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We propose goal programming (GP) models for an integrated problem of staff
duties planning and scheduling, for baggage services section staff at the Hong
Kong International Airport. The problem is solved via its decomposition into
a GP planner, followed by a GP scheduler. The results can be adopted as
a good crew schedule in the sense that it is both feasible, satisfying various
work conditions, and “optimal” in minimizing overtime shifts.
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INTRODUCTION

This paper advocates a general modeling framework for a complete crew
assignment system. It arises naturally as a mathematical description for the
staff deployment problem of their baggage handling agents at BSS-HAS, the
Baggage Services Section of the Hongkong Airport Services, Ltd. HAS of the
(new) Hong Kong International Airport (at Chak Lap Kok of Lantau Island)
is the primary handler of all ground services and support functions, including
aircrafts and passengers alike.

Our project of optimization modeling for staffing is motivated by the
need to produce daily work plan of the baggage service agents at the passen-
ger terminal. Our complete BSS crew system consists of its three component
GP models: the Duties Generation Problem (DGP), the Crew Scheduling
Problem (CSP) and the Crew Rostering Problem (CRP). While such model-
ing may well be regarded as one among the vast literature of the commonly
known area of workforce planning/scheduling (an excellent review is given by
Bodin et al, 1983), our decomposition approach has, for the actual case study,
exhibited its significant impact albeit its modeling simplicity. The resulting
preemptive goal programming formulations have very satisfactorily addressed
the planning/scheduling/rostering issues to handle frequent changes of flight
schedules by flexibility in work patterns of agent duties.

Crew Scheduling

In the general area of routing and scheduling of vehicle and crew (Bodin et al,
1983), it is common to separate the overall problem into two steps consisting
of the determination of the time tables — vehicle routing, followed by the staff
assignment — crew scheduling.

Various useful models for crew scheduling problem (CSP) aiming at dif-
fering merits and purposes have been proposed, such as (matching based)
heuristics models of Ball et al, 1983; network models of Carraresi and Gallo,
1984; and set partitioning models of Falkner and Ryan, 1987. Among the
mathematical programming approaches, there are work of Lessard et al, 1981;
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column generation approach of Desrochers and Soumis, 1989, Desrochers et
al, 1992; integer programming approach of Ryan and Foster, 1981, Ryan
and Falkner, 1987; decomposition approaches of Patrikalakis and Xerocostas,
1992, Vance et al, 1997; and complementary approaches of Wren et al, 1985.

These quoted above constitute only a tiny fraction of the vast litera-
ture, not to mention techniques of implementation for practical applications,
notably computerized scheduling such as the various reported systems of
“HASTUS” of Lessard et al, 1981, “CREW-OPT” by Desrochers, et al, 1992,
“EXPRESS” by Falkner and Ryan, 1992; and that of Chu and Chan, 1998.

Successful real applications are extremely significant for the airlines. Be-
sides the “household name” of SABRE, we mention two most recent “mile-
stone” works of Vance et al, 1997 and of Mason et al, 1998.

Crew Rostering

The outcome of the crew scheduling phase is typically a set of daily staff as-
signments required to cover the (actual or forecast) demand. “In the (next)
crew rostering phase, a set of working rosters is constructed that determine
the sequence of duties that each single crew has to perform ..., to cover ev-
eryday all the duties selected in the first phase” (quoted from Caprara et al,
1998). This has been referred to as the Crew Rostering Problem (CRP) by
Caprara et al in their FARO prize winning work for the Italian Railway Fer-
rovie dello Stato SpA, jointly sponsored by the Italian Operational Research
Society during 1994-1995.

Similar to the case of crew scheduling, past work on CRP has seen nu-
merous approaches and applications. There are optimization approaches such
as that of Gamache and Soumis, 1993; network model of Balakrishnan and
Wong, 1990; and column generation approach of Gamache et al, 1994. Novel
heuristics approaches integrating Set Covering and/or Assignment Problem
are reported by Hagberg, 1985, Carpaneto and Toth, 1987, and Caprara et al,
1995. More recently, Valouxis and Housos, 2002, propose a quick heuristics
for combined bus and driver scheduling, consisting of minimum cost match-
ing, set partitioning and shortest path.

