a pair of meromorphic functions parametrize an algebraic curve

then they have a common right factor, and we use this to derive a variety of results on algebraic

curves.

1. Introduction

We show that any parametrization of an affine algebraic curve by meromorphic
functions factorizes in a certain way, and we use this to derive several classical results
about the parametrizations of such curves. The distinction between the affine curve,
the projective curve, and the associated compact Riemann surface, is not always clear
in the literature. Here we start with a careful statement of the Desingularization
Theorem (whose proof is now available in accordance with modern standards) but,
apart from this, we use only basic complex analysis. Some of our results can be found
in the literature on algebraic geometry, but we hope that this partly expository paper
will be of interest to complex analysts.

We use C to denote the complex plane, and P1 and P2 to denote the complex
projective spaces of dimension one (the extended complex plane) and two, respectively.
Let P (u, v) be an irreducible complex polynomial in two variables. Then the affine
algebraic curve associated with P is

(1.1) C = {(u, v) ∈ C× C : P (u, v) = 0},

and (because P is irreducible) C determines P to within a non-zero scalar multiple.
Given P we can also form the corresponding homogeneous polynomial P̃ , and hence
construct the projective curve C̃ in P2 , and a compact Riemann surface R , which is
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called the desingularization of C , and which (given P ) is unique up to a conformal
map. We shall use P , P̃ , C , C̃ and R in this sense throughout the paper and without
further discussion (the details and formal definitions appear in Section 2).

The triple (f, g, D) is a meromorphic parametrization of an affine curve C on the
domain D if
(i) D is a simply connected subdomain of P1 ;
(ii) f and g are non-constant and meromorphic in D ;
(iii) if f(z) 6= ∞ and g(z) 6= ∞ , then

(
f(z), g(z)

) ∈ C ;
(iv) with finitely many exceptions, every point of C is of the form

(
f(z), g(z)

)
for

some z in D .
We also say that (f, g) is a
(a) rational parametrization if D = P1 , and f and g are rational maps;
(b) polynomial parametrization if D = C , and f and g are polynomials;
(c) entire parametrization if D = C , and f and g are entire functions.

The parametrization of an affine curve is closely related to the uniformization of
an algebraic curve. For example, in [3] Bers gives the following definition of uni-
formization. Let Σ be a set in C × C (for example, an affine algebraic curve).
Suppose that f and g are meromorphic in a domain D in C , and let Φ = (f, g) and
D0 = {z ∈ D : f(z), g(z) 6= ∞} . Then f and g uniformize Σ if
(i) Φ(D0) is a dense subset of Σ, and
(ii) there is a discrete group of holomorphic self-maps of D such that Φ(z1) = Φ(z2)
if and only if z2 = g(z1) for some g in G (so that D0/G can be identified with
Φ(D0)).

Throughout, we use juxtaposition to denote the composition of maps; for example,
fU(z) = f

(
U(z)

)
. We now state our main result (the terms π , S̃ and L in this will

be defined shortly).

Theorem 1. Suppose that (f, g,D) is a meromorphic parametrization of an affine

algebraic curve. Then f = Uh and g = V h for some h , U and V , where

(a) h : D →R is holomorphic and non-constant;

(b) U and V are non-constant and meromorphic on R ;

(c) (U, V ) : R → P1×P1 is injective on R\E where E is the finite set π−1(S̃∪L) .

Theorem 1 implies that the following diagram commutes:

D
h−→ R

(f, g) ↓ ↓ (U, V )

C I−→ P1 × P1

,

where I is the identity (or inclusion) map. We shall use Theorem 1 to prove the
following known results.

Theorem 2. If C has a meromorphic parametrization on C then R has genus zero

or one.
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Theorem 3. Suppose that C has an entire parametrization (f, g) . Then R has

genus zero and, in Theorem 1, we may assume that R = P1 , U and V are rational,

and h is entire.

Theorem 4. An affine curve C has a rational parametrization if and only if R has

genus zero. If this is so then, in Theorem 1, we may assume that R = P1 , and U

and V are rational.

Theorem 5. Suppose that an affine algebraic curve C has a rational parametrization.

