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Abstract

Abstract In online portfolio selection problems, transaction costs incurred by changes
of investment proportions on risky assets have a significant impact on the investment
strategy and the return in long-term investment horizon. However, in many online port-
folio selection studies, transaction costs are usually neglected in the decision making
process. Here we consider an adaptive online portfolio selection problem with trans-
action costs. We first propose an adaptive online moving average method (AOLMA) to
predict the future returns of risky assets by incorporating an adaptive decaying factor
into the moving average method, which improves the accuracy of return prediction. The
net profit maximization model (NPM) is then constructed where transaction costs are
considered in each decision making process. The adaptive online net profit maximiza-
tion algorithm (AOLNPM) is designed to maximize the cumulative return by integrating
AOLMA and NPM together. Numerical experiments show that AOLNPM dominates sev-
eral state-of-the-art online portfolio selection algorithms in terms of various performance
metrics, i.e., cumulative return, mean excess return, Sharpe ratio, Information ratio and
Calmar ratio. We then extend our study to the case of constant cash inflow. A novel
method to deal with transaction costs and simultaneously calculating the transaction re-
mainder factor and portfolio vector for each period was also proposed.
Keywords: Online portfolio selection; Adaptive moving average method; Transaction
cost; Linear programming.
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Introduction to Online Portfolio Selection (OLPS)

• Online portfolio selection attracts both researchers and practi-
tioners. It is different from the traditional portfolio selection the-
ory proposed by Markowitz (1952) in his seminal work.

• In a traditional portfolio selection problem, it is usually as-
sumed that the return of a risky asset is subject to a certain
distribution function.

-Based on the distribution function, the expected value and
variance of the return can be calculated to measure the ex-
pected return and risk, respectively.

-Then investors allocate the capital in different assets to achieve
excess investment return or avert the investment risk.
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Introduction to Online Portfolio Selection (OLPS)

• In contrast, online portfolio selection concerns more on em-
ploying modern techniques to predict the future returns of
risky assets and making the optimal investment strategy.

• Online portfolio selection focuses on exploring the most effi-
cient and practical computational intelligence techniques to
deal with real online asset trading problems.

• It is a sequential decision making optimization problem
where the investment strategy is determined at the beginning of
each short period.
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Introduction to Online Portfolio Selection (OLPS)

Online portfolio strategies can be classified into five types.

(I) The first one is called “Benchmark”.

• One widely adopted Benchmark is the Uniform Buy-and-Hold
strategy, which is also called the Market strategy, Li and Hoi
(2014). In this strategy, the available capital is uniformly dis-
tributed into all the risky assets in each period.

• Another Benchmark is called the Best stock strategy, Li and
Hoi (2014), where all the capital is invested into the best asset
in the whole investment process.

• Constant Rebalanced Portfolios (CRP) strategy is a popular
Benchmark where the allocation proportions of the risky assets
are the same in all periods. There are two special CRPs: Uni-
form Constant Rebalanced Portfolios (UCRP) Li and Hoi (2015)
and Best Constant Rebalanced Portfolios (BCRP) Cover (1991).
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Introduction to Online Portfolio Selection (OLPS)

(II) The second type of methods focuses on the “Follow the
Winner” strategy. They are based on the momentum principle
which assumes that the risky assets performing well currently
will continue achieving good performance in the next period.
• Cover (1991) proposed the concept of Universal Portfolio
(UP) strategy, which first distributed the capital to several base
experts and derived the corresponding returns, then obtain the
performance weighted strategy.
• Helmbold et al. (1998) proposed the Exponential Gradient
(EG) method in which exponentiated gradient update was
employed to calculate the investment proportions based on the
past return data.
• Agarwal et al. (2006) employed the Online Newton Step
(ONS) method to tackle online portfolio selection, where the
gradient and Hessian matrix of the log function of cumula-
tive return are computed.
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Introduction to Online Portfolio Selection (OLPS)

(III) There are some “Follow the Loser” approaches built on
the mean reversion principle, which claims that the risky as-
sets performing well in the past may return to normal or perform
poorly in the next period. Therefore, it is encouraged to buy
the current under-performing risky assets and sell the over-
performing assets.

