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Abstract

In 1922-23, Julia and Fatou proved that any two rational functions f and g of degree
at least two such thatf(g(z)) = g(f(2)), have the same Julia set. I.N. Baker then
asked whether the result remains true for nonlinear entire functions. In this paper, we
shall show that the answer to Baker’s question is true for almost all nonlinear entire
functions. The method we use is useful for solving functional equations. It actually
allows us to find out all the entire functions g which permute with a given f which

belongs to a very large class of entire functions.
1. Introduction and Main Results.

The Fatou set F(f) of an entire function f of one complex variable is the subset of
the complex plane where the family {f"} of iterates of f is normal. Its Julia set J(f) is
equal to C \ F(f). Fatou set and Julia set of a rational function can be defined as subsets
of the Reimann sphere in a similar way. A well known property of Julia set of an entire or
rational function f is that J(f) = J(f™). Other basic knowledge of iterations of rational
or transcendental functions can be found in [5], [6] and [13].

In 1922-23, Julia [16] and Fatou [12] proved that for any two rational functions f and
g of degree at least two such that f and ¢ are permutable, i.e. fog = go f, then their
Julia sets will be the same. It is natural to consider the following open problem which was
first mentioned in [4] by I.N. Baker.

Problem A : Let f and g be nonlinear entire functions. If f and g are permutable,
is J(f) = J(g) ?

Julia and Fatou’s works were motivated by the problem of characterising all permutable
rational functions f and g. Julia [16] and Fatou [12] solved this problem when both f

and g are polynomials. They proved that for permutable nonlinear polynomials f and g,



there exist natural numbers m,n such that (up to a conjugacy of linear maps) either i)
f™(z) = g™(2); ii) f(z) = 2™ and g(z) = 2" or iii) f(z) = T)n(2) and g(z) = T}, (z), where
T}, is the Tchebycheff polynomial determined by the equation cos kw = Ty (cos w).

The rational case was first solved completely by J.F. Ritt [24] in 1923. However, Ritt
did not use methods from complex dynamics. A proof of Ritt’s result in the spirit of the
ideas of Julia and Fatou was provided by A. E. Eremenko [10] in 1989. It is also natural
to ask the following open problem.

Problem B : Is there a complete classification of all pairs of nonlinear permutable
entire functions?

In 1958-59, I.N. Baker [1] and V.G. Iyer [15] started the investigations of permutable
entire functions. They both proved that if a nonconstant polynomial f is permutable
with a transcendental entire function g, then f(z) = ek 4+ b for some m,k € N and
complex number b. It follows from this result, as well as Julia and Fatou’s results, that
in order to answer problem A and B, we only need to consider permutable transcendental
entire functions. Let m,n € N and h be a transcendental entire function. Suppose that
az+b and cz+d permute with A™ and h"™ respectively. If az+ b also permutes with cz+d,
then f = ah™ + b permutes with g = ch™ + d. Up to a conjugacy of linear maps, almost
all known examples of permutable transcendental entire functions are of this form. Note
that ¢ and ¢ must be a p-th root and ¢g-th root of unity for some p,q € N. If both a,b # 1,
then it is easy to check that fP = A" and g? = h"? so that f™P?7 = B™"P1 = ¢g"P4. This
is case i) above. Recently, the following interesting example of permutable transcendental
entire functions is mentioned in [14].

Example 1 : Let a,c € C such that e** = —1 and ¢ # 0.

Define f(z) = ci[exp(%%)%—exp(%f)] and g(z) = c[exp(%zQ) —exp(;T%iZZ)]. Then
f permutes with g.

In [1], IN. Baker characterized all nonlinear entire functions permute with the expon-
tential function and proved the following result.

Theorem A. Let g be a nonlinear entire function which is permutable with f(z) =

ae’ + ¢ (ab # 0,a,b,c € C), then g = f™. Hence J(f) = J(f") = J(g).



This result shows that there are only countably infinitely many nonlinear entire func-
tions which permute with f(z) = e*. This is in fact true for general f (see [3]). Theorem
A also answers problem A and B for the special case that f(z) = e?. Concerning problem
A, IN. Baker proved the following result in [4].