Then it has a polynomial parametrization if and only if it has exactly one place at

infinity. If this is so then, in Theorem 1, we may assume that R = P1 , and U and V

are polynomials.

Theorem 6. An algebraic curve of genus g can be parametrized by rational functions

if g = 0 , by elliptic functions if g = 1 , and by functions that are automorphic with

respect to some Fuchsian group if g > 2 .

Theorem 7. Suppose that (f, g,D) is a meromorphic parametrization of an affine

algebraic curve, let Γf be the group of conformal automorphisms γ of D such that

fγ = f , and similarly for Γg . Then there exists a positive integer N with the

property that, for every γ in Γf , there is an integer n with 0 6 n 6 N and γn ∈ Γg .

A similar statement holds with f and g interchanged.

We give some examples to illustrate these theorems. First,

(f, g) =
(

2z

1 + z2
,
1− z2

1 + z2

)

is a rational parametrization of the algebraic curve C given by u2 + v2 = 1 so,
by Theorem 4, R has genus zero (and so, from the theory of Riemann surfaces, it is
conformally equivalent to P1 ). Now (f, g) = (sin z, cos z) is an entire parametrization
of C , and this illustrates Theorem 3 with h(z) = eiz . Note that f and g have the
same set of periods. On the other hand, the curve given by u2 = v3 has an entire
parametrization

(
e3πiz, e2πiz

)
where these two parametrizing functions have different,

but common, periods (see Theorem 7). If ℘ is the Weierstrass elliptic function (with
respect to some lattice), then ℘′(z)2 is a cubic polynomial in ℘(z), and this shows
that the genus one case can arise in Theorem 2.

Theorem 2 was proved by Picard [13], but see also [7], [10], [11] (where a proof
based on Nevanlinna theory can be found on p.232), and (for a historical comment)
[5] p.16. Theorem 3 is stated in [8], where only a sketch of a proof is offered. Theorem
4 (due to Lüroth) is proved algebraically in [16], p.151; Theorem 5 is stated without
proof in [1]. Theorem 6 is classical, and the statements here are not reversible in
the sense that every algebraic curve can be uniformized by functions defined in the
upper-half-plane {x + iy : y > 0} (see [3], p.259). Theorem 7 is a generalization of
Theorem 1, [15]. We conjecture that Γf ∩ Γg is of finite index in Γf and Γg , but we
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are unable to prove this. It is easy to verify this when D = C and Γf and Γg are
lattices.

2. Preliminary results

An irreducible complex polynomial P (u, v) gives rise to the affine curve C in C×C
given in (1.1). If we write the equation P (u, v) = 0 in homogeneous co-ordinates we
obtain an equation P̃ (u, v, w) = 0 which gives rise to the projective curve

C̃ = {[u, v, w] ∈ P2 : P̃ (u, v, w) = 0},

where we use the notation [u, v, w] for points in projective space P2 . We shall denote
the line at infinity in P2 by L ; this is given by w = 0. Then C̃ can be expressed as
the disjoint union C̃ = (C̃\L) ∪ (C̃ ∩ L), where C̃ ∩ L is finite, and the map

(2.1) α : C → C̃\L, (u, v) 7→ [u, v, 1],

is bijective. Let S and S̃ denote the set of singular points in C and C̃ , respectively.
Then S and S̃ are finite sets, and if we give C\S and C̃\S̃ the usual (and natural)
conformal structure that is described in the general theory of algebraic curves, we
find that the restriction

(2.2) α : C\S → C̃\(S̃ ∪ L)

is biholomorphic.

The proofs of Theorems 2–7 are based on the construction of R from the polyno-
mial P via the affine and projective curves C and C̃ . The distinction between these
spaces is often blurred in the literature, but in any rigorous argument it is essential
to distinguish carefully between them. The fact is that C is not compact, and to
remedy this we embed C in the projective curve C̃ which is compact. However, C̃
need not be a Riemann surface. To overcome this, we construct the Riemann surface
R (without any direct reference to C or C̃ ) as the space of germs derived from the
polynomial P . The link between R and C̃ is then given by the Desingularization
Theorem which is stated below. Explicitly, R is constructed as follows. A function
element is a pair (f, D), where f is meromorphic in D , and two function elements
(f,D) and (g, ∆) are equivalent at a point ζ in D∩∆ if f = g near ζ . A germ at ζ

is an equivalence class of function elements (f, D), where ζ ∈ D , and we denote this
germ by [f ]ζ . Finally, R is (essentially) the space of germs [w]ζ as ζ varies, where
the function w(z) satisfies P

(
z, w(z)

)
= 0 in some neighbourhood of ζ .

