
2905 Queueing Theory and Simulation

PART II: MARKOVIAN QUEUEING SYSTEMS

6 Introduction to Queueing Systems

A queueing situation is basically characterized by a flow of customers arriving at a service facility.

On arrival at the facility the customer may be served immediately by a server or, if all the servers

are busy, may have to wait in a queue until a server is available. The customer will then leave

the system upon completion of service. The following are some typical examples of such queueing

situations:

(i) Shoppers waiting for checkout in a supermarket [Customer: shoppers; servers: cashiers].

(ii) Diners waiting for tables in a restaurant [Customers: diners; servers: tables].

(iii) Patients waiting at an outpatient clinic [Customers: patients; servers: doctors].

(iv) Broken machines waiting to be serviced by a repairman [Customers: machines; server: repair-

man].

(v) People waiting to take lifts. [Customers: people; servers: lifts].

(vi) Parts waiting at a machine for further processing. [Customers: parts; servers: machine].
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In general, the arrival pattern of the customers and the service time allocated to each customer

can only be specified probabilistically. Such service facilities are difficult to schedule “optimally”

because of the presence of randomness element in the arrival and service patterns.

A mathematical theory has thus evolved that provides means for analyzing such situations. This

is known as queueing theory (waiting line theory, congestion theory, the theory of stochastic

service system), which analyzes the operating characteristics of a queueing situation with the use of

probability theory.

Examples of the characteristics that serve as a measure of the performance of a system are the

“expected waiting time until the service of a customer is completed” or “the percentage of time that

the service facility is not used” (the servers in the system are idle). Availability of such measures

enables analysts to decide on an optimal way of operating such a system.

6.1 Basic Elements of Queueing Models

A queueing system is specified by the following elements.

(i) Input Process: How do customers arrive? Often, the input process is specified in terms of

the distribution of the lengths of time between consecutive customer arrival instants (called the

inter-arrival times ). In some models, customers arrive and are served individually (e.g.

supermarkets and clinic).
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• In other models, customers may arrive and/or be served in groups (e.g. lifts) and is referred

to as bulk queues.

• Customer arrival pattern also depends on the source from which calls for service (arrivals of

customers) are generated. The calling source may be capable of generating a finite number

of customers or (theoretically) infinitely many customers.

• In a machine shop with 4 machines (the machines are the customers and the repairman is the

server), the calling source before any machine breaks down consists of 4 potential customers (i.e.

anyone of the 4 machines may break down and therefore calls for the service of the repairman).

Once a machine breaks down, it becomes a customer receiving the service of the repairman

(until the time it is repaired), and only 3 other machines are capable generating new calls for

service. This is a typical example of a finite source, where an arrival affects the rate of arrival

of new customers.

• For shoppers in a supermarket, the arrival of a customer normally does not affect the source for

generating new customer arrivals, and is therefore referred to as an input process with infinite

source.
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(ii) Service Process: The time allocated to serve a customer (service time) in a system (e.g. the

time that a patient is served by a doctor in an outpatient clinic) varies and is assumed to follow

some probability distribution.

• Some facility may include more than one server, thus allowing as many customers as the

number of servers to be serviced simultaneously (e.g. supermarket cashiers). In this case, all

servers offer the same type of service and the facility is said to have parallel servers .

• In some other models, a customer must pass through a series of servers one after the other

before service is completed (e.g. processing a product on a sequence of machines). Such

situations are known as queues in series or tandem queues.

(iii) Queue Discipline: The manner that a customer is chosen from the waiting line to start

service is called the queue discipline . The most common discipline is the first-come-first-

served rule (FCFS). Service in random order (SIRO), last-come-first-serve (LCFS) and service

with priority are also used.

• If all servers are busy, in some models an arriving customer may leave immediately (Blocked

Customers Cleared: BCC), or in some other models may wait until served (Blocked

Customers Delay: BCD). In some facility, there is a restriction on the size of the queue.

If the queue has reached a certain size, then all new arrivals will be cleared from the system.
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6.2 Some Simple Examples

(i) (Input process) If the inter-arrival time of any two customers is a constant, let say one hour

then at the end of the second hour there will be 2 arrived customers.

• Suppose that customers only arrive at the end of each hour and the probability that there is

an arrival of customer is 0.5.

• Let x be the number of customers arrived at the end of the second hour. Then by the end of

the second hour, we won’t know the number of customers arrived.

• However, we know the probability that there are x arrived customers is given by (why?)

P (x = 0) = 0.25, P (x = 1) = 0.5 and P (x = 2) = 0.25.

(ii) (Service Process) Suppose that there is a job to be processed by a machine. The job requires

a one-hour machine time. A reliable machine will take one hour to finish the job.

• If the machine is unreliable and it may break down at the beginning of every hour with a

probability of p. Once it breaks down it takes one hour to fix it. But it may break down

immediately after the repair with the same probability p (0 < p < 1). Clearly it takes at least

one hour to finish the job but it may take much longer time.
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• Let x be the number of hours to finish the job. Then the probability that the job can be

finished at the end of the nth hour is given by the Geometric distribution

P (x = k) = pk−1(1− p), k = 1, 2, . . . .

(iii) (Queueing Disciplines) Suppose there are three customers A,B and C waiting at a counter

for service and their service times are in the following order 10 minutes, 20 minutes and 30 min-

utes. It takes 10 + 20 + 30 = 60 minutes to finish all the service. However, the average waiting

time before service for the three customers can be quite different for different service disciplines.

• Case 1 (FCFS): The waiting time for the first customer is zero, the waiting time for the second

customer is 10 minutes and the waiting time for the third customers is 10 + 20 = 30 minutes.

Therefore the average waiting time before service is

(0 + 10 + 30)/3 = 40/3.

• Case 2 (LCFS): The waiting time for the first customer is zero, the waiting time for the second

customer is 30 minutes and the waiting time for the third customers is 30 + 20 = 50 minutes.

Therefore the average waiting time before service is

(0 + 30 + 50)/3 = 80/3

minutes which is twice of that in Case 1!
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7 Some Definitions in Queueing Theory

To analyze a queueing system, normally we try to estimate quantities such as the average number

of customers in the system, the fluctuation of the number of customers waiting, the proportion of

time that the servers are idle, . . ., etc.

• Let us now define formally some entities that are frequently used to measure the effectiveness of

a queueing system (with s parallel servers).

