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2905 Queueing Theory and Simulation

PART I: STOCHASTIC PROCESS AND PROBABILITY THEORY

1 Revisions on Probability Theory and Markov Chain

In many situations, we are interested in some numerical values that are associated with the outcome

of an experiment rather than the actual outcomes themselves.

• For example, in an experiment of throwing two dice, we may be interested in the sum of the

numbers (X) shown on the dice, say X = 5. Thus we are interested in a function which maps the

outcome onto some points or an interval on the real line. In this example, the outcomes are {2, 3},
{3, 2}, {1, 4} and {4, 1}, and the point on the real line is 5.

• This mapping that assigns a real value to each outcome in the sample space is called a random

variable (r.v.), i.e. X : Ω → R is a r.v. from the sample space Ω to the set of real numbers R.

We usually write {X ≤ x} to denote the event {ω ∈ Ω, X(ω) ≤ x}.

• If X can assume at most a finite or a countable infinite number of possible values, then it is called

a discrete r.v. If X can assume any value in an interval or union of intervals, and the probability

that {X = x} is equal to 0 for any x ∈ R then it is called a continuous r.v.
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• The cumulative probability distribution function, or just the Cumulative Distribu-

tion Function (CDF) for short is defined as FX : R → [0, 1] such that

FX(x) = P{X ≤ x} where P{X ≤ x}
denotes the probability of the event {X ≤ x}.

• For simplicity, we may also write FX(x) as F (x). For a continuous r.v., the CDF is a continuous

function. For a discrete r.v., its CDF is a step function, and it is more convenient to consider

the probability (mass) function which is defined as follows. If X is a discrete r.v. assuming

the values A = {x1, x2, . . .}. Then p(xi) = P{X = xi} is called the Probability Density

Function (PDF). Clearly

p(xi) > 0,
∑
xi∈A

p(xi) = 1 and F (x) =
∑
xi≤x

p(xi).

The PDF for a continuous r.v. is defined as the function f (t) such that

F (x) =

∫ x

−∞
f (t)dt.

Here F (x) is the CDF. All the continuous r.v. considered in this course have distribution functions

that are differentiable except at a finite number of points and their density functions satisfies

f (x) =
d

dx
F (x).

We now list some important discrete and continuous r.v.
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1.1 Examples of Discrete Random Variables

(i) Bernoulli r.v.: A Bernoulli r.v. X has two possible outcomes, say

X = 1 and X = 0

(very often it is called success and failure, respectively) occurring with probabilities

P{X = 1} = p and P{X = 0} = q,

where p + q = 1. Note that

E(X) = p and Var(X) = pq.

(ii) Geometric r.v.: In a sequence of Bernoulli trials, the r.v. X that counts the number of

failures preceding the first success is called a geometric r.v. with the probability function

P{X = k} = (1− p)kp ; k = 0, 1, 2, . . . .

Note that

E(X) =
q

p
and Var(X) =

q

p2

where q = 1− p.
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(iii) Binomial r.v.: If a Bernoulli trial is repeated n times then the r.v. X that counts the

number of successes in the n trials is called a binomial r.v. with parameter n and p. The

probability density function is given by

P{X = k} =
n!

(n− k)!k!
pkqn−k , k = 0, 1, 2, . . . , n and q = 1− p.

We note that E(X) = np and Var(X) = npq.

(iv) Poisson r.v.: A Poisson r.v. X with parameter λ has the probability function

P{X = k} =
λk

k!
e−λ; k = 0, 1, 2, . . . .

We note that

E(X) = Var(X) = λ.

One may derive the Poisson distribution from the binomial distribution by letting λ = np and

n → ∞. We derive the relationship as follows:

P{X = k} =
n!

(n− k)!k!
pkqn−k

=
1

k!
[p(n− k + 1)][p(n− k + 2)] . . . [p(n)](1− p)n−k

=
1

k!
[
(n− k + 1)λ

n
][
(n− k + 2)λ

n
] . . . [λ](1− λ

n
)n−k

=
λk

k!
e−λ as n → ∞.
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1.2 Examples of Continuous Random Variables

(i) Uniform r.v.: A continuous r.v. X with its probabilities distributed uni-
formly over an interval (a, b) is said to be a uniform r.v.

A uniform r.v. X that takes values in (0, t) has distribution function

F (x) =

 0 x < 0
x
t 0 ≤ x ≤ t
1 x > t

and corresponding density function

f (x) =

{
1
t 0 < x < t
0 x < 0 , x > t.

We note that

E(X) =

∫ t

0

xf (x)dx =
t

2
and Var(X) =

t2

12
.
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(ii) (Negative) Exponential r.v.: A continuous r.v. X is an exponential r.v.
with parameter λ > 0 if its density function is defined by

f (x) =

{
λe−λx x ≥ 0
0 x < 0.