Duties Generation

The modeling formulation of DGP that we put forth here can be interpreted
as the basic core — the planner — of a more sophisticated DGP/CSP/CRP
integrated model in the following sense. DGP in its simplest form (computes
and) allocates duties (of given fixed structure of work pattern, rather than
crew or staff needing further varying requirements of scheduling) to cover
known demands. Demands are given, for equally spaced (such as half-hourly)
time intervals of (the working time of) a day. Assuch, DGP is the prerequisite
to CSP and CRP in that it provides the planning inputs needed in subsequent
scheduling and rostering of staff. The logical flow of their relationships can
be summarized below, where ¢ = hour of day, 7 = day of week, p = weekly
work pattern and a = agent,



Hourly Demands D(t)
<<Planner: DGP Model>>
Duties X (i, k)
Allocations R(j,t)

!

Daily Requirements R(j) =), R(j,t)
<<Scheduler: CSP Model>>
Daily Staffing S(5)
Allocations R(j,t)

!
<<Roster: CRP Model>>
Duty Rosters I(p,a, j,t)

GOAL PROGRAMMING MODELS

As its name implies, DGP allocates duties (performed by crew) in an optimal
way to meet known demand over a contiguous number of time intervals. We
describe only its extended formulation below. A detailed account of DGP
formulations is given in an earlier paper of Chu, 2001.

DGP Model

We use the following common notations for all the subsequent models. Let
H be the working time horizon, and h = 1,-- -, H index the individual hours
(or half-hours). Ry, denotes the demand for interval h and dj, represents the
over allocation (or over-achievement deviation variable in a goal programming
context) at interval h.

The length of a duty is denoted by J. The primary decision variable x;;
is the number of allocated staff that starts duty from interval ¢ and breaks
at the j*" interval after the start of duty, j = 1,---,.J. Hence for a working
horizon of intervals 1--- H, we have for the index ¢ = S,---,T. The earliest
start interval S is such that S > 1 whereas the latest start interval T is
limited to T < H — J 4+ 1 (to finish work at interval H). Note that normally
S =1 as long as Ry > 0 (there is demand for the very first interval); and
T = H—J+1 whenever Ry > 0 (there is demand for the very last interval).

As noted by Mason et al, 1998, personnel scheduling problems (or re-
ferred to as workforce allocation problems by Baker, 1976) have been stud-
ied for many years. Network flow formulations, such as in Segal, 1974 and
Bartholdi and Ratliff, 1978 can well handle their simplest forms. Additional
side constraints such as break requirements demand more complex proce-
dures.

One advantage of the DGP model is its ease of extension in various ways.
One such concern is the inclusion of flexibility in staffing mode: introducing
over-time (OT) for any number of on-duty staff. This simply calls for adding
another decision variable v,,,,, representing the number of allocated OT staff
who start work at interval m and finish work in interval n. Defined generally
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as such, OT work can take different modes: a (limited) number of intervals
immediately before a regular time (RT) duty only, or a (similarly limited)
number of intervals immediately after an RT duty only.

As an illustration, the DGP model with OT allocation is given below.

H m+L-1 n
m=1 n=m h:m
T J
Min Z Z CijTij (1b)
=S j=1
Min WD (c)
Subject to
q h m+L—1
Z Z xij“v‘ Z Z ymn_dh:Rha h=1,--- H (2)
i=p j#h—i+1 m=h—L+1 n=h
i—1 (i+J)+L-1 J
> Ymit+ Y Yipan <Y wy,  i=8-,T (3)
m=(i—1)—L+1 n=it+.J j=1
T
Z Z xz;; < MaxRT (4)
=S j=1

H H
> Yn < MaxOT (5)

dy < D, h=1,-,H (6)

Here p = max {h — J + 1,5}, ¢ = min {h, T}, and both the RT allocation
{ z;; } and the OT allocation { ym, } are non-negative integer variables.
Note that L stands for the maximum number of (additional) OT intervals
allowed before or after the J RT intervals.

