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ABSTRACT

Ritt has shown that any complex polynomial p can be written as the composition of polynomials P1,...,Dm,
where each p; is prime in the sense that it cannot be written as a non-trivial composition of polynomials. The
factors p; are not unique but the number M of them is, as is the set of the degrees of the p;. Here we extend

Ritt’s theory and, in particular, we introduce a third invariant of the decomposition.

1.  Introduction

The composition p o g of two polynomials p and ¢ is the map z — p(q(z)), and a non-linear
polynomial p is said to be prime (with respect to composition) if p = p; o py implies that p; or py
is a linear polynomial. If p = p;0---op,,, we say that the p; are factors of p, and that p;o---op,,
is a decomposition, or a factorization of p. It is clear (by induction) that any polynomial p can
be expressed in the form p; o --- o p,,,, where each p; is prime, and we say that this is a prime
decomposition of p. The fundamental results in this area were first proved by Ritt ([6]) who showed
that although a prime decomposition of a polynomial p is not unique, there are two invariants of a
prime decomposition of a polynomial p, namely the number m of factors in the decomposition, and
also the set of the degrees of these factors. Later in this paper we shall introduce a third invariant

of the decomposition.

Ritt also described the extent of the non-uniqueness of a prime decomposition by showing how
to pass from one prime decomposition of p to another. Although this result is fundamental and
frequently quoted, it seems difficult to apply (and we are not aware of any applications of it in the
literature). One of our aims here is to clarify and extend this result and, incidentally, to introduce

some terminology and notation which we have found to be useful when discussing this topic.

Ritt showed that any prime factorization of a given polynomial p can be obtained from any
other by a sequence of applications of any of the following three types (or their inverses): starting
with the factorization py o --- o p,,, we can (for any )

(1) replace p; and pji1 by pjof and £7' op;i1, where £ is any linear polynomial, or

(2) replace p; and pj4q1 by pjy1 and pj, where p; and p;4; are Tchebychev polynomials, or
(3) replace z* and 2"g(z*) (which are p; and p;41, respectively) by 2"g(2)* and z* (which are
g; and gj41, respectively), where r and k are integers, and g is a polynomial.

We shall call these transformations (and their inverses) Ritt transformations of types 1, 2 and 3,
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respectively. A few remarks may be helpful here. First, in each case we replace p; and pj;i1
by ¢; and ¢;4+1, where pj op;y1 = gj o gj+1. Next, the transformation (1) guarantees that any
polynomial p has infinitely many different prime decompositions, and our aim is eventually to show
that in essence the infinity of possible decompositions can only arise from the use of (1). All pairs
of Tchebychev polynomials T5,7T3. ... commute with each other (T, o Ty, = Ty o T, ) and this is the

reason for (2). The transformation (3) expresses the fact that (with the obvious notation)

k

2F 0 2"g(2) = [27g(z")]" = 2"g(2)* o 2*, (1.1)

k k

and this includes the case 2" o 2" = 2" 0 2". We remark in passing that Ritt’s theorems imply
that 2z"g(z¥) is composite if and only if 2"g(2)* is composite (and this seems difficult to prove
directly). Indeed, as (1.1) holds, the number of prime factors on each side of (1.1) is the same; thus

the number of prime factors of 2"g(z*) is the same as that of 2"g(2)*.

Now these rules are a little less transparent, and a little less independent, than may appear
at first sight. First, we note that (3), which is stated in its conventional form, is rather loosely
defined for the r and g are not uniquely determined by the form 2"g(z*); for instance, if g(0) =0,
we can equally well write this expression in the form z"**h(z¥), where h(z) = g(2)/z. Next,

2, so that it in some circumstances it is possible to

Ty(z) = 222 — 1 differs by a linear factor from z
apply (2) to T», then (1), and then (on what is essentially the same factor) (3). These observations
perhaps show why it is difficult to use Ritt’s result. We remark that 75 is the only even Tchebychev
polynomial to occur in a prime decomposition (because for n > 2, Ty, (z) is an even function and
hence composite). On the other hand, as each Tchebychev polynomial T5, .1 is an odd function it
is of the form zg(22) and so it may be possible to apply (3). However, Ts,,1 is only of the form
2"g(#*) when r = 1 and k = 2, and it is not of the form 2"g(z)* unless r = k =1 (for Ty, 41 has

only real, and simple, zeros).