The distribution function is given by

F (x) =

{
1− e−λx x ≥ 0
0 x < 0.

We note that
E(X) = λ−1 and Var(X) = λ−2.

• The exponential distribution plays an important role in modeling the inter-
arrival and service time in a Markovian queueing system.
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(iii) Erlangian r.v.: The distribution function of an Erlangian r.v. X is given
by

F (x) = 1−
n−1∑
j=0

(λx)j

j!
e−λx (λ > 0, x ≥ 0 and n = 1, 2, . . .)

and the density function is given by

f (x) =
(λx)n−1

(n− 1)!
λe−λx

with
E(X) = nλ−1 and Var(X) = nλ−2.

We note that if Xi are independent exponential r.v. having same PDF λe−λx

then the PDF of the r.v.

X = X1 +X2 + . . . +Xn

is given by f (x). This means that the Erlangian distribution is the sum of n
independent exponential random variables having the same mean.
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1.3 Conditional Probability

• What is conditional probability?

Consider the following two events:

A: Get three heads in tossing a fair coin three times.

B: Get odd number of heads in tossing a fair coin three times.

All the possible outcomes are listed as follows:

{HHH,HHT,HTH, THH, TTH, THT,HTT, TTT}.
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• We know that

Prob(A) =
1

8
and Prob(B) =

1

2
What is the probability of getting event A given B? Mathematically the probability is written as

Prob(A|B). Clearly the probability is not 1/8.

• In fact, in general one has

Prob(A|B) =
Prob(A and B)

Prob(B)
.

In this case we have Prob(A and B) = Prob(A) and therefore

Prob(A|B) =
1/8

1/2
=

1

4
.

1.4 Theorem of Total Probability

If the events E1, E2, . . . form a partition of the sample space Ω, that is

(i) Ei ∩ Ej = ϕ for all i ̸= j;

(ii)
∞∪
i=1

Ei = Ω, then, for any event A, we have

P{A} =

∞∑
i=1

P{A|Ei}P{Ei}.

Here P{A|Ei} is the conditional probability of A given Ei.
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1.5 Discrete Time Markov Chain

Definition: Let X(n) be a r.v. at time n taking values in M = {0, 1, 2, . . .}. Suppose there is a
fixed probability Pij such that

P (X(n+1) = j|X(n) = i,X (n−1) = in−1, . . . , X
(0) = i0) = Pij n ≥ 0

where i, j, i0, i1, . . . , in−1 ∈ M . Then this is called a Markov chain process.

Remark: One can interpret the above probability as follows: the conditional distribution of any

future state X(n+1) given the past states X(0), X (2), . . . , X(n−1) and present state X(n), is inde-

pendent of the past states and depends on the present state only.

• The probability Pij represents the probability that the process will make a transition to State j

given that currently the process is State i. Clearly one has

Pij ≥ 0,

∞∑
j=0

Pij = 1 i = 0, 1, . . . .

Definition: The matrix containing Pij, the transition probabilities

P =

 P00 P01 · · ·
P10 P11 · · ·
... ... ...


is called the one-step transition probability matrix of the process.
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1.6 The PageRank Algorithm used by Google

In surfing the Internet, surfers usually use search engines to find the related webpages satisfying

their queries. Unfortunately, very often there can be thousands of webpages which are relevant to

the queries. Therefore a proper list of the webpages in certain order of importance is necessary.

• The PageRank is defined as follows. Let N be the total number of webpages in the web and we

define a matrix Q called the hyperlink matrix. Here

Qij =

{
1/k if webpage j is an outgoing link of webpage i;

0 otherwise;

and k is the total number of outgoing links of webpage j. For simplicity of discussion, here we

assume that Qii > 0 for all i. This means for each webpage, there is a link pointing to itself. Hence

Q can be regarded as a transition probability matrix of a Markov chain of a random walk.

• One may regard a surfer as a random walker and the webpages as the states of the Markov chain.

Assuming that this underlying Markov chain is irreducible, then the steady-state probability distri-

bution (p1, p2, . . . , pN)
T of the states (webpages) exists.

• Here pi is the proportion of time that the random walker (surfer) is visiting state (webpage)

i. The higher the value of pi is, the more important webpage i will be. Thus the PageRank of

webpage i is then defined as pi.
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Example: Let us consider a web of three webpages: 0, 1, 2. Suppose that the links are given

as follow: 0 → 1, 0 → 2, 1 → 0 and 2 → 1. The out-degrees of States 0, 1, 2 are 3, 2, 2

respectively.

• The transition probability of this Markov chain is given by

P =

0

1

2

 1/3 1/3 1/3

1/2 1/2 0

0 1/2 1/2

 .

The steady state probability distribution

p = (p0, p1, p2)

satisfies

p = pP

and

p0 + p1 + p2 = 1.

Solving the linear system of equations, we get

(p0, p1, p2) =

(
3

9
,
4

9
,
2

9

)
.

