The Mathematical Garden

 | Welcome  | Games  | Mathematical methods  | About us |
Mathematical methods
HMMs
Mathematical Induction
Pigeonhole principle
Random Walk
Gambler's Ruin
An Analysis of the Problem
A Greedy Gambler
A Greedy Gambler Simulation
An One-server Queueing System
An Analysis of the Problem
Performance of the Queueing system
Infinite Waiting Space Queue
Solving Linear Systems

An Analysis of the Problem

Let qi(i = 0, 1, ... , N) be the probability that the gambler has a fortune of i and he will eventually win the money he needs.

We first note that

q0 = 0 and qN = 1

and

qi = (1 - p) qi-1 + (p) qi+1     for i = 1, 2, ..., N -1.

We observe that

(1 - p)(qi - qi-1) = p(qi+1 - qi)     for i = 1, 2, ..., N -1.

Let

wi = qi - qi-1

then we have

wi+1 = 1 - p
¾¾
p
wi     for i = 1, 2, ..., N -1.

Inductively

wi+1 = ( 1 - p
¾¾
p
)i w1 = ( 1 - p
¾¾
p
)i (q1 - q0) = ( 1 - p
¾¾
p
)i q1

Therefore

qi+1 = qi + ( 1 - p
¾¾
p
)i q1     for i = 1, 2, ..., N -1.

Hence

q2 = (1 + 1 - p
¾¾
p
) q1

q3 = q2 + ( 1 - p
¾¾
p
)2 q1 = (1 + 1 - p
¾¾
p
+ ( 1 - p
¾¾
p
) 2 ) q1

Inductively we have

qi =
(1 + 1 - p
¾¾
p
+ ( 1 - p
¾¾
p
) 2 + ... + ( 1 - p
¾¾
p
) i-1 ) q1
=
ì
í
î
p
¾¾
2p - 1
( 1 - ( 1 - p
¾¾
p
) i ) q1   if p¹ 0.5
Nq1   if p = 0.5.

To solve for q1 we use the fact that

1 = qN = ì
í
î
p
¾¾
2p - 1
( 1 - ( 1 - p
¾¾
p
) i ) q1   if p¹ 0.5
Nq1   if p = 0.5.

Hence

q1 = ì
í
î
2p - 1
¾¾¾¾
p (1 - XN)
    where X = ( 1 - p
¾¾
p
)   if p¹ 0.5
1 / N   if p = 0.5.

Finally

qi = ì
í
î
(1 - Xi)
¾¾¾¾
(1 - XN)
    where X = ( 1 - p
¾¾
p
)    for i = 0, 1, ..., N   if p¹ 0.5
i / N    for i = 0, 1, ..., N   if p = 0.5.

Department of Mathematics, HKU, 2010