It seems to be the case that the Ritt transformation (1) plays a different role to the transfor-
mations (2) and (3), although we know of nothing in the literature to suggest that this might be
so. In general, we expect (2) and (3) to be applicable in only rather exceptional cases, whereas (1)
is always applicable, in infinitely many ways, and regardless of the particular form of the p;. It is
the rule (1), for example, that forces each p to have infinitely many distinct prime factorizations,
whereas there is a sense in which the transformations (2) and (3) can only contribute to a finite
number of possible distinct factorizations; this does not appear to have been noticed (or at least
discussed) before. It might be advantageous then to somehow ignore (1), and focus on the impact
of (2) and (3) only. We shall show how to do this, and we obtain the following result.

THEOREM 1.1. Given a polynomial p, there are a finite number of factorizations of p, which
we denote symbolically by P1,..., P, such that any factorization of p is of the form

(proti)o (b  opyoly)o---o(lu_yopy,),
where p; o ---op, is one of the factorizations P; of p, and the {; are linear polynomials.
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This result complements Ritt’s Theorem. It is stronger because Ritt’s result does not seem
to imply directly that up to the insertion of linear factors, there are only finitely many possible
factorizations, and in any case our result applies to all factorizations (whether prime or not). It is
weaker as it does not explicitly link any two possible (prime) factorizations of p. We shall prove
Theorem 1.1 in Section 2, where we shall also present a more formal language which seems to be

useful when giving a careful discussion of these ideas.

In the remaining sections of this paper we shall obtain a significant extension of the results in
[3] by applying our ideas to polynomials that are invariant under a rotation and, as we shall see
shortly, these ideas lead to a third invariant of prime decompositions. The paper [3] starts with the
question ‘if f and ¢ are entire functions whose composition f o g is even, must f or g be even?’

and contains the following two results on polynomials.

THEOREM A. Suppose that p and q are polynomials with q(0) = 0, and p o q even. Then

either (i) q is even, or (ii) p is even and q is odd.
THEOREM B. If some iterate of a polynomial p is even, then p is even.

Now an even function is simply a function that is invariant under the Euclidean rotation
z = —z, and accordingly, one should seek (and perhaps expect) analogous results for a general
finite group of rotations. These results should be of the form that if the composition p;o---op,, is
invariant under some rotation group, then some (or all) of the composition factors p; should also
exhibit some rotational invariance, and that collectively, they should exhibit enough invariance to
account for that of p. Of course, if po g and ¢ are even then they are invariant under the same
rotation group (containing just the identity and z — —z); we shall see that this restriction is
uneccesary (it is forced on one by over-emphazing the concept of ‘even’ functions). The analysis
of these issues clarifies the role of the assumption ¢(0) = 0 which is emphasized several times in
[2] and [3]. To some extent the discussion in [2] (pp.231-233) generalises that in [3], but it is still
confined to rotations about the origin. Here we give a simpler, but more general, discussion based

on the ideas on Ritt’s Theorems.

By a rotation group we mean a finite group of Euclidean rotations in C. If « and g are
rotations, then the commutator oBa~'3~! is a translation unless o and B have a common fixed
point, and it follows from this that elements in a rotation group [' have a common fixed point; thus
a rotation group is simply a finite cyclic group of Euclidean rotations about some point. Note that
given any nonconstant polynomial p, the set I'(p) of Euclidean isometries v such that poy =p is
a group. As p cannot be periodic, I'(p) is a rotation group and we deduce that if y; and 7, are
nontrivial rotations that leave p invariant, then they have the same fixed point. We shall use the
notation I'(p) throughout this paper; likewise, we shall use ((p) to denote the common fixed point

of elements of I'(p) (when this group is nontrivial).