We can summarize all this (informally) by saying that whereas R is the space of
germs, the affine curve C is the set of points (z, w), where w is the value of the germ
at z . As there may be different germs which take the same value at a given point, we
see that R and C are essentially different objects. Consider, for example, the affine
curve C given by v2 = u3 + u2 , and let

σ(z) =
√

1 + z = 1 + z/2 + · · ·
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(which is single-valued and holomorphic in the unit disc D). Let w1(z) = zσ(z)
and w2(z) = −zσ(z); then for all z in D , P

(
z, w1(z)

)
= P

(
z, w2(z)

)
= 0. As

w1(0) = 0 = w2(0), we see that
(
0, w1(0)

)
and

(
0, w2(0)

)
are the same point of C ,

namely (0, 0). However, as w1 and w2 have different Taylor expansions at the origin,
the germs [w1]0 and [w2]0 are distinct points of R . In conclusion, the distinct points
[w1]0 and [w2]0 of R correspond to the single point (0, 0) in C ; see Figure 1. Note
(see Theorems 4 and 5) that C has a polynomial parametrization, namely

u = f(z) = 2z + z2, v = g(z) = 2z + 3z2 + z3,

so that in this case, R is conformally equivalent to P1 .

Figure 1

Every compact surface has a genus, and it is known that if a Riemann surface has
genus zero, then it is conformally equivalent to P1 . The genus of the curve C , and
of C̃ , is defined to be the genus of the corresponding Riemann surface R . Thus if
C has genus zero, then we may assume that R = P1 . We shall need other results
on Riemann surfaces (for example, the Uniformization Theorem and the Riemann-
Hurwitz Formula) as well as the basic theory of algebraic curves, and we refer the
reader to [2], [4], [6], [9], [12], [16] and [17] for more details.

Recall that S and S̃ are the sets of singular points of C and C̃ , respectively. The
link between R and C̃ is given in the following fundamental result (modern proofs of
which can be found in, for example, [6], p.169, [9], pp.66-82 and [12], p.192).

The Desingularization Theorem I. Given C , there exists a compact Riemann

surface R , and a surjective map π : R → C̃ such that π−1(S̃) is a finite set, and

π : R\π−1(S̃) → C̃\S̃ is biholomorphic.

The compact Riemann surface R is called the desingularization or normalization
of the projective curve C̃ , and it is unique up to a conformal map.

As Theorem 1 is concerned with maps from R into C× C (instead of maps into
P2 ), we want to convert the map π : R → C̃ into a map β : R → C and study this.
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To do this we recall that C̃ ∩L is finite. As π is holomorphic on the compact surface
R , we see that π−1(L) is a finite subset of R . Now let

E = π−1(S̃) ∪ π−1(L) = π−1(S̃ ∪ L).

It follows that E is a finite subset of R and, from (2.1), that the composition

(2.3) β : R\E π−→ C̃\(S̃ ∪ L) α−1

−→ C\S
is biholomorphic. As C ⊂ C×C , we can write β = (U, V ), where U : R\E → C and
V : R\E → C are holomorphic. This yields the following corollary.

The Desingularization Theorem II. Given C , there exists a compact Riemann

surface R , and a biholomorphic map β = (U, V ) of R\E onto C\S , where E =
π−1(S̃ ∪ L) is a finite subset of R .