(i) pj = the probability that there are j customers in the system (waiting or in service) at an ar-

bitrary epoch (given that the system is in statistical equilibrium or steady state). Equivalently

pj is defined as the proportion of time that there are j customers in the system (in steady state).

(ii) a = offered load = mean number of requests per service time. (In a system where blocked

customers are cleared, requests that are lost are also counted.)

(iii) ρ = traffic intensity = offered load per server = a/s (s < ∞).

(iv) a′ = carried load = mean number of busy servers.
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(v) ρ′ = server occupancy (or utilization factor) = carried load per server = a′/s.

(vi) Ws = the mean waiting time in the system,i.e the mean length of time from the

moment a customer arrives until the customer leaves the system (also called sojourn time).

(vii) Wq = the mean waiting time in the queue, i.e. the mean length of time from the

moment a customer arrives until the customer’ service starts .

(viii) Ls = the mean number of customers in the system, i.e. including all the customers

waiting in the queue and all those being served.

(ix) Lq = the mean number of customers waiting in the queue.
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Remarks:

(i) If the mean arrival rate is λ and the mean service time is τ then the offered load a = λτ .

(ii) For an s server system, the carried load

a′ =

s−1∑
j=0

jpj + s

∞∑
j=s

pj.

Hence

a′ ≤ s

∞∑
j=0

pj = s and ρ′ =
a′

s
≤ 1.

(iii) If s = 1 then a′ = ρ′ and a = ρ.

(iv) The carried load can also be considered as the mean number of customers completing service

per mean service time τ . Hence in a system where blocked customers are cleared, clearly the

carried load is less than the offered load.

On the other hand, if all requests are handled, then we have

The carried load = The offered load.

In general a′ = a(1−B) where B = proportion of customers lost (or requests that are cleared).
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7.1 Kendall’s Notation

It is convenient to use a shorthand notation (introduced by D.G.Kendall) of the form a/b/c/d to

describe queueing models, where a specifies the arrival process, b specifies the service time, c is the

number of servers and d is the number of waiting space. For example,

(i) GI/M/s/n : General Independent input, exponential (Markov) service time, s servers, n waiting

space;

(ii) M/G/s/n : Poisson (Markov) input, arbitrary (General) service time, s servers, n waiting space;

(iii) M/D/s/n : Poisson (Markov) input, constant (Deterministic) service time, s servers, n waiting

space;

(iv) Ek/M/s/n: k-phase Erlangian inter-arrival time, exponential (Markov) service time, s servers,

n waiting space;

(v) M/M/s/n : Poisson input, exponential service time, s servers, n waiting space.

Here are some examples.

(i) M/M/2/10 represents a queueing system whose arrival and service process are random and there

are 2 servers and 10 waiting space in the system.

(ii) M/M/1/∞ represents a queueing system whose arrival and service process are random and

there is one server and no limit in waiting space.
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8 Queueing Systems of One Server

In this section we will consider queueing systems having one server only.

8.1 One-server Queueing Systems Without Waiting Space (Re-visit)

Consider a one-server system of two states: 0 (idle) and 1 (busy).

The inter-arrival time of customers follows the exponential distribution with parameter λ.

The service time also follows the exponential distribution with parameter µ. There is no waiting

space in the system.

An arrived customer will leave the system when he finds the server is busy (An M/M/1/0 queue).

This queueing system resembles an one-line telephone system without call waiting.

8.2 Steady State Probability Distribution

We are interested in the long-run behavior of the system, i.e. when t → ∞. Why?

Fact to note: Let P0(t) and P1(t) be the probability that there is 0 and 1 customer in the system.
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If at t = 0 there is a customer in the system, then

P0(t) =
µ

λ + µ

(
1− e−(λ+µ)t

)
and

P1(t) =
1

λ + µ

(
µe−(λ+µ)t + λ

)
.

Here P0(t) and P1(t) are called the transient probabilities. We have

p0 = lim
t→∞

P0(t) =
µ

λ + µ
and p1 = lim

t→∞
P1(t) =

λ

λ + µ
.

Here p0 and p1 are called the steady state probabilities.

• Moreover, we have ∣∣∣∣P0(t)−
µ

λ + µ

∣∣∣∣ = µe−(λ+µ)t

λ + µ
→ 0 as t → ∞

and ∣∣∣∣P1(t)−
λ

λ + µ

∣∣∣∣ = µe−(λ+µ)t

λ + µ
→ 0 as t → ∞

very fast. This means that system will go into the steady state very fast. We will focus on the

steady state probability instead of the transient probability.
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8.3 The Meaning of the Steady State Probability

The meaning of the steady state probabilities p0 and p1 is as follows.

In the long run, the probability that there is no customer in the system is p0 and there is one

customer in the system is p1.

For the server: In the other words, in the long run, the proportion of time that the server is idle

is given by p0 and the proportion of time that the server is busy is given by p1.

For the customers: In the long run, the probability that an arrived customer can have his/her

service is given by p0 and the probability that an arrived customers will be rejected by the system

is given by p1.

How to find the steady state probability? We are going to develop a method based on Markov chain

and generator matrix to solve the steady state probabilities.

Remarks:

(i) The system goes to its steady state very quickly.

(ii) In general it is much easier to obtain the steady state probabilities of a queueing system than

the transient probabilities.
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8.4 The Markov Chain and the Generator Matrix

A queueing system can be represented by a Markov chain (states and transition rates). We use

the number of customers in the system to represent the state of the system. Therefore we have two

states (0 and 1). The transition rate from State 1 to State 0 is µ and The transition rate from State

0 to State 1 is λ.

• In State 0, change of state occurs when there is an arrival of customers and the waiting time is

exponentially distributed with parameter λ.

• In State 1, change of state occurs when the customer finishes his/her service and the waiting time

is exponentially distributed with parameter µ.

• Recall that from the no-memory property, the waiting time distribution for change of state is the

same independent of the past history (e.g. how long the customer has been in the system).

�

-

µ

λ
��
��
0 ��

��
1

Figure 8.1 The Markov Chain of the Two-state System.
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• From the Markov chain, one can construct the generator matrix as follows:

A1 =

(
−λ µ

λ −µ

)
.

What is the meaning of the generator matrix? The steady state probabilities will be the solution of

the following linear system:

A1p =

(
−λ µ

λ −µ

)(
p0
p1

)
=

(
0

0

)
(1)

subject to p0 + p1 = 1.

