Recent progress in unique factorization of entire functions
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Abstract

We shall survey the recent developments in the unique factorizations of polynomi-

als, rational functions and transcendental entire functions.
1. Introduction.

The factorization theory of meromorphic functions of one complex variable is to study
how a given meromorphic function can be factorized into other simplier meromorphic
functions in the sense of composition. For an introduction to this subject, the readers are
refered to the books [11], [26], [6] and the survey articles [12], [25], [27], [28], [29], [30]. In
the past years, the main focus of this subject is to use Nevanilnna Theory and classical
complex function theory to prove specific classes of meromorphic functions to be prime,
pseudo-prime or uniquely factorizable. It is because there were no powerful tool to tackle
general problem. Recently, two important papers ([15] and [8]) appearred. These papers
contain new methods which can be used to tackle some general factorization problems
and obtain some general results. In this article, we shall survey those results concerning

unique factorization of entire functions.

2. Unique factorization of polynomials and rational functions.
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The whole field of factorization of meromorphic functions started from a fundmental
paper of J.F. Ritt in 1922. In that paper Ritt introduced the concept of prime polynomi-
als, i.e. those polynomials which cannot be expressed as a composition of two non-linear
polynomials. The concept of prime polynomials is very similar to that of prime numbers
and we can also define prime entire functions in a similar way. It is clear that every
nonconstant polynomial can be expressed as a composition of finitely many prime polyno-
mials. Ritt then considered the following problem. Let p(z) be a nonconstant polynomial
such that p(z) has two factorizations p =pj;o---op, and p= ¢ 0--- o g, where all the
polynomials p;,g; are prime. What is the relationship between these two factorizations?

Ritt solved this problem by proving the following two remarkable theorems.

Theorem 1 (/22]). Let p be a nonconstant polynomial. Suppose that p has two prime
factorizations p = pyo---opp and p = q o --- o q,, where all the polynomials p;,q; are
prime. Then m = n and (degq,...,degqy) is obtained from (degpi,...,degpm) by a
permutation of its components. Moreover, one can pass from one factorization to the other

one by altering two adjacent polynomials in the ways mentioned in Theorem 2.

Theorem 2 ([22]). Let pj,pj+1,q; and gj11 be prime polynomials such that pj o pjy1 =
gj © qj+1. Then the factorization q;j o qj11 can be obtained from the factorization pj o pji1
by a sequence of applications of any of the following three types (or their inverses).

1) replace p; and pj1 by pjol and -1 opjt1, where | is any linear polynomial, or

2) replace pj and pji1 by pj+1 and pj, where p; and pj1 are Tchebychev polynomials,
or

3) replace z* and 2" g(2*) (which are pj and pj1 respectively) by 2"g(2)* and 2*, where

r and k are integers, and g is a polynomial.

Ritt’s first result says that the number of prime polynomial factors in a factorization, as
well as the set of the degrees of the prime factors, are two invariants of prime factorizations
of a polynomial. In a recent joint work with A.F. Beardon, we find out a third invariant
of prime factorizations of a polynomial. Let I'(p) be the set of linear transformations =y

such that po+y = p. Since polynomial p cannot be periodic, I'(p) is a finite rotation group.



Let |T'(p)| denote the number of elements in I'(p). Then we obtain the third invariant as

follows.

Theorem 3 ([{]). Let p=pio---0py, =q10---0qm be two prime factorizations of p.
Then (JT(q1)],---,|T(gm)|) is obtained from (|T'(p1)|,--.,|T'(pm)|) by a permutation of its

components.

Ritt’s results about polynomial factorizations are rather complete. However, these
results do not indicate when two factorizations of p are equivalent. Two factorizations of p
are equivalent if one can be obtained from the other only by applying operation (1). In the
same paper, We also obtain a sufficient condition for two factorizations of a polynomial

to be equivalent.

Theorem 4 ([4]). Let p=pio---0py, =qL0---0qy be two factorizations of p. Suppose
that (degpy,...,degpy) = (degq,...,degqn), then the two factorizations are equivalent.

We remark that the proof of Ritt’s results involved considerations of the monodromy
group and the Riemann surface of the inverse of a polynomial. However, there exists some
algebraic proofs which also work for algebraically closed field of characrestic zero (see [16]).