Thus the ranking of the webpages is Webpage 1 > Wepbage 0 > Webpage 2.
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• It is clear that both Webpages 0 and 2 point to Webpage 1 and therefore it must
be the most important.

• Since the most important Webpage 1 points to Webpage 0 only, Webpage 0 is
more important than Webpage 2.

• We remark that the steady state probability distribution may not exist as the
Markov chain may not be irreducible.

• But one can always consider the following transition probability matrix:

P̃ = (1− α)P +
α

N
(1, 1, . . . , 1)t(1, 1, . . . , 1)

for very small positive α. Then P̃ is irreducible.

14



2 Poisson Distribution and Exponential Distribution

We introduce some more properties of the Poisson distribution and the exponential distribution.

2.1 Probability Generating Function

Let K be a non-negative integer-valued random variable with probability function {pj} where

pj = P{K = j} (j = 0, 1, 2, . . .). The power series

g(z) = p0 + p1z + p2z
2 + · · ·

is called the probability generating function for the r.v. K. It is different form the moment

generating function. The followings are two examples

(i) The probability generating function of a Bernoulli r.v. is simply

g(z) = q + pz where q = 1− p.

(ii) For the Poisson r.v. with distribution

pj =
(λt)j

j!
e−λt (j = 0, 1, . . .)

The probability generating function is

g(z) =

∞∑
j=0

(λt)j

j!
e−λtzj = e−λt

∞∑
j=0

(λtz)j

j!
= e−λt(1−z) .

15



Here are some properties of probability generating function.

(i) E(X) =
∞∑
j=1

jpj = g′(1).

(ii) Variance of

X = Var(X) = E(X2)− E(X)2

=

∞∑
j=1

j2pj − [g′(1)]2

= g′′(1) + g′(1)− [g′(1)]2.

For the Bernoulli r.v. Var(X) = pq, and for the Poisson r.v. Var(X) = λt.

(iii) Convolution: Suppose K = K1 + K2 where K1 and K2 are independent, non-negative,

integer-valued random variables. Then

P{K = k} =

k∑
j=0

P{K1 = j}P{K2 = k − j} .

If g1(z) and g2(z) are the probability generating function of K1 and K2, respectively, i.e.

gi(z) =

∞∑
j=0

P{Ki = j}zj (i = 1, 2) ,
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then term-by-term multiplication shows that the product g1(z)g2(z) is given by

g1(z)g2(z) =

∞∑
k=0

 k∑
j=0

P{K1 = j}P{K2 = k − j}

 zk .

If K has the generating function

g(z) =

∞∑
k=0

P{K = k}zk.

Hence we have

g(z) = g1(z)g2(z).

Thus we have the important result: The probability generating function of a sum of mutually

independent r.v. is equal to the product of their respective probability generating functions.

2.2 Sum of Two Poisson r.v.

Let N = N1+N2 where Nj is a Poisson r.v. with mean λj. Then N has the probability generating

function

g(z) = e−λ1(1−z)e−λ2(1−z) = e−(λ1+λ2)(1−z) .

This shows that the sum of two independent Poisson r.v. with means λ1 and λ2 is itself a Poisson

r.v. with mean λ1 + λ2. Hence the sum of any independent Poisson r.v.s is still a Poisson r.v.

17



2.3 The Exponential Distribution and Markov Property

Definition 5.1 A probability distribution (let say having non-negative r.v. X) is said to have the

Markov property if for any two non-negative values t and x we have

P{X > t + x|X > t} = P{X > x}.

Proposition 1 The negative exponential distribution has the Markov property.

Proof: This follows from

P{X > t + x|X > t} =
e−λ(t+x)

e−λt
= e−λx = P{X > x}. (1)

• In quite a few important applications, observation has shown that the negative exponential dis-

tribution provides a very good description of service time distribution (which is therefore called

exponential service times or negative exponential distribution).

Exponential times have the nice feature that by the Markov property in Eq. (1), the distribution

of the remaining holding time after a customer has been served for any length of time t > 0 is the

same as that initially at t = 0, i.e. the remaining holding time does not depend on how long a

customer has already been served.

Here are some properties of this probability distribution.
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(i) If X1 and X2 are independent non-negative random variables with density functions f1(t) and

f2(t). Then the probability that X2 exceeds X1 is

P{X2 > X1} =

∫ ∞

0

∫ ∞

s

f1(s)f2(t)dt ds

(i.e. we integrate the joint density function over the region

{(s, t) ∈ R2|t > s}).

If X1 and X2 are exponential with means λ−1
1 and λ−1

2 then the above integral becomes∫ ∞

0

∫ ∞

s

λ1e
−λ1sλ2e

−λ2tdtds =

∫ ∞

0

λ1e
−λ1se−λ2sds =

λ1

λ1 + λ2
. (2)

(ii) Suppose that X1, X2, . . . , Xn are independent, identical, exponential random variables with

mean λ−1, and consider the corresponding order statistics

X(1) ≤ X(2) ≤ · · · ≤ X(n).