Now consider the polynomial
p(z) =2%02202% 02 0 (z+1) 02 = (22 +1)?0 =1+2102% 4 ---.
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As p is even it is invariant under z — —z, so that if p is also invariant under a rotation -y, then
v(0) = 0 and hence 7(z) = Az, say. Clearly A\* = 1 so we deduce that I'(p) = {I,0}, where (here
and elsewhere) I is the identity map and o(z) = —z. On the other hand, the composition factors
of p have rotational symmetries of orders 2, 3, 5, 7, 1 and 2 so that in this case the collective
symmetries of the composition factors of p far exceeds the symmetry of the composite polynomial
p. Roughly speaking, this example shows that some of the symmetries of the polynomials p; can
be destroyed in passing to the composition p; o---op,,. Our next result shows (roughly speaking)
that we cannot create additional symmetries by passing to a composition; for example, if none

of the composition factors p; have any rotational symmetry, then neither does their composition

pP1o---0pm.

THEOREM 1.2. Suppose that p1,...,p, are nonconstant polynomials, and T'(p1),...,T'(pm),
and ['(py o---op,,) have orders ki,...,k, and k, respectively. Then k divides ki -- -k, .

In Section 3 we shall give an example to show that the centres of rotation ((p1),...,{(pm) in

Theorem 1.2 can be distinct.

We are now in a position to describe the third invariant of a prime decomposition of a poly-

nomial. Suppose that

P1o-0pm =P =4q41°"-°(4m (1.2)

are two different prime decmpositions of the polynomial p. Then associated with these we have the
rotation groups I'(p1),...,'(pm), and their orders, say ki, ..., k., , respectively, and similar groups
for the g;, say with orders ki,..., k], , respectively. The third invariant is the vector (k1,...,kn)

modulo the natural action of permutations.

THEOREM 1.3. If the two decompositions in (1.2) are prime decompositions of p and if the
ki and K are as defined above, then the vector (ki,...,ky,) is obtained from (ki,...,kn) by a

»'m

permutation of its components.

Finally, we shall prove the following self-explanatory ‘structural’ result on the decomposition

of any polynomial.

THEOREM 1.4. Suppose that p is a nonconstant polynomial and that T'(p) has order k. Then
we can write p = fy opyolyo---04, 0py olyiq, where each ¢; is linear, and for each j,
either p;(z) = z%i | where k; is prime, or p; is a prime polynomial that is not invariant under any

nontrivial rotation group (in which case we put k; = 1). Again, k divides ky -+ -k, .

We prove Theorem 1.1 in Section 2. The remaining results involve rotation groups, and Section
3 is devoted to some general remarks about polynomials invariant under a rotation. The proofs
of Theorems 1.2, 1.3 and 1.4 are given in Sections 4, 5 and 6, respectively. In Section 7 we show
that our methods can be successfully applied to such problems as those discussed in [2] and [3].

Our intention here is to illustrate our methods by discussing Theorems A and B rather than to
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give a complete discussion. We end, in Section 8, with a brief remark about factorization of entire

functions.

2. The proof of Theorem 1.1
We say that a polynomial p is normalised if it is monic with p(0) = 0. Note that if p =qor,

and if p and r are normalised, then so too is ¢. We begin with the following two lemmas.

LEMMA 2.1. Suppose that p, q and r are normalised polynomials such p = qor. Then r is
uniquely determined by p and deg(r).

LEMMA 2.2. Suppose that p1, p2, q1 and qs are polynomials such that p; o g1 = ps o g2, and
deg(q1) = deg(g2). Then there is a linear polynomial « such that g = o q; .

Lemma 2.1 is discussed in [4] (in a rather more complicated form, and as a computer algorithm),
and stated in [7] (p.285), although it is not apparent from either of these that the result follows
simply by equating coefficients in an identity. We give a proof by this method below. Lemma 2.2 is
stated in [5] (p.221) in the case when p; = py (where this simpler case of the much harder problem

for rational functions is discussed).