We see that the LHS of constraint (2) is the total work contribution as
a function of both RT and OT staff. The RT (or z;;) portion is straight-
forward, while the OT (or y,,,) part picks out the total number of OT staff
for a maximum span of L intervals which cover h. Constraint (3) ensures
that each y,,, is indeed an OT allocation, by stipulating that an OT is as-
signed only if there is already an RT x;; allocation (before or after). The
single parameter MaxRT of constraint (4) denotes the maximum number (or
strength) of RT staff and that MaxOT of constraint (5) is the maximum per-
mitted number of OT staff. Suitably mixed (i.e. RT+OT) duties allocation
can be obtained by varying these two parameters in repeated runs of the
model, preemptively with the three goals (1a) to (1c) in that order.
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Finally, the coefficients { T}, } in (1a) represent the unit OT pay rates,
possibly different for different time intervals of the day, whereas the coef-
ficients { ¢;; } in (1b) represent the usual unit RT pay rates. The single
variable D of constraint (6) records the maximum (i.e. over achievement)
deviation over all time intervals. Its non-smoothed penalty term WD in (1c)
is treated as a lowest priority goal in search of an “optimal” mixed duties
allocation plan that includes both (positive) z;; and ymn.

CSP Model
Next, the CSP model, which is often referred to as the (cyclic or weekly)
staffing model (see, for example, Schrage, 1999) is stated below.

Inputs: (from DGP Model)
R(j) = >, R(j,t) Required no. of start duties on day j
Constratints:

> START(Qurap(j —i+1,7)) — OVER(j) = R(j), j=1,...,7
1<i<5

Objective functions:
Min )~ START(i)

Min MaxOVER (= Max; OVER(j))

CRP Model
Finally, the CRP model, which in many ways has the interpretation of a
set-covering formulation is given below.

Indices:
p = roster pattern (1,...,7)
a = baggage service agent (BSA)
j = start time half-hour (1,...,11, or 12,...,22)
t = day of week (1,...,7)
Inputs:
R(j,t) = required no. of start duties (at half-hour j on day t)
— output from DGP Model
S(t) = required no. of starting crew (on day t)
— output from CSP Model
Covering (Roster) Variables:
I(p,a,j, t) = 1, if agent a is assigned to cover roster pattern p at time j on

day t
I(p,a,j,t) =0, if one or more of the following conditions hold:
i) a > S(p)
ii) t = @Q warp(p+5,7) [= t1(p)]
ili) ¢t = @ warp(p +6,7) [= t2(p)]
) )



Covering (Roster) Constraints:
1) Each (assigned) agent gets 1 duty on each working day

> I(pa,jit) =1, Vpa<S(p)t#tlp),t2p)
JIRGH>1

2) Each (assigned) agent gets 5 duties each week

> I(p,a,j,t) = 5, Yp,a<S(p)
J,t|R(4,t) >1,t#t1(p),t2(p)

3) Start duties (R(j,t)) of each slot are covered

Y. Ipajt) > RG,Y), Vi tR(, ) > 1t # t1(p), £2(p)

p,a<S(p)

4) Start rosters (S(t)) of each day are allocated

Z Z I(p,a,j,t) — D(t) = S(t), Vt#tl(p),t2(p)

p,a<S(p) jlR(j,t)=1

where D(-) is the over allocation to be minimized in the objective function.

A CONCLUDING REMARK

The purpose of this paper is to illustrate by way of this DGP/CSP/CRP mod-
eling and computational experience, the advantage of its readily producing
significant improvement over existing manual staff assignment. Its usefulness
is somehow, in our opinion and experience of actually applying it in real situ-
ations, rather highly out of proportion with regard to its modeling simplicity.
The system’s usefulness to the HAS users is indeed decreasing from planning
(DGP), to scheduling (CSP), and finally to dispatching (CRP). The last is
still influenced regularly by day-to-day actual dispatching and rostering needs
(which are left more to the field operational supervisors).
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