THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH 2905 QUEUEING THEORY AND SIMULATION Assignment 4

Due Date: 23 April 2014. (5:00 pm)

(a) Consider the mixed congruential method for the generation of pseudorandom numbers [x_n = (ax_{n-1} + c) mod m] with a = 17, c = 43, m = 100 and x₀ = 2. Generate four random numbers {r₁, r₂, r₃, r₄} in (0, 1) such that r_i = x_i/100.
(b) By using the four random numbers in (a) to obtain an approximation of the

$$I = \int_0^2 e^x dx = e^2 - 1.$$

(c) Obtain an approximation of I by using four more random numbers generated by the method described in (a) (i.e. $\{x_1, x_2, \ldots, x_7, x_8\}$). Compare the answer with the one you obtained in (b). What did you find?

2. Initially, $P_1 = 1, P_2 = 2, \dots, P_n = n$. Explain what does the following algorithm do to P_1, P_2, \dots, P_n .

Step 1. Set k = n.

definite integral:

- Step 2. Generate a random number U and let $I = \lfloor kU \rfloor + 1$.
- Step 3. Interchange the values of P_I and P_k .
- Step 4. Let k = k 1
- Step 5. If k > 1 go to Step 2; otherwise stop.
- 3. The negative binomial probability mass function with parameters (r, p), where r is a positive integer and 0 , is given by

$$p_j = \frac{(j-1)!}{(j-r)!(r-1)!} p^r (1-p)^{j-r}, \quad j = r, r+1, \cdots$$

(a) Use the fact that a negative binomial random variable can be regarded as the sum of r independent, identically distributed geometric random variables, obtain an algorithm for simulating from this distribution.

(b) Verify the relation

$$p_{j+1} = \frac{j(1-p)}{j+1-r}p_j$$
.

Use this relation to give a second algorithm for generating negative binomial random variables.

4. Give an algorithm for generating a random variable having p.d.f.

(i)
$$f(x) = \frac{e^x}{(e-1)}, \quad 0 \le x \le 1.$$

(ii)

$$f(x) = \begin{cases} e^{-2|x|}, & x \le 0\\ e^{-2x}, & x > 0 \end{cases}$$

[2%]