According to [16], p.96, the concept of a place is the algebraic counterpart of a
branch of a curve over C . We say that C̃ (or C ) has one place at infinity if π−1(C̃ ∩L)
contains exactly one point. In other words, C̃ has one place at infinity if it has
exactly one point on the line at infinity, and if this point is the image under π of
exactly one point of R . For example, the affine curve given by w2 = z4 − 3z3 has
two places at infinity (see [14]) and so cannot be parametrized by polynomials. In
this case, C̃ ∩ L is the single point [0, 1, 0], and the two places arise from the two
sets of germs {[w1]z : |z| > 3} and {[w2]z : |z| > 3} , where w1(z) = z(1 − 3/z)1/2

and w2(z) = −z(1 − 3/z)1/2 , and where (1 − 3/z)1/2 is the single-valued function
on |z| > 3 that takes the value 1 at ∞ . By contrast, the affine curve given by
(8z + 1)z2 = 9w2 has a polynomial parametrization, namely (f, g), where

f(z) = 1
2z(z + 1), g(z) = 1

6z(z + 1)(2z + 1).

The corresponding homogeneous curve is given by (8u+w)u2 = 9v2w , and this meets
L at the single point [0, 1, 0]. For sufficiently large |u| , the germs of v (as a function
of u (equivalently, the points on R) are given by

v(u) = ±(
u
√

u
√

8 + 1/u
)
/3,

where we are taking (for |u| > 1/8) the single valued choice of
√

8 + 1/u that takes
the value 2

√
2 at ∞ . As these germs are converted into each other by analytic

continuation around ∞ we see (as we already knew from Theorem 5) that this curve
has only one place at infinity.

3. The proof of Theorem 1

The idea behind our proof is to consider the maps

f, g : D → P1, ϕ = (f, g) : D → C,
U, V : R → P1, β = (U, V ) : R → C,
h = β−1ϕ : D →R,

π : R→ C̃,

6



To appear in Ann. Acad. Sci. Fenn.

which act as indicated in the following commutative diagram except that in each case
there may be some finite exceptional set on which the function may not yet be defined.

C
ϕ

↗
β

↖

D
h−→ R π−→ C̃

f, g

↘
U, V

↙
P1

Our proof depends on giving a complete description of what is happening at these
exceptional points, and for this we must show that certain isolated singularities of a
meromorphic function are removable. It is known that any isolated singularity of an
injective analytic map is removable, and we shall need the following mild extension
of this result.

Lemma 8. Suppose that X is a finite subset of a Riemann surface R , and that

F : R\X → C is holomorphic. Suppose also that there is an integer M such that for

all a in R\X , the equation F (z) = F (a) has (counting multiplicities) at most M

solutions in R\X . Then F extends to a meromorphic function on R .

Proof We may assume that M is minimal; thus there is some a in R\X such that
the solutions of F (z) = F (a) are, say, a1, . . . , aq , where a1 = a , and where the
valency of F at aj is kj , and

∑
j kj = M . It is well known that we can, for each

j , construct mutually disjoint open neighbourhoods Nj of aj so that Nj lies in a
parametric disc at aj , and such that the restriction of F to Nj is, up to a conformal
change of coordinates, the map z 7→ zkj . Let N = ∩jF (Nj). Then N is an open
neighbourhood of F (a), and because each point in N has exactly M pre-images in
∪jNj , it follows that F−1(N) ⊂ ∪jNj .

Now choose a point ζ in X . We may assume that the closures of the Nj chosen
above do not contain ζ , so we can find a neighbourhood N of ζ that is disjoint from
∪jNj , and hence that F (N ) ∩N = ∅ . We may assume that N lies in a parametric
disc at ζ , and if we consider the restriction of F to N\{ζ} , and then apply the
Weierstrass-Casorati Theorem, we see that ζ is a removable singularity of F . ¤

We now prove Theorem 1.

The proof of Theorem 1 First, define ϕ : D → P1×P1 by ϕ(z) =
(
f(z), g(z)

)
. Next,

let L be the set of (u, v) in P1×P1 such that u = ∞ or v = ∞ . If z ∈ D\ϕ−1(S∪L)
then f(z) 6= ∞ , g(z) 6= ∞ and

(
f(z), g(z)

)
is a non-singular point of C ; thus ϕ maps

D\ϕ−1(S ∪L) into C\S . We let K = ϕ−1(S ∪L); then, as S is finite, and the poles
of f and g are isolated, we see that K is a discrete subset of D .

Next, we define a holomorphic mapping h : D\K → R\E as the composition of
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maps given by

h : D\K ϕ−→ C\S β−1

−→ R\E.