The proof of Lemma 2.1 Suppose that p, ¢ and r have given degrees n, k and m, respec-

tively, so that n = km. As p=gqor, and ¢ is normalised,
p(z) =r(2)° +O(r(2)*71) = r(2)" + O(z""™),
near oo, and we have to show that r is uniquely determined by p. We write
p(2) = a1z +ax2® + - ap_12" " +an2",  (a, = 1),
r(z) =crz4+ 22+ - Femo12™ 2™, (em = 1),
and the proof is simply by comparing coefficients. As p(z) = [r(z)]F +O(z¥™~™), the Multinomial

Theorem gives

p(z) = Z u'ki' (c12)" -+ (cmz™)"m + O(zkm_m),

|
UL seeeyUm 1 um.
where the sum is over all (uy,...,u,,) with non-negative integers u; that satisfy u; +---+u,, = k.
Equating coefficients of zFm=—m+1  pkm—m+(m=1) we obtain
k! " u
Olm—m+t = E — G L=1,...,m—1,
ur! Uy,
UL geeeyUm

where this sum is over all (uq,...,u,,) with u; >0, u; € Z, Zj u; =k and ijuj =km—-—m+/{
or, equivalently, with u; > 0, u; € Z, and

m—Ezkm—Zjuj

J
:mZuj — Zjuj (2.1)
J J
=(m—1Du; +(m—2uz+ -+ 1 up_1,
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and
Um =k — (U1 + -+ + Upm—1)- (2.2)

It is important to note that the set of (u1,...,u,;,) over which we are summing here depends on
¢, so we shall denote this set by U(¢).

Now fix a value of £, and consider a general (u1,...,uy) in U(£). Equation (2.1) implies that
m—~ > (m—j)u;, so that when j < £ we have u; < 1 and hence u; = 0; thus u; =+ =uy—1 = 0.
Similarly, u, is 0 or 1, and when uy = 1 then upyq =+ = uy—1 = 0. Using (2.2) we deduce that
U(?) contains the vector (0,...,0,1,0,...,0,k — 1) with 1 in the £-th place, and that all other
vectors in U(¢) have u; = --- = uy = 0. This shows that

ar 0 = kepcEt + Z ki' cyttt L clm (2.3)
m—m+ m u ’LL[.H! . um' 1 m? '
L4159 Um
where ¢,, = 1, and where this sum is taken over all vectors (ugy1,...,Uy) with u; >0, u; € Z,

and
Upg1 + -+ Uy, = K,

£+ Dugyy + -+ +muy,, =km —m + L.

When ¢ = m — 1 the sum in (2.3) is empty (for then, u,, = k and mk = km — 1) and so is 0.
Notice that ¢, occurs with a nonzero coefficient, and only in the first term on the right in (2.3);

thus we can write (2.3) in the form

m—m+t = ke + Prme(Cotis o s Cme1,Cm),

where ®y, ., , is a polynomial whose coefficients depend only on k, m and ¢. Now ¢, =1, and it
follows that ¢,;,—1,¢m—2,...c1 can be computed inductively (in this order) so that as promised, r

is uniquely determined by p and m. This completes the proof of Lemma 2.1.

The proof of Lemma 2.2  Suppose that p; o g = py o ga = f, say, where deg(q;) = deg(qz).
There are (unique) linear polynomials «, #; and 2 such that ao f, f10¢q; and 3 o g2 are all

normalised. As
aof=(aopjopit)o (Boq),

for j = 1,2, and as all three polynomials here are normalised, Lemma 2.1 implies that 1 o ¢; =

B2 o g2 and Lemma 2.2 follows.

We now introduce some formal terminology in preparation for our proof of Theorem 1.1.
The ideas that follow were motivated by Ritt’s theory but we stress that here we do not restrict
ourselves to prime polynomials (or prime factors). Fix a positive integer m and let S,, be the set
of all sequences (p1,...,pm), where each p; is a polynomial. In general, we shall use the vector
notation P = (p1,...,Pm), @ = (¢1,--.,¢m) and so on. Now define the relation ~ on S,, by
(p1,---yPm) ~ (q1,-..,qm) if and only if there exists j in {1,2,...,m — 1} such that
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(i) pi=q ifi#j,7+1, and

(i) g¢; and gj4+1 are obtained from p; and pj;;1 by one of the Ritt transformations (1), (2) or
(3), or their inverses.

