IMPRIMITIVE PARAMETRIZATION OF ANALYTIC CURVES
AND FACTORIZATIONS OF ENTIRE FUNCTIONS

TUEN WAI NG

Abstract

Let f(z) and g(z) be transcendental entire functions. W.H.J. Fuchs and G.D. Song
proved that if (f(z),g(z)) parametrizes some complex algebraic curve, then f and g
must have a transcendental common right factor. In this paper, we shall prove this
result by a different method which also allows us to prove a similar result for some
transcendental curves. We then use this result to solve some factorization problems

of entire functions.
1. Introduction and Main Results.

Let f(2), g(2) be entire functions of one complex variable and ®(z, y) be a complex
polynomial in both x and y. The pair (f(z),g(z)) is called a parametrization of a complex
algebraic curve defined by ®(z,y) = 0 if ®(f(2),9(z)) = 0 on the complex plane. The
parametrization (f(z), g(z)) is called imprimitive if there exists a non-linear entire function
h(z) such that f(z) = fi1(h(2)) and g(z) = g1(h(2)), where f1, g1 are analytic on the image
of h which will be denoted by Im(h). By the Little Picard Theorem, Im(h) can either
be C or C — {a} for some complex number a. When both fi,g; are entire, we call h a
common right factor of f and g. In [5], W.H.J. Fuchs and G.D. Song proved that if both
f, g are transcendental and (f(z),¢(z)) parametrizes some complex algebraic curve, then

the parametrization must be imprimitive. In fact, they proved something more.
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Theorem A. Let f(z),g(z) be two transcendental entire functions and ®(z,y) be a
non-zero complex polymonial such that ®(f(z),g(z)) = 0 on the complex plane, then there
exists a transcendental entire function h(z) such that f(z) = fi1(h(z)) and g(2) = g1(h(2)),
where f1, g1 are both rational functions with at most one pole.

Example 1. Let f(z) = sinz, g(z) = cosz and ®(z,y) = 22 + y? — 1, then
®(f(2),9(2)) = 0 on C. In this case, we can take h(z) = e, fi(z) = 4(z — z7!) and
g1(2) = 5(z +27") such that f(2) = f1(h(2)) and g(2) = g1(h(2)).

Theorem A has a lot of applications to the factorization and sharing value problems
of entire functions. Notice that W.H.J. Fuchs and G.D. Song only considered the case
®(z,y) = p(x) — q(y), where p, ¢ are polynomials. However, their proof works for general
®. Their proof is based on the following result of Picard ([11]), which can also be proved
by using the Nevanlinna Theory (see [7], p.232).

Theorem B. Let ®(z,y) € Clz,y] be an irreducible polynomial and f(z),g(z) be

non-constant meromorphic functions. Suppose that

on the complex plane, then the complex algebraic curve defined by ®(z,y) = 0 has genus
less than or equal to one.

In this paper, we shall give a different proof of Theorem A. Our method depends on a
result of Grauert [6] about complex analytic equivalence relations. Using this method, we

can prove result similar to Theorem A for some transcendental curve. In fact, we have

Theorem 1 . Letn > 1 and ®(z,y) = Y1, ai(z)y’ be a polynomial in y with entire func-
tions a;(x) as coefficients such that a,, 0. Suppose that f(z) and g(z) are transcendental

entire functions such that

®(f(2),9(2) = ) ai(f(2))g9(2)" =0

1=0

on the complex plane. Then there exists a transcendental entire fuction h such that f(z) =

fi(h(2)) and g(z) = g1(h(2)), where f1,g1 are analytic on ITm(h).



Example 2. Let f(z) = cosz, g(z) = sinze°®? and ®(z,y) = (1 —2?)e?* —y?, then
®(f(2),9(2)) = 0 because g(z)? = sin? ze25% = ((1—w?)e**)ocos z = ((1—w?)e?”)o f(2).
In this case, we can take h(z) = €', f1(2) = 2(z + 271), fa(2) = 5(z — z_l)e%(”z_l) such
that f(z) = f1(h(2)), g(z) = g1(h(z)) and fi, f2 are analytic on C—{0}. Note that fo has
an essential singularity at O .

To prove Theorem 1, we first establish in Section 2 a main lemma which gives a
sufficient condition for the existence of a non-linear generalized common right factor of two
entire functions. We then further develop some criteria on the existence of a transcendental
entire common right factor in Section 3. These results in turn allow us to prove Theorem
1 and A. To illustrate the usefulness of the main lemma, let us state the follwing result

which will be deduced from the main lemma in Section 2.