Remarks:

(1) Given a Markov chain (generator matrix) one can construct the corresponding generator (Markov

chain).

2) To interpret the system of linear equations. We note that in steady state, the expected incoming

rate and the expected out going rate at any state must be equal. Therefore, we have the followings:

At State 0: expected out going rate = λp0 = µp1 = expected incoming rate;

At State 1: expected out going rate = µp1 = λp0 = expected incoming rate.
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8.5 One-Server Queueing System with Waiting Space
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Figure 8.2 The Markov chain for the M/M/1/3 queue.

Consider an M/M/1/3 queue. The inter-arrival of customers and the service time follow the ex-

ponential distribution with parameters λ and µ respectively. Therefore there are 5 possible states.

Why?

The generator matrix is a 5× 5 matrix.

A2 =


−λ µ 0

λ −λ− µ µ

λ −λ− µ µ

λ −λ− µ µ

0 λ −µ

 . (2)

Let the steady state probability distribution be

p = (p0, p1, p2, p3, p4)
t.

In steady state we have A2p = 0.
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We can interpret the system of equations as follows:

At State 0: expected out going rate = λp0 = µp1 = expected incoming rate;

At State 1: expected out going rate = (λ + µ)p1 = λp0 + µp2 =expected incoming rate.

At State 2: expected out going rate = (λ + µ)p2 = λp1 + µp3 = expected incoming rate;

At State 3: expected out going rate = (λ + µ)p3 = λp2 + µp4 = expected incoming rate.

At State 4: expected out going rate = µp4 = λp3 = expected incoming rate.

We are going to solve p1, p2, p3, p4 in terms of p0.

From the first equation −λp0 + µp1 = 0, we have

p1 =
λ

µ
p0.

From the second equation λp0 − (λ + µ)p1 + µp2 = 0, we have

p2 =
λ2

µ2
p0.
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From the third equation λp1 − (λ + µ)p2 + µp3 = 0, we have

p3 =
λ3

µ3
p0.

Finally from the fourth equation λp2 − (λ + µ)p3 + µp4 = 0, we have

p4 =
λ4

µ4
p0.

The last equation is not useful as A2 is singular (Check!).

To determine p0 we make use of the fact that

p0 + p1 + p2 + p3 + p4 = 1.

Therefore

p0 +
λ

µ
p0 +

λ2

µ2
p0 +

λ3

µ3
p0 +

λ4

µ4
p0 = 1.

Let ρ = λ/µ, we have

p0 = (1 + ρ + ρ2 + ρ3 + ρ4)−1, pi = p0ρ
i, i = 1, 2, 3, 4.

What will be the solution for a general one-server queueing system (M/M/1/n) ? We will discuss

it in the next section.
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9 General One-server Queueing System

Consider a one-server queueing system with waiting space. The inter-arrival of customers and the

service time follows the Exponential distribution with parameters λ and µ respectively.

There is a waiting space of size n− 2 in the system. An arrived customer will leave the system only

when he finds no waiting space left. This is an M/M/1/n− 2 queue.

We say that the system is in state i if there are i customers in the system. The minimum number

of customers in the system is 0 and the maximum number of customers is n− 1 (one at the server

and n− 2 waiting in the queue). Therefore there are n possible states in the system. The Markov

chain of the system is shown in the figure.
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��
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�

-

µ
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��
��
1 · · · �

-

µ

λ
��
��
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��
n− 1

�

-

µ

λ

Figure 9.1 The Markov Chain for the M/M/1/n-2 Queue.

If we order the state from 0 up to n − 1, then the generator matrix for the Markov chain is given
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by the following tridiagonal matrix A2:

0 1 2 3 · · · n− 3 n− 2 n− 1

0

1

2
...
...
...

n− 2

n− 1



−λ µ 0

λ −λ− µ µ
. . . . . . . . .

λ −λ− µ µ

λ −λ− µ µ
. . . . . . . . .

λ −λ− µ µ

0 λ −µ


.

(3)

We are going to solve the probability distribution p. Let

p = (p0, p1, . . . , pn−2, pn−1)
t

be the steady state probability vector. Here pi is the steady state probability that there are i

customers in the system and we have also

A2p = 0 and

n−1∑
i=0

pi = 1.

To solve pi we begin with the first equation:

−λp0 + µp1 = 0 ⇒ p1 =
λ

µ
p0.
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We then proceed to the second equation:

λp0 − (λ + µ)p1 + µp2 = 0 ⇒ p2 = −λ

µ
p0 + (

λ

µ
+ 1)p1 ⇒ p2 =

λ2

µ2
p0.

Inductively we may get

p3 =
λ3

µ3
p0, p4 =

λ4

µ4
p0, . . . , pn−1 =

λn−1

µn−1
p0.

Let ρ = λ/µ (the traffic intensity), we have

pi = ρip0, i = 0, 1, . . . , n− 1.

To solve for p0 we need to make use of the condition
n−1∑
i=0

pi = 1.

Therefore we get
n−1∑
i=0

pi =

n−1∑
i=0

ρip0 = 1.

One may obtain

p0 =
1− ρ

1− ρn
.

Hence the steady state probability vector p is given by
1− ρ

1− ρn
(1, ρ, ρ2, . . . , ρn−1)t.
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9.1 Performance of a Queueing System

Using the steady state probability distribution, one can compute

(a) the probability that a customer finds no more waiting space left when he arrives

pn−1 =
1− ρ

1− ρn
ρn−1.

(b) the probability that a customer finds the server is not busy (he can have the service immediately)

when he arrives

p0 =
1− ρ

1− ρn
.

(c) the expected number of customer at the server:

Lc = 0 · p0 + 1 · (p1 + p2 + . . . + pn−1)

=
1− ρ

1− ρn
(ρ + ρ2 + . . . + ρn−1)

=
ρ(1− ρn−1)

1− ρn
.

(4)

(d) the expected number of customers in the system is given by

Ls =

n−1∑
i=0

ipi =

n−1∑
i=1

ip0ρ
i

=
ρ− nρn + (n− 1)ρn+1

(1− ρ)(1− ρn)
.

(5)
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(e) the expected number of customers in the queue

Lq =

n−1∑
i=1

(i− 1)pi =

n−1∑
i=1

(i− 1)p0ρ
i =

n−1∑
i=1

ip0ρ
i −

n−1∑
i=1

p0ρ
i

=
ρ2 − (n− 1)ρn + (n− 2)ρn+1

(1− ρ)(1− ρn)
.