Also, as h = β−1ϕ we have

(3.1) (f, g) = ϕ = βh = (Uh, V h)

on D\K , where β = (U, V ), and U and V are maps of R\E into C . These maps
are illustrated in the following commutative diagram in which
(1) α , β and π are biholomorphic, and
(2) h , U and V are holomorphic;
see (2.2) and (2.3).

C\S α−→ C̃\(S̃ ∪ L)

ϕ

↗
β

↖
π

↗

D\K h−→ R\E U,V−→ C

Our first task is to show that U and V are meromorphic on R ; that is, that U and
V are holomorphic maps of R onto P1 . Note that once U and V are holomorphic
on R they are (as maps between compact Riemann surfaces) necessarily surjective.
Let card(X) denote the cardinality of a set X . Now take any a in R\E . As β is
biholomorphic, and β = (U, V ), we have

card
({z ∈ R\E : U(z) = U(a)}) = card

(
β{z ∈ R\E : U(z) = U(a)})

6 card
({(u, v) ∈ C : u = U(a)})

= card
({(U(a), v) ∈ C})

6 d,

where d is the degree of v in P (u, v). Thus Lemma 8 is applicable, and U extends
to a meromorphic function on R . Clearly the same argument applies to V . As β is
biholomorphic on R\E , Theorem 1(b) and Theorem 1(c) hold.

It remains to show that Theorem 1(a) holds. Now h = β−1ϕ , β is biholomorphic,
and ϕ = (f, g) is not constant, so that h is not constant. As h is holomorphic on
D\K , where K is a discrete subset of D , it remains to show that the (isolated) points
of K are removable singularities of h .

Select any z0 in K . Now f(z0) ∈ P1 so that U−1
(
f(z0)

) ⊂ R . We have seen
above that U has degree at most d , so that we can let w1, . . . , wq be the distinct
points of U−1

(
f(z0)

)
, where q 6 d . Now choose a positive r such that the compact

neighbourhood N = {z : |z − z0| 6 r} of z0 has the following properties:
(a) N does not contain any point of K other than z0 ;
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(b) the components of U−1(f(N)) are Nj , j = 1, . . . , q , where, for each j , Nj is
a compact neighbourhood of wj ;
(c) each Nj lies in some co-ordinate chart of R .
Note that
(d) h is holomorphic in N0 = {z : 0 < |z − z0| < r} , and
(e) the Nj are pairwise disjoint and compact.
As (f, g) = (Uh, V h) on D\K we see that f(N0) = Uh(N0), so that

h(N0) ⊂ U−1
(
f(N0)

)
= ∪jNj .

As h(N0) is connected, it lies in some Nj , and it follows from (c) above that z0 is a
removable singularity of h . The proof of Theorem 1 is complete. ¤

4. The proof of Theorem 2

The proof mimics the usual proof of Picard’s Little Theorem. Let (f, g) be a
meromorphic parametrization of C on C . Then, by Theorem 1, there exists a non-
constant holomorphic map h : C → R . Now let R̂ be the universal cover of R . As
C is simply connected, we can lift h to a non-constant holomorphic map ĥ : C→ R̂ .
Liouville’s Theorem implies that R̂ cannot be the unit disc; thus R̂ is either C or
P1 , so that R has genus zero or one. ¤

5. The proof of Theorem 3

By Theorem 2, R is of genus zero or one. First, we suppose that R is of genus
one and reach a contradiction. As R has genus one the universal covering space of R
is C , and we let π0 : C→R be a universal covering map. By Theorem 1, there exists
a non-constant holomorphic map h : C→ R and non-constant meromorphic maps U

and V on R such that (f, g) = (Uh, V h) on C . Now lift h to a holomorphic map
h0 : C→ C such that π0h0 = h . As R is compact, U and V are surjective, so there
is some point a with U(a) = ∞ . Now h(z) 6= a in C , for otherwise there is some z

with f(z) = Uh(z) = U(a) = ∞ , and this contradicts the fact that f is entire. As
π0h0 = h , it follows that h0 cannot take any value in the infinite set π−1

0 ({a}), and
this contradicts Picard’s Little Theorem. Therefore, R has genus zero and so we may
assume that R = P1 . It follows from this that U and V are rational functions.