Theorem 2 . Let p(z) and q(z) be two complex polynomials. If p(x)—p(y) and q(z)—q(y)
have a common factor of degree d > 2 in Clz,y], then p(z) and q(z) have a common right
factor of degree greater than or equal to d. Furthermore, p(x) — p(y) and q(x) — q(y) have
a common factor of mazimal degree d in Clz,y] if and only if p(z) and q(z) have a greatest

common right factor of degree d.

In Section 4, we shall mainly concern with the applications of those criteria to factor-
ization problems of entire functions. We shall generalize some known results which were
proved by several different argruments before. In fact, the main purpose of this paper is to
provide a more systematic way of solving factorization problems of entire functions. Our
method depends very much on the ideas and results in A. Eremenko and L. Rubel’s paper

[3]. Especially, most of the contents of the following section is taken from [3].
2. The Main Lemma.

In this section, we shall state and prove the main lemma (Lemma 2) which gives a
sufficient condition on the existence of a non-linear entire common right factor for any two
non-constant entire functions. Its proof is based on the following result of Grauert ([6])
on complex analytic equivalence relations. Throughout this paper, X will denote either C

or C — {a}, where a is a complex number.



Theorem C. Let R be any equivalence relation on X whose graph G = {(z,y) €
X x X|zRy} is a complex analytic subset of X x X containing no vertical or horizontal
lines (i.e subsets of the form {z} x X or X X {y}). Suppose that G is of pure dimension
one (i.e. G is everywhere of the same dimension one). Then, there exists a holomorphic
map h from C onto a Riemann surface S such that zRy if and only if h(z) = h(y).

In the Appendix A of [3], A. Eremenko and L. Rubel gave a more elementary and
direct proof when X = C. The same proof also works for the case X = C — {a}. The

basic terminology and properties of complex analytic sets can be found in [1].

Definition 1 . Let f be an analytic function on X. We say that h is a generalized right
factor (denoted by h < f) of f if h is a holomorphic map from X to a Riemann surface
S and there exists a holomorphic map f1 from S to C such that f = fi o h.

Note that the word “map” here always means a mapping between two Riemann surfaces

while “function” means a mapping with its range in the complex plane.

Definition 2 . Let f and g be entire functions. An entire function h is a greatest common
right factor of f and g if

(i) h is a right factor of both f and g.

(11) every right factor of f and g must be a right factor of h.

Note that if h is a greatest common right factor, so is Lo h for any linear function L. Tt
is proved in [3] that a greatest common right factor of f and g always exists and is unique
up to a composition of a linear function. A non-constant holomorphic map k from X onto
a Riemann surface S can induce an equivalence relation R in X defined by xRy if and only
if k(z) = k(y). Let G, = {(z,y) € X x X| k(z) = k(y)}, then Gy is a complex analytic
set of pure dimension one which does not contain any vertical or horizontal line because
k is non-constant. Such Gy is called the graph of equivalence relation induced by k. Let
G, and Gy be the graphs of the equivalence relation induced by surjective holomorphic
maps h: X — S and k£ : X — S, respectively, where Si, Sy are two Riemann surfaces.
The following lemma states the relation between h and g when Gy, is a subset of Gy, (see

[3], p.338).



Lemma 1 . G}, is a subset of Gy if and only if h < k.

Proof of Lemma 1. It is clear that if h < k, then G, C Gi. Now suppose that
G}, C Gy, this actually means that for any z,y € X, h(z) = h(y) implies k(z) = k(y).
Hence, the function f : Sy — S defined by f(s) = k(h !(s)) is single valued. Cleary,
k(x) = foh(z) on X. It remains to show that f is holomorphic on S;. Take any
s € Im(h) = Sy, let w be any point in h~!(s). We can always choose suitable local charts
(a;, U;) of w and (B;,V;) of s such that B o hoa; '(z) = 2" in a neighborhood of zero for
some positive integer n. Let (g, W) be a local chart of k(w). Then y;okoa; !(2) is ana-
Iytic near zero. Now, ygokoh™ 0B (z) = yrokoay; 'oajoh™ o ! (2) = yokoa; Loz!/m
which is single valued, analytic in a deleted neighorbood of zero and continuous at zero.

Hence, it is analytic at zero and f is holomorphic at s.