Theorem B. Suppose that f and g are transcendental entire functions such that
g(z) = af(z) + b, where a and b are complex numbers. If g permutes with f, then
J(f) = J(9)-

In fact I.N. Baker only proved the case ¢ = 1, but the general case can be proved
similarly (see [22]). In the same paper, after a careful analysis of Julia and Fatou’s original
arguments, Baker also proved the following result.

Theorem C. If f and g are permutable transcendental entire functions and if oo is
neither a limit function of any subsequence of {f"} in a component of F(f), nor of any
subsequence of {¢"} in a component of F(g), then J(f) = J(g).

From the classification of components of Fatou sets (see [6]), there are only two ways in
which f™ can tend to infinity locally uniformly on a component U of F'(f). One possibility
is that U is a wandering domain of f, i.e. f™(U) # f™(U) for all n # m. The other is
fr(U) Cc V for some r > 0 and Baker domain V. V is a Baker domain if co € V and
f™(V) C V for some n > 0. The following result of W. Bergweiler and A. Hinkkanen [7]
shows that the presence of Baker domain is not a problem provided that both f and g do
not have wandering domain.

Theorem D. Let f and g be permutable transcendental entire functions. If both f
and ¢g have no wandering domains, then J(f) = J(g).

A slightly weaker version of Theorem D was first proved by J.K. Langley in [18]. Besides
Theorem D, there are other partial results concerning Problem A (see [13] (Chapter 7),
[22], [23]). There are quite a lot of results about permutable entire functions which are
related to Problem B. They can be found in [14], [17], [25], [26], [27] and [28]. The following
typical example of these results can be found in [25].

Theorem E. Let f(z) = p(z)e?®), where p(z) and ¢(z) are polynomials. If ¢ is a

finite order entire function which permutes with f. Then ¢g(z) = af(z) for some a € C.



All these results require both f and ¢ to satisfy certain conditions. This is rather
restrictive because in general given an entire function f, it is difficult to check whether the
entire functions which permute with f satisfy the required condition or not. The situation
will be much clearer if we rephrase Problem A into an equivalent problem as follows: Let f
be a nonlinear entire function. If g is a nonlinear entire function which permutes with f, is
J(f) = J(g) 7 We immediately see that Problem A has only been solved for polynomials
and transcendental entire functions ae® + c.

In this paper, we shall answer Problem A and B for a class of entire functions including
e +p(z),sinz+p(z), where p is a nonconstant polynomial. In fact, we shall prove that for
any nonlinear entire function g which permutes with f in this class, g(z) = af™(z) + b for
some a,b € C. Note that f"og = go f™ and hence by Theorem B, J(f) = J(f™) = J(g)-
By factoring out f™, we also have f"(az 4+ b) = af™(z) + b. The result of I.N. Baker and
V.G. Iyer mentioned before tells us that a is a k-th root of unity.

Before stating our main result, we recall that an entire function F' is prime (left-prime)
in the entire sense if whenever F(z) = f(g(z)) for some entire functions f,g, then either
f or g is linear (f is linear whenever ¢ is transcendental). For example, e* + z, ze® are

prime functions (see [8] for more examples).

Theorem 1 . Let f be a transcendental entire function which satisfies the following
conditions.

A1) f is not of the form H o Q, where H is periodic entire and @ is a polynomial.

A2) f is left-prime in the entire sense.

A3) f" has at least two distinct zeros.

AJ) There exists a natural number N such that for any complex number c, the simul-
taneous equations f(z) = ¢, f'(z) = 0 have at most N solutions.

Ab5) The orders of zeros of f' are bounded by M for some M € N.

Let g be a nonlinear entire function which permutes with f. Then g(z) = af™(z) + b,
where a is a k-th root of unity and b € C. Hence J(f) = J(g).

The conditions A4 and A2 are related. For example, M. Ozawa [21] proved that if f is



of finite order and for any ¢ € C, the simultaneous equations f(z) = ¢, f’(z) = 0 have only
a finite number of solutions, then f is left-prime in the entire sense. Other similar results
can also be found in [21] and [20]. It is easy to check that for any nonconstant polynomial
p, €° + p(z) and sinz + p(z) satisfy conditions A4 and A5. By Ozawa’s result, they are
left-prime. Using Borel’'s Lemma ([8],Theorem 1.7 ), it is not difficult to show that the
dervatives of e* + p(z) and sin z + p(z) have infinitely many zeros. Suppose that e* + p(z)
or sinz + p(z) is of the form H o @ in Al. Then @ cannot be linear because e* + p(z) and
sin z + p(z) are nonperiodic. Now @ is of degree greater than one, then it can be shown
that the order of H o () will be greater than one which is also impossible as both e* + p(z)
and sinz + p(z) are of order one. Therefore, e* + p(z) and sinz + p(z) satisfy conditions
A1-A5.