In [23] and [24], Ritt also tried to consider the factorization of rational functions.
However, he were not able to provide a complete result in this case. It is because the unique
factorization problem of rational functions is much more difficult. It was mentioned by
Ritt [22] and only proved by W. Bergweiler [5] in 1993 that there exists a rational function
with two prime factorizations which consist of two and three prime factors respectively.
Whether similar example exists for transcendental entire functions remains open. As far

as I know, there is essentially no progress for the rational case over the past years.
2. Unique factorization of entire functions.

It is natural to ask whether we can obtain results similar to that of Ritt for entire
functions. This question is very difficult because the factorization of a transcendental entire

functions can be very complicated. For example, the number of prime factors of a given



polynomial or rational function is bounded, while this is not the case for transcendental

entie functions. In fact, we have the following result.

Theorem 5 There ezists a sequence of positive real number {cy}tnen such that the se-
quence of functons Fp,(z) = (cpe® + z) o --- o (c1€* + z) converges uniformly on compact
subsets to an entire function F(z). Furthermore, for each n € N, F(z) = H, o (cpe® +
z)o---o(c1€® + z) for some entire function H,. Hence, there is no uniform bound on the

number of prime factors c,e® + z in different factorizations of F.

Proof of Theorem 5§  We define the ¢; inductively. Take ¢; = 1 and suppose c1,...cg
has been defined. Define ¢gy1 = {2% max, < lefk(2)|} -1, Now for each disk |z| < R, for
all k > R, we have |Fjy1(2) — Fp(2)| = |cpr16"3) + Fi(2) — Fu(2)] < |cpprefs)) <27k
on |z| < R. It follows that {F},} is a Cauchy sequence in the space of analytic functions
on |z| < R. Hence, {F,} converges to an entire function F' uniformly on compact subsets.
For each cpe®+ z, it is obvious that it is increasing on the real axis and ¢,e™ +n > n for all
n € N. This implies that F'(n) > n. So F' is unbounded and hence nonconstant. For each
n € Nand m > n + 1, define Hy, ,,(2) = (cpe” + 2) o+ o (cpq1€” + 2). Then by similar
arguments, we can show that {Hp, ,}men converges to a nonconstant entire function H,
as m trends to infinity. Clearly, F'(z) = H, o (cpe® + z) o --- o (¢1€* + z). Note that each
cke® + z is prime (see [6], p.118) and we are done.

Ritt’s first theorem (Theorem 1) is a global result about prime factorizations of a given
polynomial. It gives some global invariants about prime factorizations of a polynomial.
While Ritt’s second theorem (Theorem 2) is a local result, it says that there are essentially
only three possible cases can occur for prime polynomials a,b,c and d to satisfy a o b =
cod. Theorem 5 shows that it should be very difficult to extend Ritt’s first theorem to
transcendental entire functions. Therefore, as a first step to build a factorization theory
for entire functions, one may try to extend Ritt’s second result to entire functions first.
Until now, we do not know whether if a,b,c¢ and d are prime entire functions such that
aob = cod, then there are only a fintite number of ways such that a,b,c and d are
related. The case 2 in Theorem 2 is about permutable polynomials and we still do not

have a complete classification of permutable entire functions. Therefore, it is important



to investigate permutable entire functions and we shall talk about this topic in the next
section. It is clearly that case 3 can occur for entire functions. For example a(z) =
22,b(z) = ze*”, ¢(z) = ze** and d(z) = z2. Therefore not all the factorizations aob = cod
are equivalent (i.e. a,b,c,d are related as in case 1) So it would be nice to have some
general results which guarantee that two factorizations are equivalent. In a joint work [19]
with C.C. Yang, we obtained the following results. The functions f, g, p and ¢ considered

below are all entire and nonlinear.

Theorem 6 ([19]). Let f, p be two prime entire functions and f be transcendental.
Suppose that f op = goq and both p,q are polynomials with degp # 3,6. Then f =go L

and p = L~ ' oq, where L is a linear polynomial.

Theorem 7 ([19]). Let f, p be two prime entire functions and f be transcendental.
Suppose that po f = qo g and both p,q are polynomials. Then p =qoL™" and f = Log,

where L is a linear polynomial.

Theorem 8 ([19]. Let f, p be two non-periodic prime entire functions and p be a poly-
nomial. Suppose that po f = qo g and both f,q are transcendental. Then p = qo L' and

f = Log, where L is a linear polynomial.

It is conjectured that the condition that degp # 3,6 in Theorem 6 can be removed.
Theorem 6, 7 and 8 due with the relationships between polynomials p and ¢, transcendental
functions f and g when we have factorizations of the form po f =qogor fop=gogq. It

is natural to investigate the case fop =qog.