(6)

We note that Ls = Lq + Lc.

Remark: To obtain the results in (d) and(e) we need the following results.

n−1∑
i=1

iρi =
1

1− ρ

n−1∑
i=1

(1− ρ)iρi

=
1

1− ρ
(

n−1∑
i=1

iρi −
n−1∑
i=1

iρi+1)

=
1

1− ρ
(ρ + ρ2 + . . . + ρn−1 − (n− 1)ρn)

=
ρ + (n− 1)ρn+1 − nρn

(1− ρ)2
.

(7)

Moreover if |ρ| < 1 we have
∞∑
i=1

iρi =
ρ

(1− ρ)2
.
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10 Queueing Systems with Multiple Servers

Now let us consider a more general queueing system with s parallel and identical exponential servers.

The customer arrival rate is λ and the service rate of each server is µ. There are n− s− 1 waiting

space in the system.

• The queueing discipline is again FCFS. When a customer arrives and finds all the servers busy,

the customer can still wait in the queue if there is waiting space available. Otherwise, the customer

has to leave the system, this is an M/M/s/n− s− 1 queue.

• Before we study the steady state probability of this system, let us discuss the following example

(revisited).

• Suppose there are k identical independent busy exponential servers, let t be the waiting time for

one of the servers to be free (change of state), i.e. one of the customers finishes his service.

• We let t1, t2, . . . , tk be the service time of the k customers in the system. Then ti follows the

Exponential distribution λe−λt and

t = min{t1, t2, . . . , tk}.

We will derive the probability density function of t.
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We note that

Prob(t ≥ x) = Prob(t1 ≥ x) · Prob(t2 ≥ x) . . .Prob (tk ≥ x)

=

(∫ ∞

x

λe−λtdt

)k

=
(
e−λx

)k
= e−kλx.

(8)

• Thus ∫ ∞

x

f (t)dt = e−kλx and f (t) = kλe−kλt.

Therefore the waiting time t is also exponentially distributed with parameter kλ.

m��p p
m��p p
m��p p
...

m��p p
m��p p
m��p p

1 2 3 · · · k · · · n− s− 1

p p p p p p · · · p p · · · � λ

�µ

�µ

�µ

�µ

�µ

�µ

: empty buffer in queue

p p : customer waiting in queue
m��p p : customer being served

Figure 10.1 The multiple server queue.

• To describe the queueing system, we use the number of customers in the queueing system to
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represent the state of the system.

• There are n possible states (number of customers) , namely 0, 1, . . . , n− 1.

• The Markov chain for the queueing system is given in Figure 11.2.
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��
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�

-
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Figure 10.2 The Markov chain for the M/M/s/n− s− 1 queue.

If we order the states of the system in increasing number of customers then it is not difficult to

show that the generator matrix for this queueing system is given by the following n×n tri-diagonal

matrix:

A3 =



−λ µ 0

λ −λ− µ 2µ
. . . . . . . . .

λ −λ− sµ sµ
. . . . . . . . .

λ −λ− sµ sµ

0 λ −sµ


. (9)
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10.1 A Two-server Queueing System

Let us consider a small size example the M/M/2/2 queue.
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�
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Figure 10.3 The Markov Chain for the M/M/2/2 Queue.

• The generator matrix is an 5× 5 matrix.

A4 =


−λ µ 0

λ −λ− µ 2µ

λ −λ− 2µ 2µ

λ −λ− 2µ 2µ

0 λ −2µ

 . (10)

Let the steady state probability distribution be

p = (p0, p1, p2, p3, p4)
t.

In steady state we have A4p = 0.
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From the first equation −λp0 + µp1 = 0, we have

p1 =
λ

µ
p0.

From the second equation λp0 − (λ + µ)p1 + 2µp2 = 0, we have

p2 =
λ2

2!µ2
p0.

From the third equation λp1 − (λ + 2µ)p2 + 2µp3 = 0, we have

p3 =
λ3

2 · 2!µ3
p0.

Finally from the fourth equation λp2 − (λ + 2µ)p3 + 2µp4 = 0, we have

p4 =
λ4

22 · 2!µ4
p0.

The last equation is not useful as A4 is singular.

To determine p0 we make use of the fact that

p0 + p1 + p2 + p3 + p4 = 1.

Therefore

p0 +
λ

µ
p0 +

λ2

2!µ2
p0 +

λ3

2 · 2!µ3
p0 +

λ4

222!µ4
p0 = 1.
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Let τ = λ/(2µ), we have

p0 = (1 +
λ

µ
+ (

λ2

2!µ2
)
1− τ 3

1− τ
)−1, p1 =

λ

µ
p0, and pi = p0(

λ2

2!µ2
)τ i−2, i = 2, 3, 4.

The result above can be further extended to the M/M/2/k queue as follows:

p0 = (1 +
λ

µ
+ (

λ2

2!µ2
)
1− τ k+1

1− τ
)−1, p1 =

λ

µ
p0, and pi = p0(

λ2

2!µ2
)τ i−2, i = 2, . . . , k + 2.

The queueing system has finite number of waiting space.

The result above can also be further extended to M/M/2/∞ queue when τ = λ/(2µ) < 1 as follows:

p0 =

(
1 +

λ

µ
+ (

λ2

2!µ2
)

1

1− τ

)−1

, p1 =
λ

µ
p0, and pi = p0(

λ2

2!µ2
)τ i−2, i = 2, 3, . . . .

or

p0 =
1− τ

1 + τ
, and pi = 2p0τ

i, i = 1, 2, . . . .

The queueing system has infinite number of waiting space.

We then derive the expected number of customers in the system.
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10.2 Expected Number of Customers in the M/M/2/∞ Queue

The expected number of customers in the M/M/2/∞ queue is given by

Ls =

∞∑
k=1

kpk =
1− τ

1 + τ

∞∑
k=1

2kτ k.

Now we let

S =

∞∑
k=1

kτ k = τ + 2τ 2 + . . .

and we have

τS = τ 2 + 2τ 3 + . . . + .

Therefore by subtraction we get

(1− τ )S = τ + τ 2 + τ 3 + . . . =
τ

1− τ

and

S =
τ

(1− τ )2
.

We have

Ls =
2τ

1− τ 2
. (11)
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11 Multiple-Server Queues and Birth-and-Death Process

In this section, we consider queueing models with Poisson input, independent, identically distributed,

exponential service times and s parallel servers.