Finally, we must show that h can be taken to be entire. If a = ∞ , then (because
h 6= a) h is entire. If a 6= ∞ , let L(z) = 1/(z− a) and U1 = UL−1 , V1 = V L−1 and
h1 = Lh . Then f = U1h1 , g = V1h1 , U1 and V1 are rational and h1 is entire. ¤

6. The proof of Theorem 4

(i) Suppose first that R has genus zero; thus, by applying a conformal map, we
may assume that R = P1 . Then U and V are meromorphic maps from P1 to itself
and so are rational. In this case, (U, V ) is a rational parametrization of C .

9
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(ii) Now suppose that (f, g) is a rational parametrization of C . Then, in The-
orem 1, D = P1 so there exists a non-constant holomorphic map h : P1 → R ,
and non-constant meromorphic maps U : R → P1 , and V : R → P1 , such that
(f, g) = (Uh, V h). The Riemann-Hurwitz Formula applied to h implies that the
genus of R is at most the genus of P1 , so that R has genus zero. We may now
assume that R = P1 , and this implies that U and V are rational functions. ¤

7. The proof of Theorem 5

Throughout this proof we consider an affine algebraic curve C with a rational
parametrization. We have to show that C has a polynomial parametrization if and
only if π−1(L) contains exactly one point of R . We must also show that, under these
circumstances, U and V may be taken to be polynomials. Theorem 4 implies that
we may take R = P1 , and that there exist rational functions U and V , and a finite
set E , such that P

(
U(z), V (z)

)
= 0 on C\E , and β(z) = (U(z), V (z)) is injective

on C\E . We recall that S ⊂ α−1(S̃), where S and S̃ are the sets of singular points
of C and C̃ , respectively.

(i) First we show that if C has only one place at ∞ then it has a polynomial
parametrization. Let P be the set of poles of U or V . As U and V are rational, P
is a finite non-empty set. If P = {∞} , then U and V are polynomials and (U, V ) is a
polynomial parametrization of the curve. Thus we may now assume that P contains
a point z0 in C . We are now going to show that P = {z0} .

As z0 ∈ P , we can write

U(z) =
U1(z)

(z − z0)m
, V (z) =

V1(z)
(z − z0)n

,

where U1, V1 are rational functions, U1(z0) and V1(z0) are nonzero, m > 0, n > 0,
and either m > 0 or n > 0. Without loss of generality, we may assume that m > n ,
m > 1 and n > 0.

Now consider the following mapping diagram where α and β are injective and
holomorphic, and π is biholomorphic.

C\{β−1
(
α−1(S̃)

) ∪ E
} Φ−→ R\π−1(S̃)

yβ
yπ

C\α−1(S̃) α−→ C̃\S̃

,

Let Φ = π−1αβ ; clearly, this is injective and analytic except possibly at isolated
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points. Also,

lim
z→z0

Φ(z) = lim
z→z0

π−1αβ(z)

= lim
z→z0

π−1α
(
U(z), V (z)

)

= lim
z→z0

π−1

([
U1(z)

(z − z0)m
,

V1(z)
(z − z0)n

, 1
])

= lim
z→z0

π−1
( [

U1(z), V1(z)(z − z0)m−n, (z − z0)m
] )

= π−1
(
[a, b, 0]

)
,

for some complex numbers a, b (not both zero). This shows that z0 is a removable
singularity of Φ. Moreover, since C̃ is closed, [a, b, 0] ∈ C̃ ∩ L , and as π−1(C̃ ∩ L)
contains exactly one point, say p , we must have Φ(z0) = p . Clearly, this argument
holds for any z0 in P ∩ C . However, as Φ is holomorphic and injective on the
complement of a finite set, any holomorphic extension to isolated points must also
lead to an injective map. It follows that if z1 ∈ P ∩ C , then Φ(z1) = p so that
z1 = z0 . We conclude that P ∩ C = {z0} and, consequently, that

U(z) =
U1(z)

(z − z0)m
, V (z) =

V1(z)
(z − z0)n

,

where U1 and V1 are polynomials with U1(z0) 6= 0, V1(z0) 6= 0, m > 1 and n > 0.