Theorem 9 ([19]). Let f and g be two transcendental entire functions, p and q be two
non-linear polynomials with degree n and m respectively. If fop = qo g and p is not a

right factor of g, then deg p < deg q. In particular, the conclusion is true when g is prime.

w

Remark. Let f(z) =e?, g(z) = e, p(z) = 2% and q(z) = 22. Then fop=gog and
degp > degq. Therefore, the condition that p is not a right factor of g is essential.
The proof of Theorem 6 is based on a method developed by S.A. Lysenko in [15] which

depends on some fundamental results of local holomorphic dynamics. While the proof of



Theorem 7, 8, 9 depends on the following result of H.Grauert ([10]) on complex analytic

equivalence relations.

Theorem 10 ([10]). Let R be any equivalence relation on C whose graph G = {(x,y) €
C x C|lzRy} is a complex analytic subset of C x C containing no vertical or horizontal
lines (i.e subsets of the form {x} x C or C x {y}). Suppose that G is of pure dimension
one (i.e. G is everywhere of the same dimension one). Then, there exists a holomorphic

map h from C onto a Riemann surface S such that xRy if and only if h(z) = h(y).

Definition 1 . Let F(z) be an nonconstant entire function. An entire function g(z) is
a generalized right factor of F (denoted by g < F) if there exists a function f, which is
analytic on the image of g, such that F = fog. If h < f and h < g, we say that h is a

generalized common right factor of f and g.

Using the above theorem, we can prove the following lemma. This lemma was extracted
from the proof of Theorem 1.1 in a paper of A. Eremenko and L. Rubel [8]. A quite detailed

proof can also be found in [18].

Lemma 1 . Let f,g be two entire functions. Fori=1,...k, k > 2, let S; = {2in }nen be a
sequence of distinct complex numbers with limit point z;. Suppose that all the limit points

z; are distinct and for all n € N,

f(z1n) = f(z2n) = -+ = f(2kn)
9(z1n) = g(22n) = -+ = g(2kn)-
Then there exists an entire function h (which depends on f and g only and is indepen-

dent of k and Sis) satisfying h < f, h < g and h(z1) = h(z) for all 2 <i < k.

Example : Let f(z) = cosz and g(z) = sinz. Let 21, = %, 20, = 27 +  and
Z3n = —2m + % Then lim, o 21, = 0, limy, o0 22, = 27, lim,, o 23, = —27. For all

n €N

f(z1n) = f(z2n) = f(230)
9(z1n) = g(22n) = g(23n)-



Note that there exists an entire function h(z) = e* satisfying h < f, h < g and
h(0) = h(—27) = h(27).

In many situations, Lemma 1 is not so easy to use because of the difficulties in finding

the sequences required in the lemma. The following Common Right Factor Theorem is

much easier to use and I beleive that it will be very useful in tackling factorization problems

of entire functions.

Theorem 11 (Common Right Factor Theorem) ([17]). Let f and g be two entire func-

tions and z1,...,z; be k > 2 distinct complex numbers such that
f(z1) = f(z2) = = fla) = A
9(z1) = g(22) = -~ = g(z) = B.

Suppose that there exist nonconstant functions fi and g1 such that fiof = giog
on ULIUZ-, where U; is some open neighborhood containing z;. 1If f1 is analytic in a
neighborhood of A and the order of f1 at A is K < k, then there exists an entire function
h (which depends on f and g only and is independent of k and z;) with h < f, h < g.
Moreover, among the z;s, there exist at least m = [k—;(l] + 1 distint points zn,, ... Zn,, Such

that h(zp,) = -+ = h(zp,,)-
We immediately have the following

Corollary 1 ([17]). Let f and g be two entire functions and {z,}nen be an infinite
sequence of distinct complex numbers such that for allm € N, f(z,) = A and g(z,) = B.
Suppose that there exist nonconstant functions f1 and gy such that fiof = giog on U2, U;,
where U; is some open neighborhood containing z;. If fi is analytic in a neighborhood of

A, then there exists a transcendental entire function h with h < f, h < g.

Remark : In Theorem 11, the condition that & > K is essential. Let f(z) = 22,
g(2) = €%, fi(z) = cos/z and g¢1(2) = %(z +2z1). Then cosz = f1 0 f(2) = g1 0 g(2).