Observe that X(1) = min(X1, X2, . . . , Xn). X(1) > x if and only if all Xi > x (i = 1, 2, . . . , n).

Hence

P{X(1) > x} = P{X1 > x}P{X2 > x} · · ·P{Xn > x} = (e−λx)n = e−nλx .

Note that X(1) is again exponentially distributed with mean 1
n times the mean of the original

random variables.
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Proposition 2 A random variable X has a negative exponential distribution if and only if

P{X < t + h|X > t} = λh + o(h) as h → 0. Here lim
h→0

o(h)

h
= 0.

Proof: Suppose X follows the exponential distribution with parameter λ, then we have

P{X < t + h|X > t} = 1− e−λh (by the Markov property)

= 1− (1− λh + o(h)) (by Taylor’s series)

= λh + o(h) as h → 0 .

(3)

Conversely, suppose that

P{X < t + h|X > t} = λh + o(h) as h → 0

then

P{X > t + h|X > t} = 1− λh + o(h).

Using

P{X > t + h|X > t} =
P{X > t + h}
P{X > t}

,

re-arranging and letting h → 0, we obtain the differential equation

d

dt
P{X > t} = −λP{X > t}, (O.D.E of the form:

dy

dt
= −λy(t), y(t) = P (X > t))

which has the unique solution

P{X > t} = e−λt

satisfying the initial condition P{X > 0} = 1, i.e. X has an exponential distribution.
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3 Poisson Process

Definition: Poisson process occurs frequently in later sections.

It is more convenient if the postulates of such a process is defined simply as:

At any epoch t,

P{one occurrence during(t, t + h)} = λh + o(h) as h → 0

and

P{two or more occurrence during(t, t + h)} = o(h) as h → 0

(instead of being always referred to as a pure birth process with constant coefficients).

Poisson process, Poisson distributions and negative exponential distributions can be related in the

following manner.
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Proposition 3 Suppose in a certain process, we let Ti (i = 1, 2, 3, · · · )
be the epoch of the ith occurrence.
Let Ai = Ti − Ti−1 (i = 1, 2, 3, · · · ); T0 = epoch that we start to
count the number of occurrences.
Let X(t) = number of occurrences in a time interval of length t.
Then the following statements are equivalent.

(a) The process is Poisson (with coefficient λ).

(b) X(t) is a Poisson random variable with parameter λt, i.e.

P{X(t) = j} =
(λt)j

j!
e−λt , j = 0, 1, 2, · · · .

(c) Ai’s are mutually independent identically distributed exponential
random variables with mean λ−1, i.e.

P{Ai ≤ t} = 1− e−λt , i = 1, 2, · · · .
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Proof: (a) ⇒ (b): Let Pj(t) be the probability that there are j occurrences in the time interval

[0, t]. It follows from the above postulates that

Pj(t + h) = [λh + o(h)]︸ ︷︷ ︸
1 occurrence in (t,t+h)

× Pj−1(t)︸ ︷︷ ︸
j−1 in [0,t]

+ [1− (λh + o(h))]︸ ︷︷ ︸
0 occurrence in (t,t+h)

× Pj(t)︸︷︷︸
j in [0,t]

+ [o(h)]︸ ︷︷ ︸
more than 1 occurrence in (t,t+h)

× (Pj−2(t) + Pj−3(t) + . . .+)︸ ︷︷ ︸
≤j−2 in [0,t]

= λhPj−1(t) + [1− λh]Pj(t) + o(h)

where h → 0 and j = 0, 1, . . ..

• Rearranging terms, we have

Pj(t + h)− Pj(t)

h
= λPj−1(t)− λPj(t) +

o(h)

h
.

Letting h → 0, we get the following set of differential-difference equations

d

dt
Pj(t) = λPj−1(t)− λPj(t).

If at time t = 0 there is no occurrence, the initial conditions are

P−1(t) ≡ 0, P0(0) = 1 and Pj(0) = 0 for j = 1, 2, . . . .

• For j = 0, P ′
0(t) = −λP0(t), hence P0(t) = a0e

−λt. From the initial conditions, we get a0 = 1

and we have P0(t) = e−λt.
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• Inductively, we can prove that if

Pj−1(t) =
(λt)j−1

(j − 1)!
e−λt

then the equation

P ′
j(t) = λ

(
(λt)j−1

(j − 1)!
e−λt

)
− λPj(t)

gives (exercise) the solution

Pj(t) =
(λt)j

j!
e−λt. (4)

(b) ⇒ (c):

P{A1 ≤ t} = P{T1 ≤ t + T0} = 1− P{X(t) = 0}︸ ︷︷ ︸
At least 1 occurrence in [0,t]

= 1− e−λt.