• Specifically, we shall consider two different queue disciplines, namely Blocked Customers

Cleared (BCC) and Block Customers Delayed (BCD). In the following two subsections,

we assume that the Poisson input has rate λ and the exponential service times have mean µ−1 .

11.1 Blocked Customers Cleared (Erlang loss system)

The queueing system has s servers and there is no waiting space and we assume blocked

customers are cleared. Total possible number of states is s + 1 and the generator matrix for this

system is given by

A5 =



−λ µ 0

λ −λ− µ 2µ

λ −λ− 2µ
. . . . . . . . .

λ −λ− (s− 1)µ sµ

0 λ −sµ


.

• Let pi be the steady state probability that there are i customers in the queueing system. Then
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by solving A5p = 0 with

s∑
i=0

pi = 1 one can get



pj =
(λ/µ)j/j!
s∑

k=0

(λ/µ)k/k!
(j = 0, 1, · · · , s)

=
aj/j!
s∑

k=0

ak/k!

(12)

and pj = 0 for j > s ; where a = λ/µ is the offered load.

• This distribution is called the truncated Poisson distribution (also called Erlang loss

distribution).

• On the other hand one can identify this system as a birth-and-death process, we proceed to find

pj. Since customers arrive at random with rate λ, but affect state changes only when j < s (BCC),

the arrival rates (the birth rates) are

λj =

{
λ when j = 0, · · · , s− 1

0 when j = s

Since service times are exponential, the service completion rates (the death rates) are

µj = jµ (j = 0, 1, 2, · · · , s).
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Remarks:

(1) The proportion of customers who have requested for service but are cleared from the system

(when all servers are busy) is given by ps which is also called the Erlang loss formula and

is denoted by

B(s, a) =
as/s!

s∑
k=0

(ak/k!)
.

(2) The mean number of busy servers, which is also equal to the mean number of customers

completing service per mean service time, is given by the carried load

a′ =

s∑
j=1

jpj.

An interesting relation can be derived between the Erlang loss formula and the carried load:

a′ =

s∑
j=1

j(aj/j!)/

s∑
k=0

(ak/k!)

= a

 s−1∑
j=0

(aj/j!)/

s∑
k=0

(ak/k!)

 = a (1−B(s, a)) .

This shows that the carried load is the portion of the offered load that is not lost (captured)

from the system.

81



11.2 Blocked Customers Delayed (Erlang delay system)

The queueing system has s servers and there is infinite many waiting space and we assume

blocked customers are delayed.

• In this case we have the arrival rates λj = λ (j = 0, 1, · · · ), and the service completion rates

µj =

{
jµ (j = 0, 1, · · · , s)
sµ (j = s, s + 1, · · · ).

• Hence we have

pj =

{
aj

j!p0 (j = 0, 1, · · · , s)
aj

s!sj−sp0 (j = s + 1, · · · )

where a = λ/µ and

p0 =

(
s−1∑
k=0

ak

k!
+

∞∑
k=s

ak

s!sk−s

)−1

.

If a < s, the infinite geometric sum on the right converges, and

p0 =

(
s−1∑
k=0

ak

k!
+

as

(s− 1)!(s− a)

)−1

.
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• If a ≥ s, the infinite geometric sum diverges to infinity. Then p0 = 0 and hence pj = 0 for all

finite j. For a ≥ s, therefore the queue length tends to infinity with probability 1 as time increases.

In this case we say that no statistical equilibrium distribution exists.

Remarks:

(i) The probability that all servers are occupied (as observed by an outside observer) is given by

the Erlang delay formula

C(s, a) =

∞∑
j=s

pj =
as

(s− 1)!

1

s− a
p0 =

as/[(s− 1)!(s− a)](
s−1∑
k=0

ak/k!

)
+ as/[(s− 1)!(s− a)]

.

Since the arriving customer’s distribution is equal to the outside observer’s distribution, the

probability that an arriving customer finds all servers busy (equivalently the probability that

the waiting time in the queue w > 0) is also given by C(s, a).

(ii) The carried load is equal to the offered load since no request for service has been cleared from

the system without being served. In fact, this equality holds for BCD queues with arbitrary

arrival and service time distributions.
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(iii) Suppose that an arriving customer finds that all the servers are busy. What is the probability

that he finds j customers waiting in the ‘queue’ ?

• This is equivalent to find the conditional probability P{Q = j|w > 0} where Q denotes the

number of customers waiting in the queue.

• By the definition of conditional probability,

P{Q = j|w > 0} =
P{Q = j, w > 0}

P{w > 0}
.

• Thus

P{Q = j and w > 0} = Ps+j =
as

s!

(a
s

)j
p0,

we get the Geometric distribution

P{Q = j|w > 0} =
as

s!

(
a
s

)j
p0

as

s!

(
s

s−a

)
p0

= (1− ρ)ρj (j = 0, 1 . . .).

where ρ = a/s is the traffic intensity.
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(iv) Suppose that an arriving customer (test customer) finds all servers are busy and there are j

customers waiting in the queue. What is the probability distribution of his waiting time?

• LetX1 be the elapsed time from t = 0 until the customer at the head of the queue enters service

andXi be the length of time that the ith customer in the queue spends at the head of the queue.

• Clearly the test customer’s waiting time is equal to

X1 +X2 + · · · +Xj+1.

• Each Xj is equal to the shortest of the s service times then in progress. Because the service

times are independent, identical, exponential random variables with mean µ−1, the duration of

time from an arbitrary instant until the completion of the shortest remaining service time is

also exponentially distributed with mean (sµ)−1. Hence

X1 +X2 + · · · +Xj+1

has the (j + 1)-phase Erlangian distribution:

P{w > t|w > 0, Q = j} = P{X1 + · · · +Xj+1 > t} =

j∑
i=0

(sµt)i

i!
e−sµt.
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(v) If an arriving customer finds all servers are busy, the probability that his waiting time in the

queue is greater than t is given by

P{w > t|w > 0} =

∞∑
j=0

P{w > t|w > 0, Q = j}P{Q = j|w > 0}

=

∞∑
j=0

j∑
i=0

(sµt)i

i!
e−sµt(1− ρ)ρj

=

∞∑
i=0

∞∑
j=i

(sµt)i

i!
e−sµt(1− ρ)ρj = e−(1−ρ)sµt.