The conditions A1-A5 are not restrictive. In certain sense, almost all entire functions
satisfy these conditions as can be seen from the following result of Y. Noda [20].

Theorem F. Let f be a transcendental entire function. There exists a countable set
Ey C C such that for all a ¢ Ey, fo(2) = f(z) + az satisfies the following conditions.

B1) f, is nonperiodic.

B2) f, is prime in the entire sense.

B3) f! has infinitely many zeros.

B4) For any complex number ¢, the simultaneous equations f,(z) = ¢, fi(z) = 0 has
at most one solution.

B5) The orders of zeros of f)(z) are equal to one.

Noda’s orginal proof only shows that we can find an exceptional set D; C C such that
fa satisfies B1-B4 for all a ¢ Dy. If we replace Dy by Ey = Dy U{—f(c)|f"(c) = 0}, then
B5 will also be satisfied. Clearly, Bi implies Ai for 1 = 2,3,4,5. It is not difficult to check
that conditions B1 and B2 together imply condition A1l. Now, combining Theorem 1 and
Theorem F, we obtain the following result which says that in certain sense, the answer to

Baker’s question is yes for almost all entire functions.

Theorem 2 . Let f be a transcendental entire function and define fo(z) = f(2) + az.

Then there exists a countable set Ey C C such that for each a ¢ Ef, any nonlinear entire



function g permutes with f, is of the form g(z) = cfl(z) + d, where c is a k-th root of
unity and d € C. Hence J(f,) = J(g).

The method developed in this paper will be useful for solving functional equations.

Actually we can also use it to prove the following result.

Theorem 3 . Let g be a nonconstant entire function and p be a polynomial with at
least two distinct zeros. Suppose that f(z) = p(z)e??) is prime in the entire sense. Then
any nonlinear entire function g which permutes with f is of the form g(z) = af™(z) + b,

where a is a k-th root of unity and b € C. Hence J(f) = J(g).

It is known that if ¢ is a polynomial and p and ¢ do not have a nonlinear common

right factor, then f(z) = p(2)e?(®) is prime in the entire sense.
2. The Common Right Factor Theorem

To prove Theorem 1, we first prove the Common Right Factor Theorem which gives
a sufficient condition for the existence of a nonlinear generalized common right factor of

two entire functions.

Definition 1 . Let F(z) be an nonconstant entire function. An entire function g(z) is
a generalized right factor of F (denoted by g < F) if there exists a function f, which is
analytic on the range of g, such that F' = fog. If h < f and h < g, we say that h is a

generalized common right factor of f and g.

The following lemma is crucial. It is extracted from the proof of Theorem 1.1 in a
paper of A. Eremenko and L. Rubel [11]. A quite detailed proof of it can also be found in
[19].

Lemma 1 . Let f,g be two entire functions. Fori=1,...k, k > 2, let S; = {zin }nen be a
sequence of distinct complex numbers with limit point z;. Suppose that all the limit points

z; are distinct and for all n € N,



= = g(2kn).

f(zln) = f(z2n)

g(zm) = g(z2n)

Then there exists an entire function h (which depends on f and g only and is inde-

pendent of k and the sequences S;) satisfying h < f, h < g and h(z1) = h(z;) for all

Zop = 2 + % and

2 <1<k,
Example 2 : Let f(z) = cosz and g(z) = sinz. Let z1, = 1,
Z3n = —27 + % Then lim,,_, o 215, = 0, limy, o 29, = 27, lim,,_, o 23, = —27 and for all
n €N,
f(z1n) = f(22n) = f(23n)
g(zln) = g(z2n) = g(z?)n)-
Note that there exists an entire function h(z) = e'* satisfying h < f, h < ¢ and

h(0) = h(—27) = h(27).
In many situations, Lemma 1 is not so easy to use because of the difficulties in

finding the sequences required in the lemma. We shall prove the Common Right Factor

Theorem below which is quite powerful and easy to use.