Suppose that T1 = τ , then

P{A2 ≤ t} = P{T2 occurs in (τ, τ + t)} = 1− P{X(t) = 0} = 1− e−λt.

Arguing similarly for the other Ai’s, (c) then follows.
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(c) ⇒ (a): Let Tj−1 ≤ t < Tj for some j ∈ N. There is at least one occurrence in (t, t + h)

if Bj < h where Bj = Tj − t. Now

P{Bj < h} = P{Aj < h + t− Tj−1|Aj ≥ t− Tj−1} = P{Aj < h}.

The last equality follows from the Markov property of the exponential variable Aj.

T0 Tj−1 Tj Tj+1

t
↓

|
↓

|

t + h
· · ·

| |• •

-�

-� h

Bj

-� -�

Aj Aj+1

Figure 1.

• Thus we have

P{there is at least one occurrence in (t, t + h)} = P{Aj < h}
= 1− e−λh

= λh + o(h) (by Taylor’s series) .

(5)
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• Next consider the event that there is exactly one occurrence in (t, t+ h). This event occurs

if Bj < h and Aj+1 > h−Bj. The probability is therefore∫ h

0

∫ ∞

h−x

fAj+1
(y)fBj

(x)dydx

where fAj+1
(y) and fBj

(x) are the density functions of Aj+1 and Bj, respectively.

• Since Aj+1 and Bj are both exponentially distributed, the above integral becomes∫ h

0

∫ ∞

h−x

λe−λyλe−λxdy dx =

∫ h

0

e−λ(h−x)λe−λxdx

= λhe−λh = λh(1− λh/1! + . . .)

= λh + o(h).

• Hence

P{two or more occurrences in (t, t + h)} = P{at least one occurrence in (t, t + h)}
−P{exactly one occurrence in (t, t + h)}

= o(h) as h → 0 .

and (a) follows
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3.1 Random Property of a Poisson Process

• In many queueing situations, the Poisson process provides rather a good approximation of the

input process (such input process is called the Poisson input). By proposition above, an input

process is Poisson (with coefficient λ) if and only if the inter-arrival times (i.e. the lengths

of time between successive customer arrivals) are mutually independent exponentially distributed

random variables with mean λ−1.

Note that if the mean arrival rate is λ then the mean inter-arrival time is λ−1. By the Markov

property of exponential random variables, the distribution of lengths of time from an arbitrarily

chosen epoch to the next arrival (called the next-arrival times) is the same as the distribution

of inter-arrival times.

Observer’s Sampling Point

↓ ? ↓

-�

A

-�
B

Distribution of A = Distribution of B

Figure 3.1.
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• This nice property much simplifies the mathematical analysis of queueing systems with Poisson

input. We have shown that for Poisson process,

P{exactly one occurrence in(t, t + h)} = λhe−λh.

Now for a fixed t and any x in (0, t),

P{the epoch of occurrence is in (0, x)| exactly one occurrence in (0, t)}

=
P{exactly one occurrence in (0, x), and no occurrence in (x, t)}

P{exactly one occurrence in (0, t)}

=
λxe−λx × e−λ(t−x)

λte−λt

=
x

t
,

which is a uniform distribution.

• This means that if we know there is exactly one occurrence in (0, t) then the epoch of that

occurrence is equally likely throughout (0, t). In this sense we say that a Poisson process is

random.
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3.2 Erlangian (Gamma) Distribution

Consider points on a line such that the distances (denoted by Xj, j = 1, 2, · · · ) between successive

points are independently, identically, exponentially distributed random variables each with mean

λ−1 [therefore the number of points occurring in (0, t) has the Poisson distribution].

•We wish to find the distribution of the distance spanning n consecutive points, i.e. the distribution

of

Sn = X1 + · · · +Xn.

Now

P{Sn ≤ x} = P{number of occurrences in (0, x) is at least n}

= 1−
n−1∑
j=0

(λx)j

j!
e−λx .

Thus Sn has an Erlangian distribution.
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Remarks:

(i) The component random variables {Xn} are sometimes considered to be phases, and conse-

quently Sn is called the n-phase Erlangian r.v.

(ii) Suppose Sn is composed of n independent, identically distributed exponential phases, each with

mean λ−1. If we let n → ∞ and λ−1 → 0 such that

E(Sn) = nλ−1 = c, ( a constant)

then

V ar(Sn) = nλ−2 → 0.

Thus in the limit S∞ = c (a constant). Hence the Erlangian distribution provides a model for

a range of input processes (or service times) characterized by complete randomness when n = 1

and no randomness when n = ∞.
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4 Birth-and-Death Processes

In this section, we shall discuss the theory of birth-and-death processes, the analysis of which is

relatively simple and has important applications in the context of queueing theory.