From this, we obtain

P{w > t} = P{w > t|w > 0}P{w > 0} = C(s, a)e−(1−ρ)sµt.

(vi) It can be easily derived that the mean waiting time in the queue

Wq = E(w) =

∫ ∞

0

P (w > t)dt =

∫ ∞

0

C(s, a)e−(1−ρ)sµtdt =
C(s, a)

(1− ρ)sµ

and

E(w|w > 0) =

∫ ∞

0

P (w > t|w > 0)dt =

∫ ∞

0

e−(1−ρ)sµtdt =
1

(1− ρ)sµ
,
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The mean waiting time in the system (including service time) is given by

Ws = Wq + µ−1 =
C(s, a) + (1− ρ)s

(1− ρ)sµ
.

Note:

E(x) = lim
k→∞

∫ k

0

xf (x)dx = lim
k→∞

∫ k

0

xdF (x)

= lim
k→∞

(xF (x)|k0 −
∫ k

0

F (x)dx)

= lim
k→∞

(kF (k)−
∫ k

0

F (x)dx)

= lim
k→∞

(kF (k)− k + k −
∫ k

0

F (x)dx)

= lim
k→∞

(kF (k)− k +

∫ k

0

1− F (x)dx)

= lim
k→∞

(0 +

∫ k

0

P (t > x)dx) =

∫ ∞

0

P (t > x)dx.

Here we assume that

lim
k→∞

k(F (k)− 1) = lim
k→∞

∫∞
k f (x)dx

−1/k
= lim

k→∞
−k2f (k) = 0.

The assumption is reasonable because for
∫∞
0 xf (x)dx to be finite, f (x) should tend to zero ‘faster’

than x−2 as x → ∞.
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12 Little’s Queueing Formula

If λ is the mean arrival rate, W is the mean time spent in the system (mean sojourn time) and L

is the mean number of customers present, J.D.C. Little proved in 1961 that

L = λW.

This result is one of the most general and useful results in queueing theory for a blocked customer

delay queue. The formal proof of this theorem is too long for this course. Let us just formally

state the theorem and then give a heuristic proof.

Proposition 1 (Little’s Theorem) Let L(x) be the number of customers present at time x,

and define the mean number L of customers present throughout the time interval [0,∞) as

L = lim
t→∞

1

t

∫ t

0

L(x)dx;

let N(t) be the number of customers who arrive in [0, t], and define the arrival rate λ as

λ = lim
t→∞

N(t)

t
;

and let Wi be the sojourn time of the ith customer, and define the mean sojourn time W as

W = lim
n→∞

1

n

n∑
i=1

Wi.

If λ and W exist and are finite, then so does L, and they are related by λW = L.
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Proof: Let us follow the heuristic argument suggested by P. J. Burke.

• Assume that the mean values L and W exist, and consider a long time interval (0, t) throughout

which statistical equilibrium (steady state) prevails.

• The mean number of customers who enter the system during this interval is λt.

Imagine that a sojourn time is associated with each arriving customer; i.e., each arrival brings a

sojourn time with him. Thus the average sojourn time brought into the system during (0, t) is λtW .

On the other hand, each customer present in the system uses up his sojourn time linearly with time.

If L is the average number of customers present throughout (0, t), then Lt is the average amount

of time used up in (0, t).

Now as t → ∞ the accumulation of sojourn time must equal the amount of sojourn time used up;

that is,

lim
t→∞

λtW

Lt
= 1.
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With the help of Little’s formula, we get the following useful results:

(a) λ, the average number of arrivals entering the system,

(b) Ls, the average number of customers in the queueing system,

(c) Lq, the average number of customers waiting in the queue,

(d) Lc, the average number of customers in the server,

(e) Ws, the average time a customer spends in the queueing system,

(f) Wq, the average time a customer spends in waiting in the queue,

(g) Wc, the average time a customer spends in the server.

then the Little’s formula states that if the steady state probability distribution exists, we have

Ls = λWs, Lq = λWq, and Lc = λWc.
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12.1 Little’s queueing Formula for the M/M/1/∞ Queue

In the following, we are going to prove Little’s queueing formula for the case of M/M/1/∞ queue.

We recall that

Ls =
ρ

1− ρ
, Lq =

ρ2

1− ρ
, Lc = ρ, Ls = Lq + Lc, ρ =

λ

µ
.

• We first note that the expected waiting time Wc at the server is 1/µ.

Therefore we have

Wc =
1

µ
=

λ

λµ
=

Lc

λ
.

• Secondly we note that when a customer arrived, there can be i customers already in the system.

The expected waiting time before joining the server when there are already i customers in the system

is of course i/µ. Because there is only server and the mean service time of each customer in front

of him is 1/µ.

• Therefore the expected waiting time Wq before one joins the server will be

∞∑
i=1

pi

(
i

µ

)
=

1

µ

∞∑
i=1

ipi =
Ls

µ
=

ρ

(1− ρ)µ
.
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• Since i can be 0, 1, 2, . . ., we have

Wq =
ρ

(1− ρ)µ
=

ρ2

(1− ρ)µρ
=

Lq

λ

• The expected waiting time at the server Wc will be of course 1/µ. Thus we have

Ws = Wq +Wc

=
Lq

µ
+

1

µ

=
1

µ
(

ρ

1− ρ
+ 1)

=
1

µ(1− ρ)

=
ρ

λ(1− ρ)

=
Ls

λ
.

Here

ρ = λ/µ

and

Ls = ρ/(1− ρ).
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12.2 Applications of the Little’s queueing Formula

Arrival rate λ

Service rate µ

Traffic intensity ρ = λ/µ

Probability that no customer in the queue p0 = 1− ρ

Probability that i customers in the queue pi = p0ρ
i

Probability that an arrival has to wait for service 1− p0 = ρ

Expected number of customers in the system Ls = ρ/(1− ρ)

Expected number of customers in the queue Lq = ρ2/(1− ρ)

Expected number of customers in the server Lc = ρ

Expected waiting time in the system Ls/λ = 1/(1− ρ)µ

Expected waiting time in the queue Lq/λ = ρ/(1− ρ)µ

Expected waiting time in the server Lc/λ = 1/µ

Table 12.1: A summary of the M/M/1/∞ queue.

Example 1 Consider the M/M/2/∞ queue with arrival rate λ and service rate µ. What is the

expected waiting time for a customer in the system?