Theorem 4 . (Common Right Factor Theorem). Let f and g be two entire functions and

Z1y..., 2 be k> 2 distinct complex numbers such that
f(z1) =flz2) = =flz) = A
9(z1) = g(z2) = -~ =g(z) = B.

Suppose that there exist nonconstant functions fi and g1 such that fio f = g1og
on ULIUZ-, where U; is some open neighborhood containing z;. 1If f1 is analytic in a
neighborhood of A and the order of f1 at A is K < k, then there exists an entire function
h (which depends on f and g only and is independent of k and z;) with h < f, h < g.



Moreover, among the z;, there exist at least m = [k—;(l] + 1 distint points zp,,...2n,, such

that h(zp,) = -+ = h(zp,,)-
We immediately have the following

Corollary 1 . Let f and g be two entire functions and {z, }nen be an infinite sequence
of distinct complex numbers such that for all n € N, f(z,) = A and g(z,) = B. Suppose
that there exist nonconstant functions f1 and g, such that fio f = g1 og on U2,U;, where
U; is some open neighborhood containing z;. If f1 is analytic in a neighborhood of A, then

there exists a transcendental entire function h with h < f, h < g.

Remark : In Theorem 4, the condition that & > K is essential. Let f(z) = 22,
g(z) = €, fi(z) = cos\/z and g1(2) = 3(z + 27"). Then cosz = fi o f(2) = g1 0 g(2).
Although f(—7) = f(n) = 7 and g(—n) = g(x), f and g do not have a nonlinear gen-

eralized common right factor. Note that in this case, the order K of f; at 72 is exactly two.

Proof of Theorem 4. Replacing f1(z) by fi(z+ A) and f(z) by f(z) — A if necessary,
we may assume that A = 0. Recall that f; is analytic at A with order K. So if V is
a sufficiently small neighborhood of A = 0 and a,b € V such that fi(a) = fi(b), then
b~ e’F a for some 0 <1< K — 1. Hence if we take any ray L starting from f;(A), then
f1_‘ é (L) consists of K curves starting at A = 0 which divide V' into K open sector shaped
regions V; such that f; is injective on each region V.

For each n € N and 1 <i <k, let Dy(%) = {z : |z — 2| < £}. There is no harm in
assuming that all Dy, (z;) C U;. Since g(z1) = g(z;)) = B and g¢ is entire, N"_,g(Dy(2;))
is an open set containing B. Choose a z1, € Dy, (z1) such that g(z1,) € N_,9(Dy(z:)),
9(z1n) # g(z1) and arg{fi1(f(z1n)) — f1(A)} = m. The last condition means that f(z1,)
is on a curve through A which approximately bisects Vi. Now for each 2 < ¢ < k, there
exists zjp, € Dp(z;) such that g(z1,) = -+ = g(zkn). Since g(z1,) # g(z1) = g(zi) = B, we
have z;, # z;, for all n € N. Clearly, z;, — z; as n — oo and hence f(zy,) — f(z) = A
as n — oo. By passing to a subsequence if necessary, we may assume that for each i,

{Zin }nen is a sequence of distinct complex numbers with limit point z;.



From the condition that fiof = giog on UX_,U;, we have f1(f(21n)) = -+ = fi(f (2kn))-
Hence for each fixed n, f(zj,) =~ elj%f(zln) for some 0 < ; < K — 1. Since f(z1p) is on
a curve through A which approximately bisects Vi, each f(zj,) is also on a curve through
A which approximately bisects some V;. Therefore there exists one sector shaped region
V; which contains at least m = [E21] + 1 of the f(zjn)s, say f(2jin)s-- -+ f(2j.n). Since
f1(f(zjin)) = -+ = fi(f(2),n)) and fi is injective on V;, we must have f(zj,) =--- =
f(%jn). Therefore for each n € N, we obtain a subset (depending on n) {ji,...,Jm}

of {1,...,k}. As there are only finitely many subsets of {1,...,k} containing exactly m

elememts, we can find a {ji,...,Jmn} which corresponds to infinitely many n. For these n,
we have

f(zjin) = f(Zjn) == = [(2j,un)

9(zjin) = 9(2jn) = -+ = 9(Zjpun)-

Clearly, Sj; = {zj;n} are the required sequence in Lemma 1 and we are done.
3. Proof of Theorem 1 and 3.