Let us consider a system that can be represented by a family of random variables {N(t)} parame-

terized by the time variable t. This is called a stochastic process or simply a process.

In particular, let us assume that for each t, N(t) is a non-negative integral-valued random variable.

Examples are the followings.

(i) a telephone switchboard, where N(t) is the number of calls occurring in an interval of length t.

(ii) a queue, where N(t) is the number of customers waiting or in service at time t.

We say that the system is in state Ej at time t if N(t) = j. Our aim is then to compute the state

probabilities P{N(t) = j}, j = 0, 1, 2, · · · .
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Definition 4.1: A process obeying the following postulates is called a birth-and-death pro-

cess:

(1) At any time t, P{Ej → Ej+1 during (t, t+h)|Ej at t} = λjh+o(h) as h → 0 (j = 0, 1, 2, · · · ).
λj is a constant depending on j.

(2) At any time t, P{Ej → Ej−1 during (t, t + h)|Ej at t} = µjh + o(h) as h → 0 (j = 1, 2, · · · ).
µj is a constant depending on j.

(3) At any time t, P{Ej → Ej±k during (t, t+h)|Ej at t} = o(h) as h → 0 if k ≥ 2 (j = 0, 1, · · · ).
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· · · �
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��
��
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µi+1

λi
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��
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��
Ei+1
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-

µi+2

λi+1

· · ·

Figure 2.1: The Birth and Death Process.

Remark: o(h) is a function of h such that

lim
h→0

o(h)

h
= 0.

Possible examples of o(h) are o(h) = h2 and o(h) = h sin(h). However, o(h) cannot take the form√
h or h log(h).
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Notation: Let Pj(t) = P{N(t) = j} and let λ−1 = µ0 = P−1(t) = 0.

It follows from the above postulates that (where h → 0; j = 0, 1, . . ..)

Pj(t + h) = (λj−1h + o(h))︸ ︷︷ ︸
an arrival

Pj−1(t) + (µj+1h + o(h))︸ ︷︷ ︸
a departure

Pj+1(t) + [1− ((λj + µj)h + o(h))]︸ ︷︷ ︸
no arrival or departure

Pj(t)

Pj(t + h) = (λj−1h)Pj−1(t) + (µj+1)hPj+1(t) + [1− (λj + µj)h]Pj(t) + o(h) .

Rearranging terms, we have

Pj(t + h)− Pj(t)

h
= λj−1Pj−1(t) + µj+1Pj+1(t)− (λj + µj)Pj(t) +

o(h)

h
.

Letting h → 0, we get the following set of differential-difference equations

d

dt
Pj(t) = λj−1Pj−1(t) + µj+1Pj+1(t)− (λj + µj)Pj(t). (6)

If at time t = 0 the system is in state Ei, the initial conditions are then Pj(0) = δij where

δij =

{
1 if i = j

0 if i ̸= j.

Definition 4.2: The coefficients {λj} and {µj} are called the birth and death rates respec-

tively. When µj = 0 for all j, the process is called a pure birth process; and when λj = 0 for

all j, the process is called a pure death process.

In the case of either a pure birth process or a pure death process, Eq. (6) can be solved by recurrence.
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4.1 Pure Birth Process with Constant Rates

In this section, we consider a Pure birth process (µi = 0) with constant λj = λ and initial

state E0.

Then Eq. (6) become
d

dt
Pj(t) = λPj−1(t)− λPj(t) (j = 0, 1, · · · )

where P−1(t) = 0 and Pj(0) = δ0j.

Here

j = 0, P ′
0(t) = −λP0(t),

hence

P0(t) = a0e
−λt.

From the initial conditions, we get a0 = 1.

Inductively, we can prove that if

Pj−1(t) =
(λt)j−1

(j − 1)!
e−λt
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then the equation

P ′
j(t) = λ

(
(λt)j−1

(j − 1)!
e−λt

)
− λPj(t)

gives (exercise) the solution

Pj(t) =
(λt)j

j!
e−λt. (7)

Note:

(i) The probabilities (7) satisfy the normalization condition

∞∑
j=0

Pj(t) = 1 (t ≥ 0).

(ii) For each t, N(t) has the Poisson distribution, given by {Pj(t)}. We say that N(t) describes a

Poisson process. We will discuss it more later.

Remark: Since the assumption λj = λ is often a realistic one, the simple formula (7) plays a

central role in queueing theory.
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Another Approach

• Generating function approach for solving the pure birth problem.

• Let {pi} be a discrete probability density distribution for a random variable X , i.e.,

P (X = i) = pi i = 0, 1, . . . ,

• Recall that the probability generating function is defined as

g(z) =

∞∑
n=0

pnz
n.

Let the probability generating function for pn(t) be

g(z, t) =

∞∑
n=0

pn(t)z
n.

