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Abstract. In this paper, we shall first prove certain criteria on the existence of a transcendental
entire common right factor of two entire functions. Applying these results, we can then prove that
if f is an entire function which is pseudo-prime and not of the form H(Q(z)), where H is a periodic
entire function and @ is a polynomial, then R(f(z)) is also pseudo-prime for any non-constant

rational function R.
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1 INTRODUCTION AND MAIN RESULTS.

Let z denote the complex variable. A meromorphic function F'(z) is said to have a factorization

with a left factor f and right factor g provided

where f is meromorphic and g is entire (¢ may be meromorphic when f is rational). F(z) is said
to be prime (pseudo-prime) if every factorization of the above form implies that either f is bilinear

or g is linear (either f is rational or ¢ is a polynomial).

Over the past thirty years or so, several interesting and general criteria for the primeness or
pseudo-primeness of a meromorphic function have been established (see [2]). It seems very difficult
to derive a necessary condition for an entire function to be prime or pseudo-prime. However, in
a sense, prime or pseudo-prime functions constitute quite a large class of functions in the entire

function space. This fact is reflected by the following result proved by Y.Noda in [6].

THEOREM A. Let f be a transcendental entire function. Then

{a € C: f(z) +az is not prime}
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is at most a countable set.

In [9], by using Nevanlinna’s value distribution theory, G.D.Song and J.Huang proved the

following result :

THEOREM B. Let f(z) be a pseudo-prime entire function, and n(> 3) be an odd positive

integer. Then F(z) = f(z)™ is also pseudo-prime.

COS 2z
)

In the same paper, G.D.Song and J.Huang showed that for the prime function f(z) = sin ze
f(2)? = sin? 2% = ((1 — w?)e?¥) o cos z. Hence f(z)? is not pseudo-prime. Thus, they raised

the following question :

PROBLEM A : Let f(z) be pseudo-prime, and P(z) be a polynomial of degree > 3 which
has no quadratic right factor. Must P(f(z)) be pseudo-prime ?

The purpose of this note is to deal with the above problem by proving the following related

result.

THEOREM 1. If f is an entire function which is pseudo-prime and not of the form H(Q(z)),

where H is a periodic entire function and @) is a polynomial, then R(f(z)) is also pseudo-prime for

any non-constant rational function R.

REMARK. The above example given by G.D.Song and J.Huang shows that the condition
that f is not of the form H(Q(z)) in the theorem is needed.

2 LEMMA AND PRELIMINARIES.

In order to prove Theorem 1, we first derive certain criteria on the existence of a transcendental
entire common right factor for two entire functions. The proof of these criteria are based on the

following theorem of Grauert [4] on complex analytic equivalence relations.

THEOREM C. Let R be any equivalence relation on C whose graph G is an analytic subset

of C? containing no vertical or horizontal lines. Suppose that G is of pure dimension one (i.e. G
is everywhere of the same dimension one). Then, there exists a holomorphic map h from C to one
of the four Riemann surfaces: the whole plane, punctured plane, sphere and torus, such that z Ry
if and only if h(z) = h(y).

In the Appendix A of [3], A.Eremenko and L.Rubel gave a more elementary and direct proof
of Theorem C.

The basic terminologies and properties of complex analytic set can be found in [1]. It is sur-
prising to note that Nevanlinna’s value distribution theory, in contrast to the usual applications,

does not play a role in the proof of Theorem 1.
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DEFINITION : Let F(z) be an entire function. We say that g(z) is a generalized right

factor (denoted by g < F) of F' if g is a holomorphic map from C to a Riemann surface S and
there exists a holomorphic map f from S to C such that F' = fog.

Note that we use the word "map” to denote a mapping between two Rieman surfaces.

A non-constant holomorphic map k of C to a Rieman surface can induce an equivalence relation
R in C defined by zRy if and only if k(z) = k(y).

Let K = {(z,y) € C?| k(x) = k(y)}, then K is a complex analytic set of pure dimension one
which does not contain any vertical or horizontal line (see [1]). Such K is called the graph of
equivalence relation induced by k.

Let H and K be the graphs of the equivalence relation induced by holomorphic maps h and k
respectively. Then, it is not difficult to show that h < k if and only if H is a subset of K.