Let n(r, %) and n(r, < |z| <7, %) be the the number of distinct zeros of f in |z| < 7

and r, < |z| < r respectively. The following lemma is due to J. Clunie [9].

Lemma 2 . Let k be entire and transcendental. Given K > 0 there is a number g > 0
and an increasing sequence {ry}nen with r1 > o and r, — 0o (as n — o0) such that for
n>1landallr inr, <r< r% and all a satisfying ro < |a| < r we have

n K.
a(r, - a) >

Lemma 3 .  Let h,k be entire and transcendental. Suppose that h has infinitely many
zeros. Then for each N € N, there exists a zero an of h such that k(z) = an has at least

N distinct roots which are not the zeros of h.

Proof of Lemma 3.  Assume the contrary, then for each zero a; of h, all (except at



most N — 1) distinct roots of k(z) = a; are zeros of h. This implies that

_ 1 1
S [l ) = (V= 1] <7, ).

Hence,

1 1 1 1
h(aZ)O n(r, m) <n(r,-)+ (N —1)n(r E) = Nn(r, E)
lajl<r

We therefore have for all 0 < rg < r,

h(a;)=0
ro<lag|<r

Applying Lemma 2 to k and K = 2N, we get the ry and required sequence {7y, }nen
such that

_ 1 ~ 1
Z n(ry, H) > Z 2N =2Nn(r, < |z| < ry, E)

h(a;)=0 h(a;)=0
ro<la;|<rn ro<la;|<rn

Since h has infinitely many zeros, for all sufficiently large ry,, fi(r, < |2 < 71y, F) >
n(ro, %) Hence for all sufficiently large 7,
1 1
Z ﬁ(rna—) >N’FL(TTL7E)‘

k— a;
h(a;)=0
ro<la;l<rn

This contradicts (1).

Lemma 4 . Let f be a transcendental entire function such that f' has at least two distinct
zeros. Let g be a nonlinear entire function permutes with f. Then for each K € N, there
exists ag € C,¢'(ag) = 0 such that f — ag and f' o g have at least K common distinct

ZETO0S.

Proof of Lemma 4 .  As g is an nonlinear entire function permutes with the transcen-

dental entire function f, the result of I.N. Baker and V.G. Iyer mentioned earlier guarantees

10



that g is transcendental. Now f og = go f implies that f'(g(2))g' (z) = ¢'(f(2))f'(2).
Suppose that ¢’ o f has finitely many (say M) zeros. Then all (except M) zeros of f'og
are zeros of f’. Since f’ has at least 2 zeros and g is transcendental entire, by the Little
Picard Theorem f’o g has infinitely many zeros. It follows that f’ also has infinitely many
zeros. Now by Lemma 3, there exists a € C , f’(a) = 0 such that g(z) = a has at least
M + 1 roots which are not the zeros of f’. This is a contradiction. Therefore ¢’ o f has an
infinite number of zeros and hence ¢’ has at least one zero. Clearly at least one zero of ¢
is not a Picard exceptional value of f, otherwise ¢’ o f will have finitely many zeros only.
So there exists some b € C, ¢’ (b) = 0 such that f(z) = b has an infinite number of roots.
Suppose that ¢’ has only finitely many zeros. It follows from f'(g(2))d'(z) = ¢'(f(2))f'(2)
that f — b and f’ o g have infinitely many common zeros and we are done in this case.
Now suppose that ¢’ has infinitely many zeros. By Lemma 3, for each K € N, there exists
ag € C,¢'(ag) = 0 such that f — ax has at least K distinct zeros which are not the zeros
of g’. Since f'(9(2))g9'(2) = ¢'(f(2))f'(2), f —ax and f'(g) must have at least K distinct
COMIMON Zeros.

We also need the following result of I.N. Baker ([1], p.145).

Lemma 5 . If f and g are permutable entire transcendental functions, then there exists
a positive integer n and R > 0, such that M(r,g) < M(r, f™) holds for all r > R, where

M(r,g), M(r, f™) denote the mazmium modulus function of g and f™ respectively.