The following lemma is very crucial.

Lemma 2 . Let f,g be two analytic functions on X. For i = 1,...k, k > 2, let S; =
{Zin}nen be a sequence of distinct complex numbers with limit point z;. Suppose that all

the limit points z; are distinct and for all m € N,

f(z1in) = f(22n) = - f(2kn)

" =
9(z1n) = g(z2n) = -+ = g(2kn)-

Then there exists a holomorphic function h(z) : X — C (depends only on f and g)
satisfying h < f, h < g and h(z1) = h(z) for all 2 <1i < k.

The proof of Lemma 2 is very similar to that of Theorem 1.1 in A. Eremenko and L.

Rubel’s paper [3]. For completeness, we sketch the proof below.

Proof of Lemma 2.  Let Gy and G be the graphs of the equivalence relation induced
by f and g respectively. Then Gy N Gy is a complex analytic set (see [1], p.62), but may

not have pure dimension one, so we consider its derived set H = (G5 N G,)" (i.e. the



set of limit points). Then H is a pure dimension one complex analytic set and does not
contain any vertical or horizontal line. The non-trival fact that H is still a graph of some
equivalence relation is proved in ([3], p.338 ). By Theorem C, we conclude that H is a
graph of the equivalence relation induced by some holomorphic map h from C to some
Riemann surface S. Clearly, h depends only on f and g. Now H is a subset of both Gy and
Gy, so from Lemma 1, we have h < f and h < g. From the assumption (*) of the lemma,
we have (2in,2jn) € Gy NGy for all 2 < j < k and n € N. Therefore, for all 2 < j <k,
(z1,2) € H=(GyNGy) and hence h(z1) = h(z;).

From the Uniformization Theorem, we know that S is conformally equivalent to Sy/G,
where G is a fix-point free discrete group of isometries of Sy and Sy is any one of Cy,,C
or the unit disk A. If X = C, we claim that Sy cannot be A. For otherwise, S will have a
holomorphic universal covering from Sy = A. Since X = C is simply connected, h can be
lifted to a holomorphic map from C to A, which must be constant by Liouville’s Theorem.
Hence, h must also be a constant which is a contradiction. For X = C — {a}, we can get
the same contradiction by considering h(e* + a) instead of h. Therefore, Sy is either Cy
or C. From this fact, it is not difficult to show that S can only be one of the following:
Riemann sphere, complex plane, punctured plane or torus (see [4],p.193). Since h < f
and h < g, there exist holomorphic maps h; and ho from S to C such that f = h; oh and
g = hyoh. If S is a sphere or a torus, then S is compact. As h; is holomorphic on S,
hiand hence h must be a constant which is a contradiction. Therefore, S is the whole plane

or punctured plane and A is an entire function on C. This completes the proof of Lemma, 2.

Proof of Theorem 2.  Let R(z,y) € Clz,y] (with deg R(z,y) = n > 2) be a common
factor of p(z) —p(y) and g(x) — q(y). Assume without loss of generality that deg R(x,y) =
deg, R(z,y) = n > 2. We claim that there are only finitely many (a,b) € C? such that

R(a,b) =0, Ry(a,b) =0. (1)
Since p(z) — p(y) = R(z,y)S(z,y) for some S(z,y) € Clz,y], —p'(y) = Ry(=z,y)S(z,y) +

R(z,y)Sy(z,y). So if (a,b) satisfies (1), then p(a) = p(b) and p'(b) = 0, which in turn can

only be satisfied by finitely many (a,b).



Now, we can choose some ¢ such that R(a,y) = 0 has n distinct solutions b; with
Ry(a,b;) # 0. By the Implicit Function Theorem, for each 1 < i < n, there exists a unique
analytic function w;(z) on an open set A; of a such that R(z,w;(z)) = 0 on A;. Hence,

we have on an open neighborhood A =N?_, A; # ¢ of z = q,

p(z) = p(wi(z)) = - = p(wa(z))
q(x) = q(wi(z)) = --- = q(wn(x)).