We now claim that deg(U1) 6 m and deg(V1) 6 n (equivalently, that U(∞) and
V (∞) are finite). We assume the contrary and let d = max{m,n} and

k = max{deg(U1)−m + d, deg(V1)− n + d, d}.

Then k > d . Note that as z →∞ ,
[

U1(z)
(z − z0)m

,
V1(z)

(z − z0)n
, 1

]
= [U1(z)(z − z0)d−m, V1(z)(z − z0)d−n, (z − z0)d]

=
[
U1(z)(z − z0)d−m

zk
,
V1(z)(z − z0)d−n

zk
,
(z − z0)d

zk

]

→ [c, d, 0],

where c and d are complex numbers, not both zero. As before we get Φ(∞) =
p , which is again a contradiction. Thus, finally, U1 and V1 are polynomials with
deg(U1) 6 m and deg(V1) 6 n . Now let s = 1/(z−z0), then both U(z) = U1

(
(s−1 +

z0)sm
)

and V (z) = V1

(
(s−1 + z0)sn

)
are polynomials in s and we have obtained a

polynomial parametrization of C .

(ii) We show that if C has a polynomial parametrization then it has only one place
at ∞ . Let (f, g) be a polynomial parametrization of C . Then, by Theorem 3, we may
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assume that R = P1 , and that f = Uh, g = V h , where U, V are rational, and h is a
polynomial. Since f is a polynomial, f−1(∞) = {∞} . Hence h−1U−1(∞) = {∞} .
It follows that U−1(∞) = {h(∞)} = {∞} and therefore U is a polynomial. Similarly,
V is also a polynomial.

Now
Φ = π−1αβ : P1\E1 → P1\E2

is injective, where E1 and E2 are some finite sets, and it follows from this that any
point in E1 is a removable singularity of Φ. Thus we can extend Φ to the whole of
P1 , and this extension will be a map of P1 onto itself. Next, πΦ = αβ on the dense
subset C\E1 of C . Since both πΦ and αβ are continuous on C , we now see that
πΦ = αβ on C .

Now suppose that π−1(C̃ ∩ L) contains two different points p and q . Then there
are distinct points p0 and q0 in P1 such that Φ(p0) = p and Φ(q0) = q . One of
them, say p0 , is in C , and hence αβ(p0) ∈ α(C). On the other hand, πΦ(p0) ∈ C̃ ∩L ,
and this contradicts the fact that πΦ = αβ on C . The proof is complete. ¤

8. The proof of Theorem 6

We have seen that if R is of genus zero, then we have a rational parametrization of
C . If R is of genus one then, by composing U and V with the universal covering map
of R , we conclude that C can be parametrized by elliptic functions. Now suppose
that R has genus greater than one. Then, by the Uniformization Theorem, R = D/Γ
for some Fuchsian group Γ acting on the unit disc D without elliptic elements. Each
point of R is then a Γ-orbit [z]Γ of a point z in D . Now define U1 and V1 by
U1(z) = U([z]Γ) and V1(z) = V ([z]Γ). Then U1 and V1 are automorphic functions
invariant under Γ, and (U1, V1) parametrizes C . ¤

9. The proof of Theorem 7

We suppose that (f, g, D) is a meromorphic parametrization of P (u, v) = 0, and
we write

P (u, v) = a0(u) + a1(u)v + · · ·+ am(u)vm,

where am(z) is not identically zero. Choose any complex number z0 in D such that
the orbit Γf (z0) does not contain a pole of f or g , or a zero of am(u). Then the
polynomial p defined by p(t) = P

(
f(z0), t

)
is not constant and, for each γ in Γf ,

and each n = 1, 2, . . . , m + 1,

p
(
gγn(z0)

)
= P

(
fγn(z0), gγn(z0)

)
= 0.

As p has exactly m zeros, there must be some distinct s and t (which may depend on
z0 ) such that 1 6 s < t 6 m + 1 and gγs(z0) = gγt(z0). As there is an uncountable
number of choices of z0 here, there must be an uncountable set U of z for which
the integers s and t are independent of z0 in U . As any uncountable subset of

12
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C (for example, U ) has an uncountable set of accumulation points, we deduce that
gγs(z) = gγt(z) for all z in D or, equivalently, that γs−t ∈ Γg . This completes the
proof. ¤
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