Proof of Theorem 1.  Now for each natural number K which is a multiple of 2N (M +
1), by Lemma 4 we can find some ag € C,¢' (ag) = 0 such that f — ax and f'(g)
has at least K distinct common zeros, say zi,...,2zx. Now f(z;) = ax implies that
f(g(z)) = g(f(2)) = glax). Moreover, f'(g(z;)) = 0. By condition A4, the system of

equations f(z) = g(ak), f'(z) = 0 has at most N solutions. Therefore, at least & of g(z;)

are equal (say g(21),...,9(2k/n)). Hence we have
f(z1) = f(z2) = = f(ZK/N) =ax
9(z1) = g(z2) =~ =g(zxn) =B

11



According to condition Ab, the order of f at B is at most M + 1 and % > M + 1. By
the Common Right Factor Theorem, there exists an entire function A (which depends on
f and g only) with h < f, h < g. Moreover, among the z1, . .. 2K /N, there exist at least
m = m distinct points at which h takes the same value. Since K as well as m can
be arbitrarily large and A is independent of K, h is transcendental.

Ash < fand h<g, f = fioh and g = g; o h for some f1,¢; which are analytic on
the range of h. h is transcendental entire, by the Little Picard Theorem, h can omit at
most one complex number. If the range of h is C\{a} for some a € C, then h = a + ¢? for
some entire function ¢ and f(z) = f1(a+€%) o ¢(z). Note that ¢ cannot be transcendental
because by condition A2, f is left-prime. Therefore ¢ must be a polynomial which is also
impossible by condition Al. So the range of h must be the whole plane. This implies that
both f1,g1 are entire. Since f is prime and h is transcendental, f; must be linear. Hence
h:fl_lofandg:glofl_lof:gZOfwheregg:glofl_l. From fog =go f,
we have fogoo f = goo fo f. Note that the range of f equals that of h. Therefore,
foga=geo fonC. If go is nonlinear, by repeating the same arguments, we can find an
entire g3 which permutes with f such that g» = g3 o f and ¢ = g3 o f2. Inductively, we
have ¢ = g1 o f™ provided that g, is nonlinear. If there exists some m such that g,
is linear, then we are done. So assume that all g, are nonlinear. Since each g, permutes
with f, g, must be transcendental. By Lemma 5, there exists a positive integer n and
R > 0, such that log M (r,g) < log M (r, f™) holds for all r > R.

On the other hand, a result of J. Clunie ([9], Theorem 1) implies that

log M log M "
nsup SEM ) o dog Mrgu o f")

rooo log M(r, fm) r—o00 log M (r, f™))

This is a contradiction and we are done.

Proof of Theorem 3.  Note that g is transcendental as it is nonlinear. Since p has at
least two distinct zeros, p(g(z)) has infinitely many zeros by the Little Picard Theorem.
It follows from p(g(z))e?9(*)) = g(p(2)e?®)) that g(p(z)e?®)) also has infinite number of

zeros. Therefore there exists a zero b of g such that p(z)e‘I(z) — b has infinitely many zeros

12



{2;}ien. Note that the zs are zeros of p(g(2))e?9(*) = g(p(z)e?®)). Hence, p(g(z)) = 0
for all i € N. Therefore we can find an infinite subsequence {z,, }ien such that f(z,,) =b
and g(zn,) = a for some zero a of p. By Corollary 1, there exists a transcendental entire
function A with h < f and h < g. Since f is nonperiodic and prime, we can repeat the

arguments used in the proof of Theorem 1 to obtain the required conclusions.
4. Final Remarks.

Provided that the below conjecture is true, we can replace condition A4 in Theorem 1
by a much weaker condition : For any ¢ € C, the simultaneous equations f(z) = ¢, f'(z) =0
have only a finite number of solutions.

Conjecture: Let f be a transcendental entire function such that f’ has at least two
distinct zeros. Let g be a nonlinear entire function which permutes with f. Then there
exists a € C,¢'(a) = 0 such that f — a and f’ o g have infinitely many distinct common
7Zeros.

It is expected that the Common Right Factor Theorem and its corollary will also be
useful to solve other functional equations (e.g. f o f = gog). These results reduce the
problem of solving one functional equation to a problem of solving system of simultaneous
equations. Therefore it would be nice to know whether it is true that if fog =go f or
fof=gog, then we can always find two distinct points z1, ze such that f(z1) = f(z2)
and g(z1) = g(z2), where f, g are transcendental entire functions.
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