Take a sequence of distinct terms, {aj}ren such that limg_,o ar = a. Define z;, =
wi(ag) and S; = {zik bren. According to the Implicit Function Theorem, all z;;, are distinct
and limg o z;x = limg_, o0 wi(ar) = b;, hence the sequences S; satisfy the requirements
in Lemma 2. Therefore, there exists an entire function h(z) which is a generalized right
factor of both p and ¢. Note that A must be a polynomial, for otherwise p and ¢ will be

transcendental. Since, all b; are dinstinct and
h(by) =+ = h(by),

h is a polynomial of degree at least n > 2 and we have proved the first part of Theorem 2.
We first remark that for any non-constant polynomial k(z), we always have k(x) —
k(y) = (z — y)K(z,y) for some K(z,y) € Clz,y]. So if p(z) and ¢(z) have a common
right factor h(z) which is of degree n, then p(z) — p(y) = {h(z) — h(y)}P(z,y) and
q(z) —q(y) = {h(z) — h(y)}Q(z,y) has a common factor h(x) — h(y) which is of degree n.
Now, let R(z,y) € Clz,y] be a common factor of p(z) —p(y) and ¢(z) — ¢(y) with maximal
degree. Then for any common right factor A of p and ¢, h(xz) — h(y) divides R(x,y).

If n = deg R(z,y) = 1, then it follows from the above argument that any common right
factor of p(z) and ¢(z) must be of degree one. Hence, the greatest common right factor
is of degree one. If n = deg R(x,y) > 2, from the first part of this theorem, there exists
a common right factor h which is of degree at least n. On the other hand, h must have
degree less than or equal to n because h(z) — h(y) divides R(z,y). Hence, degh = n and
h(z) — h(y) = cR(x,y) where ¢ is a non-zero complex number. It remains to show that h

is a greatest common right factor of p and ¢. Let k be any common right factor of p and



g. Then k(z) — k(y) divides R(z,y) = 2{h(z) — h(y)}. This is equivalent to G}, C Gj. By

Lemma 1, we have k < h. Since k is a polynomial, k£ is actually a right factor of h.
3. Criteria for the existence of a non-linear common right factor

In many situations, Lemma 2 is not so easy to use because of the difficulties in
finding the sequences required in the lemma. In this secton, we shall deduce the following
two useful criteria on the the existence of a non-linear common right factor of two entire

functions.

Theorem 3 . Let f and g be two holomorphic functions defined on X. Suppose that
there exists a non-constant entire function of two complex variables ®(x,y) such that
®(f(2),9(2)) =0 on X. Suppose further that there exist n > 2 distinct points z1, ....., zp
such that ®,(f(z),9(z)) #0, f'(z) #0 for all i and

f(z1) = f(z2) = - = f(zn)
g(z1) = g(z2) = --- = g(2n).

Then, there exists a holomorphic function h : X — C (independent of k and z;) with
h<f,h<gandh(z)=h(z) for all2 <i <mn.

Proof of Theorem 3.  For each 2 < i < n, define a;(s,t) = f(zi +1) — f(z1 + s).
Then a;(0,0) = 0 and %‘? (0,0) = f'(2;) # 0. According to the Implict Function Theorem,

there exits a unique analytic function ¢; defined in a neighborhood A; of s = 0 such that
#i(0) =0 and a;i(s, ¢i(s)) =0 on A4; , ie.
f(z1+ ) = f(zi + ¢il(s)). (2)

Since ®(f(z1),9(z1)) = 0 and ®y(f(21),9(z1)) # 0, by the Implict Function Theorem
again, there exists a unique analytic function k& : W — k(W) such that ®(w,k(w)) = 0
on an open neighborhood W of f(z1). Note that f(z1) € W,g(z1) = g(z;) € k(W). Since

0€ A;,¢;(0) =0, f and ¢; are continuous, we can choose A; small enough that

flz1+38) = f(z1 +¢i(s) €W, glz1 +5), g(zi + ¢i(s)) € k(W).



On the other hand, we always have

O(f (21 +8),9(z1 +5)) =0, D(f(2i + ¢i(s)),9(zi + #i(s))) = 0.

Since for each 2 <@ <mn, f(z1 +5) = f(zi + ¢i(s)) on E =N ,A; # ¢ of s =0, it follows
from the uniqueness part of the Implict Function Theorem that g(z1 + s) = g(z; + ¢i(s))
on F for all 2 < i < n. Take a sequence {s;}ien of distint complex numbers such that
lim;_, s; = 0. It is clear that we get the required sequences in Lemma 2 and the result
follows.

We shall prove the following result which is slightly more general than Theorem 1 and

will be used to prove Theorem A in Section 4.