The relation ~ is reflexive and symmetric and so it induces an equivalence relation =~ on S, in

the usual way by the existence of some P; such that
P%Q<:>P:P1NP2NNP]€_1NP]€:Q

We say that P and @ are Ritt equivalent if P =~ @, and we call a =-equivalence class a Ritt class.
Note that if (p1,...,Pm) = (q1,---+Gm), then pyo---o0p,, =q10...0¢q,,.

We remark that if S,, were to be taken as the set of all sequences (pi,...,pm), where each
p; is a prime polynomial, then the Ritt class containing (p1,...,pm,) would be the collection of all
prime decompositions of the polynomial p; o --- o p,, (this is one of Ritt’s Theorems), but again

we stress that we are considering composite as well as prime polynomials here.

In order to distinguish the Ritt transformation (1) from (2) and (3) we define a second equiv-
alence relation < on S,,. First, we define a relation — on S, by saying that (p1,...,pm) —
(q15--.,qm) if and only if these two vectors are obtained from each other by a Ritt transformation
of the type (1). This relation is symmetric and reflexive so it extends to an equivalence relation =<
on S, exactly as above. Observe that P and @, say, lie in the same =<-equivalence class if and
only if we can convert P into @ by a finite sequence of applications of the rule (1); similarly, P
and @, say, lie in the same =-equivalence class if and only if we can convert P into () by a finite

sequence of applications of any of the rules (1), (2) and (3).

As P = () implies that P =~ (), the =<-equivalence classes partition each ~-equivalence class,

and so Theorem 1.1 can be restated in this notation as follows.
THEOREM 1.1A. FEach =-equivalence class is a finite union of <-equivalence classes.

Proof.  Suppose first that

P10 0P, G100 (Gm, (2-4)
where for each 1,
deg(pi) = deg(q:)- (2.5)

Then pyo(pzo---0opy) =q10(ga0---0qp), so that by Lemma 2.2, there is a linear polynomial
/1 such that
P20 0Py =410q20 -0 (. (2.6)

It follows that

qlo(q20---oqm):p10p2o---opm:ploflo(q20---oqm)
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from which we can deduce that q; = py o £, and hence p; = ¢y 0 ¢]'. From (2.6) we have

P20 0Py = (f10qz) 0 0qy,

and a repetition of the same argument gives py = ¢1 0 gy 0 45 ! and so on. This shows that if (2.4)
and (2.5) hold, then (p1,...,Pm) < (q1,---,Gm)-

It now follows that each ~-equivalence class is the union of =<-equivalence classes, and that

if (p1,...pm) and (q1,...,¢m) lie in the same =s-equivalence class but in different <-equivalence
classes, then (2.5) fails so that

Theorem 1.1 now follows easily because if p has a factorization p; o---op,,, say, then the degrees
of the p; are factors of deg(p) and so there are only a finite number of possibilities for the vector
on the left hand side of (2.7).

3. Polynomials invariant under rotations

Suppose that a nonconstant polynomial p is invariant under a nontrivial rotation group I’
with fixed point zo. If v € T', then p(2) = (pov)'(2) = p'(v(2))7'(2), and as 7/(z) # 0 this
implies that [' acts as a permutation group on the set C'(p) of critical points of p. As y(z) = az+b
for some a and b, 7y fixes the arithmetic mean of C(p), so this point must be zy. It follows that

(n — 1)z is the sum of the zeros of p’(z), so that if
p(2) = ag + - +an2", (3.1)

where a,, # 0, then zy = —a,,_1/na,. In addition, as p is invariant under I', p is not injective

near zg, thus zp is one of the critical points of p. These observations yield the following result.

LEMMA 3.1. Suppose that p is given by (3.1). If p is invariant under some rotation group I’
with fixed point z, then zg = —a,_1/na,, and p'(zy) = 0. Further, z, is the arithmetic mean of

the critical points of p.

Lemma 3.1 shows (for example) that if a; # 0 and a,_; = 0, then zy = 0 and p'(0) # 0 so

that p is not invariant under any rotation group.