We recall that the expected number of customers Ls in the system is given by

Ls =
2ρ

1− ρ2
.
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Here ρ = λ/(2µ). By applying the Little’s queueing formula we have

Ws =
Ls

λ
=

1

µ(1− ρ2)
.

Example 2 On average 30 patients arrive each hour to the health centre. They are first seen by

the receptionist, who takes an average of 1 min to see each patient. If we assume that the M/M/1

queueing model can be applied to this problem, then we can calculate the average measure of the

system performance, see Table 2.

Arrival rate λ = 30 (per hour)

Service rate µ = 60 (per hour)

Traffic intensity ρ = 0.5

Probability that no customer in the queue p0 = 0.5

Probability that i customers in the queue pi = 0.5i+1

Probability that an arrival has to wait for service 0.5

Expected number of customers in the system Ls = 1

Expected number of customers in the queue Lq = 0.5

Expected number of customers in the server Lc = 0.5

Expected waiting time in the system Ls/λ = 1/30

Expected waiting time in the queue Lq/λ = 1/60

Expected waiting time in the server Lc/λ = 1/60

Table 12.2: A summary of the system performance
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13 Allocation of the Arrivals in a System of M/M/1 Queues

�
µ1

��
��
1 Queue 1 �λ1

•••
�
µn��

��
n Queue n �

λn

�Allocation M

Figure 13.1 The Queueing System with Allocation of Arrivals.

• We consider a queueing system consisting of n independent M/M/1 queues. The service rate of

the serve at the ith queue is µi.

• The arrival process is a Poisson process with rate M .

• An allocation process is implemented such that it diverts an arrived customers to queue i with

probability
λi

λ1 + . . . + λn
=

λi

M
.

Then the input process of queue i is a Poisson process with rate λi.
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• The objective here is to find the parameters λi such that some system performance is optimized.

We remark that we must have λi < µi.

13.1 Minimizing Number of Customers in the System

The expected number of customers in queue i is

λi/µi

1− λi/µi
.

The total expected number of customers in the system is

n∑
i=1

λi/µi

1− λi/µi
.

The optimization problem is then given as follows:

min
λi

{
n∑

i=1

λi/µi

1− λi/µi

}
.

subject to
m∑
i=1

λi = M

and

0 ≤ λi < µi for i = 1, 2, . . . , n.
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By consider the Lagrangian function

L(λ1, . . . , λn,m) =

n∑
i=1

λi/µi

1− λi/µi
−m

(
n∑

i=1

λi −M

)
and solving

∂L

∂λi
= 0 and

∂L

∂m
= 0

we have the optimal solution

λi = µi

(
1− 1

√
mµi

)
< µi

where

m =


n∑

i=1

√
µi

n∑
i=1

µi −M


2

.
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13.2 Minimizing Number of Customers Waiting in the System

The expected number of customers waiting in queue i is

(λi/µi)
2

1− λi/µi
.

The total expected number of customers waiting in the system is

n∑
i=1

(λi/µi)
2

1− λi/µi
.

The optimization problem is then given as follows:

min
λi

{
n∑

i=1

(λi/µi)
2

1− λi/µi

}
.

subject to
m∑
i=1

λi = M

and

0 ≤ λi < µi for i = 1, 2, . . . , n.
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By consider the Lagrangian function

L(λ1, . . . , λn,m) =

n∑
i=1

(λi/µi)
2

1− λi/µi
−m

(
n∑

i=1

λi −M

)
and solving

∂L

∂λi
= 0 and

∂L

∂m
= 0

we have the optimal solution

λi = µi

(
1− 1√

1 +mµi

)
< µi

where m is the solution of
n∑

i=1

µi

(
1− 1√

1 +mµi

)
= M.
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14 Applications of Queues

We are going to look at one application of queueing systems. In a large machine repairing company,

workers must get their tools from the tool centre which is managed by an operator. Suppose the

mean number of workers seeking for tools per hour is 5 and each worker is paid 8 dollars per hour.

14.1 Which Operator to Employ?

There are two possible operators (A and B) to employ. In average Operator A takes 10 minutes

to handle one request for tools is paid 5 dollars per hour. While Operator B takes 11 minutes to

handle one request for tools is paid 3 dollars per hour.

• Assume that the inter-arrival time of workers and the processing time of the operators are expo-

nentially distributed. One may regard the request for tools as a queueing process (An M/M/1/∞)

where the arrival rate λ = 5 per hour.

• For Operator A, the service rate is µ = 60/10 = 6 per hour. Thus we have

ρ = λ/µ = 5/6.

• The expected number of workers waiting for tools at the tool centre will be

ρ

1− ρ
=

5/6

1− 5/6
= 5.
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• The expected delay cost of the workers is

5× 8 = 40

dollars per hour and the operator cost is 5 dollars per hour. Therefore the total expected cost is

40 + 5 = 45.

• For Operator B, the service rate is µ = 60/11 per hour. Thus we have

ρ = λ/µ = 11/12.

The expected number of workers waiting for tools at the tool centre will be

ρ

1− ρ
=

11/12

1− 11/12
= 11.

The expected delay cost of the workers is

11× 8 = 88

dollars per hour and the operator cost is 3 dollars per hour. Therefore the total expected cost is

88 + 3 = 91.

• Conclusion: Operator A should be employed.
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14.2 Two M/M/1 Queues Or One M/M/2 Queue ?

If one more identical operator can be employed, then which of followings is better ? (In our analysis,

we assume that λ < µ).

(i) Put the two operators separately. Therefore we have two M/M/1/∞ queues. In this case, we

assume that an arrived customer can either join the first queue or the second with equal chance.

(ii) Put the two operators together. Therefore we have an M/M/2/∞ queue.

��
��
1 · · ·�

µ

��
��
2 · · ·�

µ
@

@
@I

�
�

�	

λ
2

λ
2

Figure 14.1 Case (i) Two M/M/1/∞ Queues.

��
��
1�

µ

��
��
2

· · ·
�

µ �

λ

Figure 14.2 Case (ii) One M/M/2/∞ Queue.

To determine which case is better, we calculate the expected number of customers (workers) in both

cases. Clearly in our consideration, the smaller the better (Why?).
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In case (i), the expected number of customers in any one of the queues will be given by

( λ
2µ)

1− ( λ
2µ)

.

Hence the total expected number of customers (workers) in the system is

S1 = 2×
( λ
2µ)

1− ( λ
2µ)

=
(λµ)

1− ( λ
2µ)

.