Theorem 4 .  Letn > 1 and ®(z,y) = > iy ai(z)y® be a polynomial in y with entire
functions a;(z) as coefficients such that a, Z 0. Suppose that f,g : X — C are holomorphic
functions defined on X such that

on X. If both f and g are transcendental (i.e. they have an essential singularity at
infinity), then there exists a holomorphic function h defined on X such that h < f,h <g

and h='(s) is infinite for some complex number s.

Remark 1.  Let f(2) = 22, g(z) = ze* and ®(z,y) = ze*®—y2. Then ®(f(2), g(z)) =
0 on C because ze2 o f = z¢2% 022 = 22e2*" = %0 (z¢%”) = 22 0 g. Note that there doesn’t
exist any transcendental entire h with h < f and h < g. Therefore, the condition that f

and g are both transcendental is needed.

Remark 2. Let f(z) = e*+2,9(z) = e and ®(z,y) = e —ye?. Then ®(f(z),9(2)) =
0 because e o f = €% o (e* + z) = e’ = ze” o (¢?) = ze” o g. Note that there doesn’t
exist any transcendental entire function A with A < f and h < g, because f is prime (for

the definition, see Section 4). Therefore, the condition that ®(z,y) is a polynomial in y is



also needed.

Proof of Theorem 4.  Define E = {f(z)| ®,(f(2),9(z)) = 0and ®(f(2),9(z)) =
0}U{f(2)] f'(2) =0}. Then E is a countable set. Since f is transcendental, it follows
from Little Picard theorem that we can choose A € C — F so that the equation f(z) = A
has infinitely many distinct roots {z, jnen. Hence ®(A4, g(zn)) = @(f(zn),9(2n)) = 0 for
all n. So g(z,) are roots of the equation ®(A,y) = 0 which has only finitely many roots.
Hence there exists an infinite subsequence of {z,}nen (which we denote by the same
{2n}nen) such that g(z1) = g(z,) for all z,. Note that f(z1) = f(z,) = A for all n and
@, (f(zn),9(zn)) #0, f'(2n) # 0. By Theorem 3, there exists a holomorphic function h
with h < f , h < g and h(z1) = h(z,) for all n € N. As all 2, are distinct, h~'(h(21)) is

infinite.
4. Some applications

In this section, we shall show how Theorem 3, 4 can be used to solve some factor-
ization problems of entire functions. Let us recall some basic definitions. As an analogue
to prime numbers, we define a non-linear entire function F' to be prime if F' cannot be
expressed as a composition of two non-linear entire functions. Examples of prime entire

€05z etc (see [2] for more

functions are polynomials of prime degrees, e* + z, ze*", sin ze
examples). In fact there are plenty of prime functions as Y. Noda proved in [10] that for
any transcedental entire function f, f(z) 4 az is prime for all a € C— E; where Ey is some
countable set. In order to prove F' to be prime, we need to prove that it is pseudo-prime
first, i.e. F' cannot be expressed as a composition of two transcendental entire functions. In
[13], N. Steinmetz proved a very useful criterion for an entire function to be pseudo-prime.
It says that any entire solution of a linear complex differential equation with polynomial
coefficients is pseudo-prime. It follows that e® is pseudo-prime. Given two prime entire
functions f and g, it is natural to ask whether f o g is uniquely factorizable, which means,
if we express f o g = f1 o g1 for non-linear entire functions f; and g1, then f = f; o L and
g = L' o g for some linear L. Note that f o g is not always uniquely factorizable. For

2 . .
example, ze?? o 22 = 2% o (ze*") where all the factors involved are prime. In general, even

10



f og is uniquely factorizable, it is usually difficult to prove it. In [8], T. Kobayashi showed
that for the prime functions e* + z and ze?, their composition F'(z) = ze® o (e* + z) is
uniquely factorizable. He proved this result by using Nevanlinna theory. Using Theorem
3, we can give a much simpler proof.