LEMMA. Let f,g be two entire functions. For ¢ = 1,...k,k > 2, let S; = {zin}nen be a
sequence of distinct complex numbers with limit point z;. Suppose that all the limit points z; are
distinct and for all n € N,

(+) f(zin) = f(z2n) = -+ = f(2kn)
g(Zm) = 9(Z2n) == g(zkn)

Then, there exists an entire function h(z) (independent of £ and S}s) satisfying h < f, h < ¢
and h(z1) = h(z;) for all 2 < < k.

The proof of the above lemma is contained implictly in A.Eremenko and L.Rubel’s paper

( [3],Theorem 1.1) For completeness, we sketch the proof below.

Let F' and G be the graphs of the equivalence relation induced by f and g respectively. Then
F N G remains to be a complex analytic set (see [1], p.62), but may not have pure dimension one
, so we consider its derived set H (i.e. the set of limit points). Then H will be a pure dimension
one complex analytic set which does not contain any vertical or horizontal line. The non-trival fact
that H is still a graph of some equivalence relation is proved in ( [3], Theorem 1.1 ). By Theorem
C, we conclude that H is a graph of the equivalence relation induced by some holomorphic map h
from C to one of the four Riemann surfaces S stated in Theorem C. Clearly, h depends only on f

and g.

Now H is a subset of both F' and G, so we have h < f and h < g. Hence, there exist holomorphic
maps hy and ho from S to C such that f = hyoh and g = ho o h. If S is a torus, then h; must
be an elliptic function and f = hy o h will not be entire. Therefore, S can’t be a torus. If S is the

whole plane or punctured plane, then A will be an entire function on C.
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If S is a sphere, then h will be a meromorphic function with at least one pole and h1, ko will be
rational functions. Since f and g are entire, both h; and ho can’t be polynomial . Now, suppose

hq has a pole a, then h must omit the value a, otherwise, f = hy o h will not be entire. Hence,
h=a+ hLo where hg is an entire function. Clearly, hg < f and hy < g and the graph induced by

ho is the same as that of h. So, we may simply replace h by the entire function hg in the following

considerations.

From the assumption (*) of the lemma, we have (z1p,2;,) € FNG forall 2 < j <kandn € N.
Therefore, for all 2 < j <k, (21,2;) € H = (FNG)" and hence h(z;) = h(z;). This also completes

the proof of the lemma .

3 MORE THEOREMS AND THEIR PROOFS.

With the above preparations, we can now deduce the following useful criterion on the existence

of a non-linear common right factor of two entire functions.

THEOREM 2. Let f and g be two entire functions . Suppose that there exist two non-

constant complex functions hy; and he such that F(z) = hi(f(z)) = h2(g(z)) is meromorphic.
Suppose further that there exist k¥ > 2 distinct points 21, ....., zx such that F'(z;) # 0,00 for all ¢

and

Then, there exists an entire function h(z) (independent of k and z.s) with h < f, h < ¢g and
h(z1) = h(z;) for all 2 < i < k.

Proof of Theorem 2.  We first note that for all 1 < i < k, f'(2;) and ¢'(2;) are finite and
non-zero as F'(z;) # 0,00. For i # 1, define v;(s,t) = f(zi +t) — f(z1 + s). Then v;(0,0) = 0 and
%(0, 0) = f'(zi) # 0. According to the Implict Function Theorem, there exits a unique analytic
function ¢; on a neighborhood A; of s = 0 such that v;(s, ¢;(s)) =0 on 4, , i.e.

(1) f(z1+8) = f(zi + ¢i(s))-

Similarly, for each 2 < i < k, there exist neighborhoods B;, C; of s = 0 and unique analytic
functions ¢; (on B;) and ; (on C;) such that

(2) 9(z1 +5) = g(zi + wi(s)),
(3) F(z1 + 5) = F(zi + i(s)).
It follows from (1),(2),(3) and hy o f = hg o g that on D; = A; N B; N C; # ¢,

F(z1 +s) = F(z; + ¢i(s)) = F(zi + pi(s)) = F(z; + ¥i(s)).
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Due to the uniqueness of ¢;, p; and 1;, we have on a neighborhood D; of s = 0 that ¢; = @; = ;.
Hence, we have on E = Nf_,D; # ¢ of s =0,

flz1+5) = f(z2+ ¢2(s) = -+ = f(2k + dr(5))
g(z1 +8) = glz2 + d2(s)) = - -+ = g(2k + dk(3))-

Clearly, the sequences S; required in the lemma exist and by that lemma , we are done.