• Borodin et al. (2004) proposed the Anti-correlation (Anticor)
method based on the mean reversion principle, where the
proportions were transferred from the assets performing well to
assets performing poorly, and the explicit amounts of transferred
proportions were determined by the cross-correlation matrix
of different risky assets.
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Introduction to Online Portfolio Selection (OLPS)

• Li et al. (2012) proposed the Passive-aggressive Mean Re-
version (PAMR) method based on a loss function. Current port-
folio will be kept if its return is below a certain return thresh-
old under the assumption that under-performing risky assets will
perform better in the next period.

• Similar to PAMR, Li et al. (2011, 2013) proposed the Confi-
dence Weighted Mean Reversion (CWMR) method by model-
ing the portfolio vector with Gaussian distribution and update the
distribution constantly following the mean reversion principle.

• Huang et al. (2016) proposed the Robust Median Rever-
sion (RMR) strategy where the robust L1-median estimator was
adopted to exploit the reversion phenomenon. The RMR runs in
linear time which is easy to implement in real algorithmic trad-
ing.
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Introduction to Online Portfolio Selection (OLPS)

• The above PAMR and CWMR employed the single-period
mean reversion assumption where the price of asset in the
next period was estimated with the price of last period, which
may not achieve good performance.

• To overcome this, Li et al. (2012, 2015) employed the Mov-
ing Average method to predict the price of next period based
on multiple prices of previous periods and proposed the Online
Moving Average Reversion (OLMAR) method.

• In this talk, we shall extend the OLMAR method for predicting
prices/returns of risky assets.
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Introduction to Online Portfolio Selection (OLPS)

(IV) The fourth type of online portfolio selection strategies fo-
cuses on “Pattern Matching Based Approaches”.

There are usually two steps in pattern matching based approaches.

• The first step is sample selection intended for selecting the
historical price patterns which are similar to the latest price pat-
tern. The selected historical price patterns are used to estimate
the return vector of the whole portfolio in the next period.

• The second step is to construct the portfolio optimization
model based on the selected price patterns.
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Introduction to Online Portfolio Selection (OLPS)

• Györfi et al. (2006) employed the nonparametric kernel-
based sample selection method to search for similar price
patterns by comparing the Euclidean distance of different pat-
terns, and constructed a log-optimal portfolio based on the cap-
ital growth theory.

• Li et al. (2011) employed the correlation-driven nonparametric
sample selection method by using the correlation coefficient of
different patterns, and proposed the Correlation-driven Non-
parametric (CORN) learning algorithm.

(V) The fifth type of online portfolio selection strategies is the
“Meta-learning Approach”. In this approach, multiple base ex-
perts are defined where each expert is equipped with different
strategies and outputs one portfolio. Then all the output portfo-
lios are combined together into a final portfolio.
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Problem Formulation (I)
• In online portfolio selection, an investor makes sequential de-
cisions according to the changing financial market.
• Denote the investment strategy in Period t by xt = (xt1, xt2, . . . , xtm),
where xti is the proportion allocated to risky asset i, (t =
1, 2, . . . , n, i = 1, 2, . . . ,m).
• Let the return in Period t be rt = (rt1, rt2, . . . , rtm). We note that
xt should be determined at the beginning of Period t and rt

is known at the end of Period t (See Figure 1).

 

Figure 1: The investment process.
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Problem Formulation (I)
• The return vector rt = (rt1, rt2, . . . , rtm) is calculated as follows:

rt = pt/pt−1

where pt = (pt1, pt2, . . . , ptm) is the price at period t and “/” is an
element-wise division of two vectors.
• The Cumulative Return from the beginning of the investment
to Period n can be expressed as follows:

CRn =

n∏
t=1

rtxT
t . (1)

• We note that transaction cost is NOT considered in Eq. (1).
Recall that the decision variables satisfy the following constraints:

xt1 + xt2 + . . .+ xtm = 1, t = 1, 2, . . . , n, (2)

where 0 ≤ xti ≤ 1, i = 1, 2, . . . ,m.
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Online Moving Average Method

• Li and Hoi (2012, 2015) proposed two moving average meth-
ods to predict the single-period return.
• The first one is a Simple Moving Average (SMA) method:
Given the historical stock prices p1,p2, . . . ,pt and the truncated
window size w, the predicted stock price of pt+1 can be calcu-
lated as follows:

p̂t+1 =
1
w

t∑
i=t−w+1

pi.

• The estimated return for rt+1 can be obtained by

r̂t+1 =
p̂t+1

pt
=

1
w

(
1 +

1
rt
+

1
rt · rt−1

+ · · ·+ 1∏w−2
i=0 rt−i

)
.