Although f(—m) = f(x) = 7% and g(—7) = g(x), f and g do not have a nonlinear



generalized common right factor. Note that in this case, the order K of f; at 2 is exactly
two.

Theorem 8, 9 follows easily from the Theorem 11 and Corollary 1.
3. Permutable entire functions.

As we mentioned before, to build a general theory for the factorization of entire func-
tions, it is important to have a good understanding of permutable entire functions. The
investigations of permutable functions were started by Julia [14] and Fatou [9]. Using
methods from complex dynamics, they proved that for permutable nonlinear polynomials
f and g, there exist natural numbers m, n such that (up to a conjugacy of linear maps) ei-
ther i) f™(z) = g"(z); ii) f(z) = 2™ and g(z) = 2" or iii) f(z) = T),(2) and g(2) = T, (2),
where T}, is the Tchebycheff polynomial determined by the equation cos kw = Ty (cos w).

The rational case was first solved completely by J.F. Ritt [23] in 1923. However, Ritt
did not use methods from complex dynamics. A proof of Ritt’s result in the spirit of
the ideas of Julia and Fatou was provided by A. E. Eremenko [7] in 1989. In 1958-59,
I.N. Baker [1] and V.G. Iyer [13] started the investigations of permutable entire functions.
They both proved that if a nonconstant polynomial f is permutable with a transcendental
entire function g, then f(z) = e2m/kmi, 4 b for some m, k € N and complex number b. It
follows from this result, as well as Julia and Fatou’s results, that one remains to consider
permutable transcendental entire functions. Let m,n € N and A be a trancendental entire
function. Suppose that az+b and cz+d permute with A and h" respectively. If az+b also
permutes with cz + d, then f = ah™ + b permutes with g = ch™ + d. Up to a conjugacy
of linear maps, any known examples of permutable transcendental entire functions are
of this form. Note that a and ¢ must be a p-th root and ¢-th root of unity for some
p,q € N. If both a,b # 1, then it is easy to check that fP = A" and g? = h™? so that
fmP1 = pmPe = ¢g™P4, This is case i) above.

In [1], IN. Baker characterized all nonlinear entire functions permute with the expon-

tential function and proved the following result.

Theorem 12 ([1]). Let g be a nonlinear entire function permutable with f(z) = ae’® +c



(ab # 0,a,b,c € C), then g = f".

This result shows that there are only countablely infinite nonlinear entire functions
which permute with f(z) = e®. This is in fact true for general f (see [3]). Besides Baker’s
result, T. Kobayashi, H. Urabe, C.C. Yang and J.H. Zheng also obtained some results
about permutable entire functions. Unlike Baker’s result, they only considered finite order
entire functions which permute with a given entire function. It is because of the lack of a
powerful tool to handle the general case. By using the Common Right Factor Theorem,
the following general results are obtained. Before stating our main result, we recall that an
entire function F is prime (left-prime) in entire sense if whenever F(z) = f(g(z)) for some
entire functions f, g, then either f or g is linear (f is linear whenever g is transcendental).

We also denote the n-th iterate of f by f™.

Theorem 13 ([17]). Let q be a nonconstant entire function and p be a polynomial with
at least two distinct zeros. Suppose that f(z) = p(z)e?®) is prime in entire sense. Then
any nonlinear entire function g permutes with f is of the form g(z) = af™(z) + b, where

a is a k-th root of unity and b € C.

It is known that if ¢ is a polynomail and p and ¢ do not have a nonlinear common

right factor, then f(z) = p(z)e?® is prime in entire sense.

Theorem 14 ([17]). Let f be a transcendental entire function which satisfies the follow-
ing conditions.

A1) f is not of the form H o Q, where H is periodic entire and @ is a polynomial.

A2) f is left-prime in entire sense.

A3) f' has at least two distinct zeros.

A}) There exists a natural number N such that for any complex number c, the simul-
taneous equations f(z) = c, f'(z) =0 has at most N solutions.

Ab5) The orders of zeros of f' are bounded by M for some M € N.

Let g be a nonlinear entire function permutes with f, then g(z) = af™(z) + b, where a

s a k-th root of unity and b € C.