In case (ii), the expected number of customers in the system will be given by (see previous section)

S2 =
(λµ)

1− ( λ
2µ)

2
.

Clearly S2 < S1.

• Conclusion: Case (ii) is better. We should put all the servers (operators) together.
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14.3 One More Operator?

Operator A later complains that he is overloaded and the workers have wasted their time in waiting

for a tool. To improve this situation, the senior manager wonders if it is cost effective to employ

one more identical operator at the tool centre. Assume that the inter-arrival time of workers and

the processing time of the operators are exponentially distributed.

• For the present situation, one may regard the request for tools as a queueing process (An

M/M/1/∞) where the arrival rate λ = 5 per hour and the service rate µ = 60/10 = 6 per hour.

Thus we have ρ = λ/µ = 5/6.

• The expected number of workers waiting for tools at the tool centre will be

ρ

1− ρ
=

5/6

1− 5/6
= 5.

The expected delay cost of the workers is 5 × 8 = 40 dollars per hour and the operator cost is 5

dollars per hour. Therefore the total expected cost is 40 + 5 = 45 dollars.

When one extra operator is added then there are 2 identical operators at the tool center and this

will be an M/M/2/∞ queue.
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• The expected number of workers in the system is given by (c.f. (11))

1− ρ

1 + ρ

∞∑
i=1

2iρi =
2ρ

1− ρ2

where

ρ =
λ

2µ
=

5

12
.

• In this case the expected delay cost and the operator cost will be given respectively by

8× 2ρ

1− ρ2
=

8× 120

119
= 8.07 and 2× 5 = 10 dollars.

• Thus the expected cost when there are 2 operators is given by 18.07 dollars.

• Conclusion: Hence the senior manager should employ one more operator.

How about employing three operators? (You may consider M/M/3/∞ queue). But it is clear that

there is no need to employ four operators. Why?
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15 More Applications of Queueing Systems

15.1 An Unreliable Machine System

Consider an unreliable machine system. The normal time of the machine is exponentially distributed

with mean λ−1. Once the machine is broken, it is subject to a n-phase repairing process. The

repairing time at phase i is also exponentially distributed with mean µ−1
i (i = 1, 2, . . . , n). After

the repairing process, the machine is back to normal. Let 0 be the state that the machine is normal

and i be the state that the machine is in repairing phase i. Then the Markov chain of the model is

given by
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Figure 15.1 The Markov Chain for the Unreliable Machine System.

• Let the steady state probability vector be p = (p0, p1, . . . , pn) satisfies A6p = 0 where

A6 =


−λ 0 µn

λ −µ1

µ1 −µ2
. . . . . . 0

0 µn−1 −µn

 .
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From the first equation −λp0 + µnpn we have

pn =
λ

µn
p0.

From the second equation λp0 − µ1p1 we have

p1 =
λ

µ1
p0.

From the third equation µ1p1 − µ2p2 we have

p2 =
λ

µ2
p0.

We continue this process and therefore

pi =
λ

µi
p0.

Since p0 + p1 + p2 + . . . + pn = 1, we have

p0

(
1 +

n∑
i=1

λ

µi

)
= 1.

Therefore

p0 =

(
1 +

n∑
i=1

λ

µi

)−1

.
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15.2 A Reliable One-machine Manufacturing System

Here we consider an Markovian model of reliable one-machine manufacturing system.

• The production time for one unit of product is exponentially distributed with a mean time of µ−1.

• The inter-arrival time of a demand is also exponentially distributed with a mean time of λ−1.

• The demand is served in a first come first serve manner. In order to retain the customers, there is

no backlog limit in the system. However, there is an upper limit n(n ≥ 0) for the inventory level.

• The machine keeps on producing until this inventory level is reached and the production is stopped

once this level is attained.

•We seek for the optimal value of n (the hedging point or the safety stock) which minimizes

the expected running cost.

• The running cost consists of a deterministic inventory cost and a backlog cost. In fact, the opti-

mal value of n is the best amount of inventory to be kept in the system so as to hedge against the

fluctuation of the demand.
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Let us summarized the notations as follows.

I , the unit inventory cost;

B, the unit backlog cost;

n ≥ 0, the hedging point;

µ−1, the mean production time for one unit of product;

λ−1, the mean inter-arrival time of a demand.
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Figure 15.2 The Markov Chain (M/M/1 Queue) for the Manufacturing System.

If the inventory level (negative inventory level means backlog) is used to represent the state of the

system, one may write down the Markov chain for the system as follows.

109



Here we assume that µ > λ, so that the steady state probability distribution of the above M/M/1

queue exists and has analytic solution

q(i) = (1− p)pn−i, i = n, n− 1, n− 2, · · ·

where

p = λ/µ

and q(i) is the steady state probability that the inventory level is i.

Hence the expected running cost of the system (sum of the inventory cost and the backlog cost) can

be written down as follows:

E(n) = I

n∑
i=0

(n− i)(1− p)pi︸ ︷︷ ︸
inventory cost

+B

∞∑
i=n+1

(i− n)(1− p)pi︸ ︷︷ ︸
backlog cost

. (13)
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Proposition 2 The expected running cost E(n) is minimized if the hedging point n is chosen

such that

pn+1 ≤ I

I +B
≤ pn.

Proof: We note that

E(n− 1)− E(n) = B − (I +B)(1− p)

n−1∑
i=0

pi = −I + (I +B)pn

and

E(n + 1)− E(n) = −B + (I +B)(1− p)

n∑
i=0

pi = I − (I +B)pn+1.

Therefore we have

E(n− 1) ≥ E(n) ⇔ pn ≥ I

I +B
and

E(n + 1) ≥ E(n) ⇔ pn+1 ≤ I

I +B
.

Thus the optimal value of n is the one such that

pn+1 ≤ I

I +B
≤ pn.
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A Summary on Markovian Queueing Systems

• The Kendall’s notations.

• M/M/s/n queue:

- the Markov chain diagram, the generator matrix, the steady state probability.

- Erlang loss formula, Erlang delay formula.

- waiting time distribution in an M/M/s/∞ queue.

• The statement of the Little’s queueing formula.

• System performance analysis:

- Expected number of customers.

- Expected number of busy servers.

- Mean waiting time.

• Applications:

- Employment of operators.

- Unreliable machine system.

- Manufacturing system.
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