Next, suppose that p is a nonconstant prime polynomial, and that I'(p) is generated by -,
where
v(z) = 20 + w(z — 20), w=exp(2mi/k), k>2.

Now write 7(z) = z+ 2y and p(z) = wz. Then y =70por~!

, so that po 7 is invariant under p.
It is easy to see that this implies that po 7(z) = q(2*) for some polynomial ¢, and as k¥ > 2 and
p is prime, ¢ must be of degree one and k& must be prime. For each positive integer £ we define
or(z) = z¥. Then po T = qo o}, where 7 and ¢ are linear polynomials, and we have proved the

next lemma.



LEMMA 3.2. Suppose that p is a prime polynomial, and that I'(p) has order k, where k > 2.
Then k is a prime integer, and there are linear polynomials o and  such that p = a o o o .
Further, we can take 3 to be a translation with 371(0) the fixed point of T'(p).

Finally, we shall need the following simple result.

LEMMA 3.3. For any polynomial p, and any linear polynomial £, T'(po{) = ¢~ oT'(p) o ¢ and
[(op)=T(p).

Proof.  The proof is easy; for example, v € I'(po #) if and only if pofoy =po/, and this
is so if and only if £oyo0 /™! € ['(p). The proof that I'(£ o p) = I'(p) is even easier and is omitted.

4.  The proof of Theorem 1.2

In order to prove that & divides ky - - - ky, in Theorem 1.2 it clearly suffices to take m = 2 (the
general case then following by induction). Thus it is sufficient to consider two polynomials p and

g and show that if I'(p), I'(¢) and I'(p o ¢) have orders u, v and k, respectively, then k|uv.

Suppose that - generates I'(pogq). As pog=(poq)oy=po(qo~y), Lemma 2.2 shows that
there is a linear polynomial 7 such that goy =mnoq. We deduce that pog=pogoy=ponogq,
from which we deduce that p =pon. As p is nonconstant, n must generate a discrete group, and
as p cannot be periodic, this group must be a rotation group, say ¥; of order u;. As ¥ is a
subgroup of T'(p), we see that ui|u. Next, as oy = noq we see that qo~’ = n’oq for every
integer ¢. Taking ¢ = k (the order of T'(poq)), we see that n* = I (the identity) so that the order
uy of 1 divides k. Finally, taking ¢ = u;, we see that ¢ is invariant under the group generated by

¥t and this has order vy = k/uy. As uj|u, vi|v and uyv; =k we see that k|uv.

We remarked in Section 1 that we would give an example in which the points ¢{(p;) in Theorem

1.2 are distinct. This is so in the first of the two following examples.
Example 4.1 Let
plz)=a+(z-a) q@z)=a+(z-b7° r(z)=b+(2-0),
a(z) =a+w®(z—a), Bz)=b+w’(z—-0), 7(z)=ctuwz~-o),

where a, b and ¢ are distinct, and w = exp(27i/30). It is easy to verify that

poa=p, gqoff=aoq, rToy=pfor

First, this shows that p is invariant under the rotation « of order 2 about a. Next, as go 82 =
a?oq = q, we see that ¢ is invariant under the rotation B2 of order 3 about b. Similarly,
as ro% = B8 or = r, r is invariant under the rotation v% of order 5 about c. Finally, as
poqoroy=pogoffor =poaogor =pogqgor, we see that po gor is invariant under the

rotation <y of order 30 about c.



Example 4.2 Let p(2) = 1 + 2z + 2% and ¢(2) = 22. Here, ['(q) = {I,p}, where I is
the identity and p(z) = —z, and ['(p) = {I} (this follows from Lemma 4.1). As po q is even,
p € I'(poq), and Theorem 1.2 shows that I'(pogq) = {I, p}. This example shows that we may have

k; =1 for some j in Theorem 1.2.

5. The proof of Theorem 1.3

Clearly we have only to establish the invariance described in Theorem 1.3 for each of the Ritt
transformations of types 1,2 and 3. In each case we replace a pair of polynomials p;,p;4+1 by a pair
dj,qj+1, whose rotation groups have orders Ifj,kj.i_l,k;',k;' 41, respectively, and we have to show
that the unordered pair (kj;,k;11) is the same as the unordered pair (k}, k7, ;). We shall discuss
each of the Ritt transformations in turn (although we shall change to a more convenient notation).