Suppose that ze? o (e 4+ z) = f1 o g1 for some non-linear entire functions fi, g;. Since
e? +z has infinity many zeros which are all simple, so does F(z) = (e° +z)e® #. Therefore,
f1 must have at least one zero. If fi has only finitely many zeros, a1, ..., a,, then there exists
some a; such that gi(z) = a; has infinitely many roots, for otherwise f; o g1 will only have
finite number of zeros. If f; has infinite number of zeros {a;};cn, then there exists some a;
such that g1 (z) = a; has at least two distinct roots because g; is non-linear. In any case,
we can get some a; and two distinct 21, 2o such that fi(a;) =0 and g1(21) = g1(22) = a;.
Note that z1,z are zeros of F(z) = (¢ + z)e® T, Hence, e*! + z; = €*2 + z, = 0. Let
®(z,y) = ze® — fi(y), then ®(e? + z,¢1(2)) = 0. Since e* + z and F(z) = (&* + z)e* +*
has simple zeros only, e 4+ 1 # 0 and @, (e* + z;,g1(2)) = fi(g91(2i)) #0 for i =1,2. By
Theorem 3, there exists a non-linear entire function h with h < e* + z and h < ¢g;. Hence,
e®+ 2z =hyoh and g1 = hy o h, where hq, hy are analytic on Im(h).

If the image of h is C— {a}, then h = a+¢? for some entire function ¢. We may assume
a = 0 so that e* + z = hy(e") o g(z). The primeness of e* + z will force ¢(z) to be linear.
Hence e* + z is periodic which is impossible. Therefore, the image of A must be the whole
plane. This implies that both Ay, hy are entire. e* + 2z is prime and h is non-linear, so hy
must be linear. Tt follows that gi(z) = hg o hy' o (e* + 2z). From ze? o (¢* + z) = f1 0 g1,
we get ze* = frohgo hfl(z). The fact that ze® is prime and f; is non-linear will force
L=hyo h1_1 be to linear and we are done.

Clearly, by using very similar arguments, we can actually prove the following more

general result.

Theorem 5 . Let f(z),g(z) be two prime entire functions. Suppose that f is of the
form ze®®) | where a(z) is a nonconstant entire function. If g(z) is non-periodic and has
infinitely many zeros, all but finitely many of them are simple, then f(g(z)) is uniquely

factorizable.

11



Remark 3. When « is a polynomial or periodic entire function, it is known that

ze*(?) is prime.

The following result was first proved in [9].

Theorem 6 Let f be a transcendental entire function not of the form h o q, where h is
a peroidic entire function and q is a polynomial. If f is pesudo-prime (i.e. f cannot be
expressed as a composition of two transcendental entire functions), then so is po f, where

p is a non-constant polynomial.

Remark 4. In [12], the periodic function f(z) = sin ze“®* was showed to be pesudo-
prime while w? o f(z) = ((1 —w?)e?”) o cos z is not. Therefore, the condition that f is not
of the form h o g is needed. Whether similar result holds for f o p remains open.

Proof of Theorem 6. Assume that p o f is not pseudo-prime, i.e. pof = kog
for some transcendental entire functions k& and g. Applying Theorem 4 to ®(z,y) =
k(z) — p(y), we get a transcendental entire function h with h < f and h < g. Hence
f =hioh and g = hy o h, where hy, ho are analytic on the image of h. If the image of
his C — {a}, then h = a + €7 for some entire function ¢. We may assume a = 0 so that
f(z) = hy(e™) o q(2). The pseudo-primeness of f will force ¢(z) to be a polynomial. This
contradicts the assumption on the form of f. Therefore, Im(h) = C and both hy and he
are entire. Hence, po hi(z) = ko ha(z) on C. Since h is transcendental, h; must be a
polynomial as f is pseudo-prime. It follws that p o hq is a polynomial which is impossible
as k is assumed to be transcendental. Therefore, p o f must be pseudo-prime.

Finally, we proved Theorem A with an alternative method.

Proof of Theorem A. By Theorem 4, there exists a transcendental entire function
h such that f = f; oh and ¢ = g1 o h, where f;,¢1 are analytic on X = Im(h). By
the Little Picard Theorem, X = C or C — {a} for some complex number a. Now, we
have ®(f1(2),91(2)) = 0 on X. Using the Great Picard Theorem and the fact that & is
a polynomial in both z and y, it is not difficult to show that f; and g; must be both
transcendental (i.e with an essential singularity at infinity) or both not. Suppose, both f;

and g; are transcendental. It follows from Theorem 4 that there exists a transcendental

12



holomorphic function Ay : X — C such that hg < f; and hg < ¢1. This implies that
hooh < f,g and hence Ghyon = (Ghyon)' C (GfNGy) = Gj. By Lemma 1, there exists a
holomorphic function hq such that hy o hg o h = h and hence, hi o hyg = idx on X. This is
impossible as h is transcendental. Therefore, we must have both of f; and g; are rational
and holomorphic on X. f; and g; can have at most one pole as X = C or C — {a}.
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