THEOREM 3. Let f and g be two entire functions. Suppose that there exist two non-

constant complex functions k and R such that F' = Ro f = k o g is meromorphic. If g is transcen-

dental and R is rational, then there exists a transcendental entire function h satisfying h < f and
h <g.

REMARK. Let f(z) = ze”, g(z) = 22, R(z) = 2% and k(z) = ze**. Then Ro f =

2

2% 0 (2622) = 22e2" = ze?*

0 22 = k o g. Note that there doesn’t exist any transcendental entire h

with A < f and h < g. Therefore, the condition that g is transcendental is needed.

REMARK. Let f(z) = €* + z,9(z) = €*,R(z) = e* and k(z) = ze*. Then Ro f =
e? o (e? + z) = e%e® = ze® o (¢?) = k o g. Note that there doesn’t exist any transcendental

entire h with h < f and h < g. Therefore, the condition that R is rational is also needed.

Proof of Theorem 3.  Define E = {g(z)|F'(z) = 0 or oo}. Then FE is a countable set.
Therefore, by the Little Picard Theorem, we can choose A € C — E so that the equation g(z) = A
has infinitely many distinct roots {2z, }nen. Since k(A) = k(g(z,)) = R(f(zn)), g(2n) are roots of the
equation R(z) = k(A) which has only finitely many zeros. So, there exists an infinite subsequence
of {zp}nen (which we denote by the same {z,}n,en) such that f(z1) = f(zy) for all z,,. Note that
g(z1) = g(zp,) = Aforalln and F'(z,) #0 or oo. By Theorem 2, there exists an entire function A
with h < f, h < gand h(z1) = h(zy,) foralln € N. As all z, are distinct, h must be transcendental.

As an application of Theorem 3, we can obtain immediately a generalized result of Alfred Renyi
and Catherine Renyi ( [7],Theorem 2) as below. Note that in [8], H.S. Shapiro also obtainsd the

same result by a completely different argument.

COROLLARY. If R(z) is a non-constant rational function and g is an transcendental entire

function which is not periodic, then R(g(z)) can not be periodic.

Proof of Corollary. Suppose R(g(z)) is periodic with period (say) 27i. Then R(g(z)) = k(e?)
for some k& meromorphic on C-{0}. By Theorem 3, there exists a transcendental entire function h

with h < e® and h < g. Hence, e = hioh and g = hooh, where hy, hs are analytic on the image of h.

If the image of h is C — {a}, then h = a + e? for some entire function ¢q. We may assume a = 0
so that e* = hy(e") o q(z). The pseudo-primeness of e* will force ¢(z) to be a polynomial. Since

the derivative of e doesn’t take zero, ¢(z) must be linear. Hence h is periodic and so is g. This
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contradicts the assumption on g. Therefore, the image of h must be the whole plane. This implies
that both hy, he are entire. Again, the pseudo-primeness of e will force h; to be a polynomial.
By the Little Picard Theorem, it is easy to see that hi(z) = (z — b)" and h(z) = b+ e? for some
entire function ¢ and complex number b. This reduces to the first case and we will again get a

contradiction. Therefore, R(g(z)) is not periodic.

Proof of Theorem 1. Suppose Ro f = k o g for some meromorphic function k£ and tran-
scendental entire function g. We need to show that k is rational. By Theorem 3, there exists a
transcendental entire function A so that h < f and h < g. Hence, f = h; o h and g = hy o h, where
hi,he are analytic on the image of h. If the image of h is C — {a}, then h = a + €? for some entire
function g. We may assume a = 0 so that f(z) = hi(e") o g(z). The psuedo-primeness of f will
force ¢ to be a polynomial. This contradicts the assumption that f is not the composition of a
periodic function with a polynomial. So the image of h must be the whole plane. This implies that
both A1, he are entire and Ro hy = k o ho on C. Since f = hy o h is pseudo-prime, h; must be a

polynomial. From Ro h; = k o he, k must be a rational function. Hence, R o f is pseudo-prime.

4 FINAL REMARK.

It is worth mentioning that the following question (proposed by He-Yang in [5] , p.124), which

is closely related to problem A, remains unsolved for more than 2 decades.

PROBLEM B : Let f be a pseudo-prime transcendental meromorphic function, and p a

polynomial of degree > 2. Must f(p(z)) be pseudo-prime 7
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