The conditions A4 and A2 are related. For example, M. Ozawa [21] proved that if f is
of finite oreder and for any ¢ € C, the simultaneous equations f(z) = ¢, f'(z) = 0 has finite
number of solutions, then f is left-prime in entire sense. Other similar results can also be
found in [21] and [20]. It can be verified that for any nonconstant polynomial p, e* + p(z)
and sinz + p(z) satisfy conditions A1-A5. The conditions A1-A4 are not restrictive. In
certain sense, almost all entire functions satisfy these conditions as can be seen from the

following result of Y. Noda [20].

Theorem 15 ([20]) Let f be a transcendental entire function. There exists a countable
set Ey C C such that for all a ¢ Ey, fo(z) = f(2) + az satisfies the following conditions.
B1) f, is nonperiodic.
B2) f, is prime in entire sense.
B3) fl has infinitely many zeros.
BY4) For any complex number ¢, the simultaneous equations fo(z) = ¢, fL(z) = 0 has at

most one solution.

Clearly, Bi implies Ai for ¢ = 2,3,4. This is not difficult to check that conditions B1
and B2 together imply condition Al. If we can remove the condition A5 from Theorem
14, then together with Theorem 15, we can say that in certain sense, for almost all entire
functions, only the iterates of a function can permute with the function itself. We shall
sketch the proof of Theorem 13.

Proof of Theorem 13.  Note that g is transcendental as it is nonlinear. Since p has
at least two distinct zeros, p(g(z)) has infinitely many zeros by Little Picard Theorem.
It follows from p(g(z))e?9() = g(p(z)e?®)) that g(p(z)e?*)) also has infinite number of
zeros. Therefore there exists a zero b of g such that p(z)eq(z) — b has infinitely many zeros
{z:}ien. Note that the z;s are zeros of p(g(z))e?9?) = g(p(z)e?®)). Hence, p(g(z)) =0
for all i € N. Therefore we can find an infinite subsequence {z,, }ien such that f(z,,) =b
and g(zp,) = a for some zero a of p. By Corollary 1, there exists a transcendental entire
function h with A < f and h < g. Since f is nonperiodic and prime, it can be shown
that the image of h is the whole complex plane and h = L o f, where L is a linear

polynomail. Hence g = g1 o f for some entire function ¢g;. From fog = go f, we have

10



fogiof =giofof. Note that the image of f equals that of h. Therefore, fog; =gjo f
on C. If gy is nonlinear, by repeating the same arguments, we can find an entire gs such
that g; = go o f and g = g9 o f2. Inductively, we have g = g,,, o f™ provided that g, 1 is
nonlinear. It is possible to show that there exists some m such that g,, is linear and we

are done (see [17] for the details).
4. Some general uniquely factorizable entire functions.

The Common Right Factor Theorem is also useful to show certain general class of
entire functions are uniquely factorizable. Let f and g be nonlinear entire functions.
Recall that the entire function f o g is uniquely factorizable if whenever fog = f1 o0 gy
for some nonlinear entire functions f; and g, then f = fi o L and g = L' o g; for some

linear function L.

Theorem 16 . Let f(z),9(z) be two prime entire functions. Suppose that f is of the
form (z — a)e®?) | where a(z) is an entire function and a € C. If g(z) is nonperiodic and

has infinite number of zeros, then f(g(z)) is uniquely factorizable.

Proof of Theorem 16.  Suppose that f o g = fi o g1 where fi,g; are nonlinear entire
functions. Then it follows from the assumption of the theorem that f; o g; has infinite
number of zeros. Therefore, f; must has at least one zero. If f; has only finitely many
Z€r08, a1, ..., an, then there exists some a; such that g;(z) = a; has infinitely many roots,
for otherwise f; o g1 will only have finite number of zeros. If f; has infinite number of
zeros {a;}icn, then there exists some a; such that gi(z) = a; has at least two distinct
roots because g; is nonlinear. In any case, we can get some a; and two distinct z1, 22 such
that fi(a;) = 0 and g1(21) = g1(22) = a;. Note that z1, z; are zeros of (g(z) — a)e®9)).,
Hence, g(z1) = g(22) = a. By Theorem 11, there exists a nonlinear entire function h with
h <gand h < g;. Hence, g = h; o h and g1 = hy o h, where hy, ho are analytic on the
image of h. Use the fact that g is prime and nonperiodic, one can prove that the image of
h is C. This implies that both Ay, ho are entire. g is prime and A is nonlinear, so h; must

be linear. It follows that g; = ho o h1_1 og. From fog=fiog1,weget f=fiohgo hl_l.

11



The fact that f is prime and f; is nonlinear will force L = hg o h1_1 be to linear and we

are done.
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