The idea is that if we can find g(z, t) and obtain its coefficients when expressed in a power series of

z then one can solve pn(t).
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From the differential-difference equations, we have

∞∑
n=0

dPn(t)

dt
zn = z

∞∑
n=0

λPn(t)z
n −

∞∑
n=0

λPn(t)z
n.

Assuming one can inter-change the operation between the summation and the differentiation, then

we have
dg(z, t)

dt
= λ(z − 1)g(z, t)

when z is regard as a constant.

Then we have

g(z, t) = Keλ(z−1)t.

Since

g(z, 0) =
∞∑
n=0

Pn(0)z
n = 1

we have K = 1. Hence we have

g(z, t) = e−λt

(
1 + λz +

(λtz)2

2!
+ . . .+

)
=

(
e−λt + e−λtλz +

e−λt(λt)2

2!
z2 + . . .+

)
.

The result follows.
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4.2 Pure Death Process

In this section, we consider a pure death process with µj = jµ and initial state En. The

equations (6) become

d

dt
Pj(t) = (j + 1)µPj+1(t)− jµPj(t) j = n, n− 1, · · · , 0 (8)

where

Pn+1(t) = 0 and Pj(0) = δnj.

• We solve these equations by recursively starting from the case j = n.

d

dt
Pn(t) = −nµPn(t) , Pn(0) = 1

implies that

Pn(t) = e−nµt.

• The equation with j = n− 1 is

d

dt
Pn−1(t) = nµPn(t)− (n− 1)µPn−1(t) = nµe−nµt − (n− 1)µPn−1(t).

• Solving this differential equation and we get

Pn−1(t) = n(e−µt)n−1(1− e−µt).
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Recursively, we get

Pj(t) =

(
n

j

)
(e−µt)j(1− e−µt)n−j (j = 0, 1, · · · , n). (9)

Note:

(i) For each t, the probabilities (9) comprise a binomial distribution.

(ii) The number of equations in (8) is finite in number. For pure birth process, the number of

equations is infinite.
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5 More on Birth-and-Death Process

A simple queueing example is given as follows (An illustration of birth-and-death process in queueing

theory context). We consider a queueing system with one server and no waiting position, with

P{one customer arriving during (t, t + h)} = λh + o(h)

and

P{service ends in (t, t + h)| server busy at t} = µh + o(h) as h → 0.

• This corresponds to a two state birth-and-death process with j = 0, 1. The arrival rates are

λ0 = λ and λj = 0 for j ̸= 0 (an arrival that occurs when the server is busy has no effect on the

system since the customer leaves immediately); and the departure rates are µj = 0 when j ̸= 1 and

µ1 = µ (no customers can complete service when no customers are in the system).

�

-

µ

λ
��
��
Idle ��

��
Busy

Figure 3.1: The Two-state Birth and Death Process.
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The equations for the birth-and-death process are given by

d

dt
P0(t) = −λP0(t) + µP1(t) and

d

dt
P1(t) = λP0(t)− µP1(t). (10)

One convenient way of solving this set of simultaneous linear differential equations (not a standard

method!) is as follows:

• Adding the equations in Eq. (10), we get

d

dt
[P0(t) + P1(t)] = 0,

hence we have P0(t) + P1(t) = constant.

• Initial conditions are P0(0) + P1(0) = 1; thus P0(t) + P1(t) = 1. Hence we get

d

dt
P0(t) + (λ + µ)P0(t) = µ.

The solution (exercise) is given by

P0(t) =
µ

λ + µ
+ (P0(0)−

µ

λ + µ
)e−(λ+µ)t .

Since P1(t) = 1− P0(t),

P1(t) =
λ

λ + µ
+ (P1(0)−

λ

λ + µ
)e−(λ+µ)t . (11)
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• For the three examples (including two examples in the previous chapter) of birth-and-death

processes that we have considered, the system of differential-difference equations are much simplified

and can therefore be solved very easily. In general, the solution of differential-difference equations

is no easy matter. Here we merely state the properties of its solution without proof.

Proposition 4 For arbitrarily prescribed coefficients λn ≥ 0, µn ≥ 0 there always exists a positive

solution {Pn(t)} of differential-difference equations (6) such that
∑

Pn(t) ≤ 1. If the coefficients

are bounded, this solution is unique and satisfies the regularity condition
∑

Pn(t) = 1.

Remark: Fortunately in all cases of practical significance, the regularity condition
∑

Pn(t) = 1

and uniqueness of solution are satisfied.

5.1 Statistical Equilibrium (Steady State Probability Distribution)

Consider the state probabilities of the above example when t → ∞, from (11) we have
P0 = lim

t→∞
P0(t) =

µ

λ + µ

P1 = lim
t→∞

P1(t) =
λ

λ + µ
.

(12)

We note that P0 + P1 = 1 and they are called the steady state probabilities of the system.
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Note:

(i) P0 and P1 are independent of the initial values P0(0) and P1(0).