A Ritt transformation of Type 1 replaces a pair of polynomials p and ¢ by the pair po /¢ and

¢=! o q, and the desired result in this case follows immediately from Lemma 3.3.

In the case of a Ritt transformation of Type 2 we replace two Tchebychev polynomials, say T,
and Ty, by T, and T, (in this order). In this case, k; = k;'+1 and kjy1 = k; so there is nothing

more to prove.

Finally, in a Ritt transformation of Type 3 we replace the polynomials z¥ and 2"g(z*) by the

(ordered) pair z"g(z)* and z*, and it suffices to show that the two finite groups

I‘(z’"g(zk)), F(z’"g(z)k) (5.1)

are of the same order. Notice that as this case only arises when a factor z* is present, and as z*

is prime only if k£ is prime, we may assume here that k£ is a prime and k£ > 2. In addition, r > 1
(else 2"g(z*) is not a prime factor) and ged(r, k) = 1 (again, else 2"g(z*) is not a prime factor).
Thus to complete our proof of Theorem 1.3 we have only to show that the two groups in (5.1) have

the same order under the conditions r > 1, k > 2 and is prime, and ged(r, k) = 1.

Suppose now that z"g(z*) is invariant under a nontrivial rotation, say v(z) = 2o + w(z — 2p),

where w (# 1) is a root of unity. Then if we write
2g(2") =ag Farz+ -+ ap 12"+ a2,

we have a,_1 = 0 (as k > 2) so that, from Lemma 3.1, zp = 0 and y(z) = wz. As (in this
discussion) z"g(z*) is prime, Lemma 3.2 shows that there is a linear polynomial « and an integer
s such that 27g(z*) = a(2*), and as 7 > 1 we have «(0) = 0 so that for some constant p,

2"g(2*) = pz*. This shows that g(z) = Az?, say, and using this we easily find that
27g(2)" = N1 2"g(2P)].

Lemma 3.3 now shows that the two groups in (5.1) are identical. To summarise, we have shown

that if T'(2"g(z%)) is nontrivial, then the two groups in (5.1) are identical.

10



We shall now show that if I'(2"g(2)*) is nontrivial, then again the two groups in (5.1) are
identical. It then follows that in all cases the two groups in (5.1) are identical and this will
complete our proof. We suppose, then that z"g(z)* is invariant under the nontrivial rotation
v(z) = 20 + w(z — z9). If r > 2 then Lemma 3.1 again shows that zy = 0 and the argument goes
through exactly as before. The remaining possibility, namely that r = 1, seems to need a special

argument. We suppose now that » = 1 and that zg(z)* is invariant under +; then

5 - [

The left hand side here is either constant or a Mobius map, and as k£ > 2, it must be constant.

Thus 7(z) = wz and the proof is again as before.

6.  The proof of Theorem 1.4

We take any polynomial p and write it as a composition p;o---op,,, where each p; is prime.
If any p; is invariant under some nontrivial rotation group then, by Lemma 3.2, we can replace it
by a composition of the form #;o0qo/5, where the ¢; are linear, and this leads to the form described
in Theorem 1.4. The fact that k|ky -- -k, follows directly from Theorem 1.2.

7. The results in [2] and [3]

We begin by using the ideas above to prove Theorem B, namely that if some iterate of a

polynomial p is even then p is even. First, Lemma 2.2 implies that if

P1--09Pm =q10""*0(m,

where all of the polynomials p1,...,Pm,q1,--.,qm are of the same degree, then there must exist

linear polynomials #; such that

qr=piol, G@={7"opyoly, ..., Gy =" n_10Dn. (7.1)

Suppose now that the m-th iterate p™ is even; then po---op = po---opo(poo), where o(z) = —z,

and where there are m factors on each side. According to (7.1), we can now write

p=poly, p=Litopoly, ..., (poo)=/ly_10p,

where each ¢; is linear.