(ii) If at time t = 0,

P0(0) =
µ

λ + µ
= P0

and

P1(0) =
λ

λ + µ
= P1,

(come from (11)) clearly show that these initial values will persist for ever.

• This leads us to the important notion of statistical equilibrium. We say that a system is in statis-

tical equilibrium (or the state distribution is stationary) if its state probabilities are constant

in time.

•Note that the system still fluctuate from state to state, but there is no net trend in such fluctuations.

• In the above queueing example, we have shown that the system attains statistical equilibrium as

t → ∞. Practically speaking, this means the system is in statistical equilibrium after sufficiently

long time (so that initial conditions have no more effect on the system). For the general birth-and-

death processes, the following holds.
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Proposition 5 (a) Let Pj(t) be the state probabilities of a birth-and-death process. Then

lim
t→∞

Pj(t) = Pj

exist and are independent of the initial conditions; they satisfy the system of linear difference

equations obtained from the difference-differential equations in previous chapter by replacing the

derivative on the left by zero.

(b) If all µj > 0 and the series

S = 1 +
λ0

µ1
+

λ0λ1

µ1µ2
+ · · · + λ0λ1 · · ·λj−1

µ1µ2 · · ·µj
+ . . .+ (13)

converges, then

P0 = S−1 and Pj =
λ0λ1 · · ·λj−1

µ1µ2 · · ·µj
S−1 (j = 1, 2, · · · ).

If the series (13) diverges, then

Pj = 0 (j = 0, 1, · · · ) .

Proof: We shall not attempt to prove part (a) of the above proposition, but rather we assume

the truth of (a) and use it to prove part (b).

By using part (a) of the proposition, we obtain the following linear difference equations.
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(λj + µj)Pj = λj−1Pj−1 + µj+1Pj+1

(λ−1 = µ0 = 0 ; j = 0, 1, · · · ) P−1 = 0 .
(14)

Rearranging terms, we have

λjPj − µj+1Pj+1 = λj−1Pj−1 − µjPj . (15)

If we let

f (j) = λjPj − µj+1Pj+1,

then (15) is simply

f (j) = f (j − 1) for j = 0, 1, · · ·
as f (−1) = 0. Hence

f (j) = 0 (j = 0, 1, · · · ).
This implies

λjPj = µj+1Pj+1.

By recurrence, we get (if µ1, · · · , µj > 0)

Pj =
λ0λ1 · · ·λj−1

µ1 · · ·µj
P0 (j = 1, 2, · · · ). (16)

Finally, by using the normalization condition
∑

Pj = 1 we have the result in part (b).

45



Remarks:

(i) Part (a) of the above proposition suggests that to find the statistical equilibrium distribution

lim
t→∞

Pj(t) = Pj.

We set the derivatives on the left side of difference-differential equations to be zero and replace

Pj(t) by Pj and then solve the linear difference equations for Pj.

In most cases, the latter method is much easier and shorter.

(ii) If µj = 0 for some j = k (λj > 0 for all j), then, as equation (16) shows,

Pj = 0 for j = 0, 1, · · · , k − 1.

In particular, for pure birth process, Pj = 0 for all j.
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Example 1: Suppose that for all i we have

λi = λ and µj = jµ

then

S = 1 +
λ

µ
+

1

2!

(
λ

µ

)2

+
1

3!

(
λ

µ

)3

+ . . .+ = e
λ
µ .

Therefore we have the Poisson distribution

Pj =
1

j!

(
λ

µ

)j

e
−λ
µ .

Example 2: Suppose that for all i we have

λi = λ and µj = µ

such that λ < µ then

S = 1 +
λ

µ
+

(
λ

µ

)2

+

(
λ

µ

)3

+ . . .+ =
1

1− λ
µ

.

Therefore we have the Geometric distribution

Pj =

(
λ

µ

)j (
1− λ

µ

)
.

47



A Summary on Stochastic Process and Probability Theory

• The definition of a birth-and-death process.

- the meaning of o(h): limh→0 o(h)/h = 0.

- the general solutions for the pure birth process, the pure death process and the two-state birth-

and-death process.

- what is the meaning of the steady state solution of a birth-and-death process? Under what condi-

tion do we have the steady state probability of a birth-and-death process ? How to get this steady

state probability ?

• The Poisson distribution and the Exponential distribution: the functional form, the mean and the

variance.

- Proof for the sum of two Poisson r.v. is again a Poisson r.v.

- Proof for the Markov property of the Exponential distribution.

• The definition for a Poisson process.

- the relationship between the Poisson and the Exponential distribution in a Poisson Process.

- if the arrival process of customers is a Poisson process with mean λ then (i) the inter-arrival time

of the customers is independent and follows the exponential distribution λe−λt and (ii) the number

of arrived customers in the time interval [a, a + t] follows the Poisson distribution (λt)k/k!e−λt.
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