Now ¢; € I'(p), and I'(p) is contained in I'(p™); thus ¢; € I'(p™). However, o € I'(p™) and
this forces ¢; to be a rotation about the origin. We write ¢;(z) = wz, where |w| = 1. Now suppose
that I'(p) has order k£ and I'(p™) has order s. Then k|s and (from Theorem 1.2 with p; = p for
all j) s|k™. As o € I'(p"™) we see that s is even; thus k is even, so p is an even function and this

is Theorem B.
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It is an immediate consequence of Theorem 1.2 that if p™ is invariant under some nontrivial
rotation group [';, of order v, say, then p is invariant under some nontrivial rotation group I'; of
order u, say, where v|u™. As I'y C I',,, these groups must have the same centres of rotation, and
this shows why it is not necessary to assume that p(0) = 0 in the proof of Theorem B, [3] (see the
remark on p.417). If vy is the product of the distinct prime factors of v, then v|u™ so that vq|u;
thus I'(p) has order at least v;. This contains Theorem B (which is the case v; = 2) and much

more.

Consider now two nonconstant polynomials p and ¢, and suppose that I'(p), I'(¢) and ['(pogq)
have orders u, v and k, respectively, where k is prime. As k|uv either klu or k|v. If k|u then p
has at least the same order of symmetry as pog. Suppose now that k|v and that v generates I'(poq)
(so that v has order k). Then (as before) there is a linear polynomial n such that nogq = go-y, and
p is invariant under the rotation group generated by 1. The compatibility condition goy =nogq
implies that n* o ¢ = go~* = ¢ so that n has order t, say, where t|k. Writing k = st, we note
that ¢ = n* o ¢ = g o' so that ¢ is invariant under the rotation 7 of order s. To summarise, p
is invariant under 7 of order ¢, ¢ is invariant under y* of order s, where st = k, and we have the
compatibility condition 7o g = g o~y (which implies that p o ¢ is invariant under ). All of this is
without any assumption corresponding to the assumption ¢(0) = 0 made in [3].

The compatibility condition g oy = 1o ¢ implies (in general) that if v fixes z* then n fixes
q(z*), so that the assumption ¢(0) = 0 (in [3]) is simply the requirement that n and < have a
common fixed point. If we too make this assumption, then 1 = 4", say, so that rt = k, whence
r = s. In this case we see that p is invariant under «* of order ¢, ¢ is invariant under «* of order
s, where st =k, and v* oq = qo~y. Theorem A is the case k =t =2 and s =1 and ~(z) = —z;
then 1 =~ so that p is even, and the compatibility condition is then o g = g oy which says that
q is odd.

Finally, we comment on Section 4 (pp.231-233) in [2]. Here, w is a primitive N-th root of
unity, where N is prime, and, writing v(z) = wz, a function f is said to be cyclic if (in our simpler
notation) for some k, y* o f = f oy. Suppose now that p and ¢ are nonconstant polynomials
with Y¥ opo g =poqo~y. Then, as before, there is a linear polynomial 5 such that pon = p and
noq = qo~y. As before, the order of n divides N, and as N is prime we have either n = I or g
has order N. With ¢(0) =0 (an assumption made in [2]) we see that n = I or 1 and 7 generate
the same group. Thus ¢ is «y-invariant, or = 4, say in which case ¥' o ¢ = g oy so that ¢ is

cyclic. This is stronger than Proposition 4.1 in [2].

8. A remark

There is a substantial theory of factorization of transcendental entire functions and in this an
application of (1) (that is, the insertion of linear factors) is usually dismissed as a triviality. We
wish to point out that this may not be as trivial as it seems; for example, a polynomial may not

commute with any other polynomial (except its own iterates), but for a suitable linear polynomial
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¢, ¢op; may commute with many other polynomials (for example, when ¢ o p is a Tchebychev
polynomial). As no nontrivial example of commuting transcendental entire functions seems to be
known this is not at present an issue, but if an example were to be found, the insertion of linear
factors would have this deeper implication. The same is true of the rule (3), and in this case there
are analogous examples for transcendental entire functions, for example e® o (e* + z) = ze* oe* but

here e is not prime.
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