Here “1” is the vector of all ones and the product “·” refers to
the element-wise product of vectors.
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Online Moving Average Method

• The second one is the Exponential Moving Average (EMA)
method which uses all the historical stock prices by assigning
each stock price an exponential weight.

• The predicted stock price can be calculated as follows:

p̂t+1 = αpt + (1 − α)p̂t = αpt + α(1 − α)pt−1 + · · ·+ (1 − α)t−1p1

and the estimated return is

r̂t+1 = α1 + (1 − α)
r̂t

rt

where α is the decaying factor.
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Adaptive Online Moving Average Method

• We propose the Adaptive Online Moving Average (AOLMA)
method where the decaying factor can be adjusted automati-
cally according to the performances of risky assets.
• Define the decaying vector of the whole portfolio at Period
t by αt = (αt1, αt2, . . . , αtm), where αti is the decaying factor of
risky asset i (i = 1, 2, . . . ,m).
• Then the predicted price at Period (t + 1) can be expressed
as follows:

p̂t+1 = αt+1 · pt + (1 −αt+1) · p̂t (3)

and the predicted return is

r̂t+1 = αt+1 · 1 + (1 −αt+1) ·
r̂t

rt
. (4)
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Adaptive Online Moving Average Method

• The key of the adaptive moving average method lies in the
decaying factor αt.

• Consider risky asset i at Period t: the predicted return following
from Eq. (4) is

r̂ti = αti + (1 − αti)
r̂(t−1)i

r(t−1)i

and the corresponding error is

rti − r̂ti = rti −
r̂(t−1)i

r(t−1)i
−
(

1 −
r̂(t−1)i

r(t−1)i

)
αti. (5)
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Adaptive Online Moving Average Method

• Our aim is to improve (reduce) the prediction error in the
online portfolio selection process. Once rti is known, the error
can be obtained and can be applied to determine the decaying
factor for the next period.
• There are four cases that one needs to consider:

Case 1: rti > r̂ti and r(t−1)i > r̂(t−1)i.

Case 2: rti > r̂ti and r(t−1)i ≤ r̂(t−1)i.

Case 3: rti ≤ r̂ti and r(t−1)i > r̂(t−1)i.

Case 4: rti ≤ r̂ti and r(t−1)i ≤ r̂(t−1)i.
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Adaptive Online Moving Average Method

• For Case 1, it can be derived from Eq. (5) that the coefficient
of αti is −

(
1 − r̂(t−1)i

r(t−1)i

)
< 0.

• Then the decaying factor for the next period α(t+1)i can be
increased by one step size to reduce the prediction error:

α(t+1)i = αti + τ (6)

where τ is the given step size of the decaying factor.
• For Case 2, the coefficient is −

(
1 − r̂(t−1)i

r(t−1)i

)
≥ 0, then the de-

caying factor α(t+1)i can be decreased to reduce the prediction
error as follows:

α(t+1)i = αti − τ. (7)
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Adaptive Online Moving Average Method

• Similarly, for Case 3 and Case 4, the decaying factor can be
updated by Eqs. (6) and (7), respectively.

Remark
-It is reasonable to employ the above decaying factor updating mecha-
nism in online portfolio selection.
-For example, in Case 1, both r̂(t−1)i and r̂ti are underestimated. Then
in the next period, it is necessary to increase the value of r̂(t+1)i by
using a larger α(t+1)i following from Eq. (5) (As r̂ti

rti
< 1).

-The initial value of the decaying factor is set to be α1i = 0.5. If the
iterated decaying factor αti is outside the interval [0, 1], then it is
reset to 0.5.

Wai-Ki Ching On Some Adaptive Online Portfolio Selection Problems



Adaptive Online Moving Average Method

Example
-To verify the effectiveness of our proposed AOLMA method, we
employ the classical benchmark data set MSCI which contains
the historical daily returns of 24 stocks from April 1, 2006 to
March 31, 2010, Li and Ho (2015).
-For each stock i, its prediction relative error at the j-th trading
day is given by

Er(j) =
|̂rji − rji|

rji
× 100%

and the average relative error is

Ēr =
1
n

n∑
j=1

|̂rji − rji|
rji

× 100%.
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Adaptive Online Moving Average Method

Example
-We apply SMA (w = 5), EMA (α = 0.5), AOLMA (τ = 0.0006) to
estimate the daily returns and make comparisons with the real returns.
The average relative errors are shown in Table 1.
-It is clear that AOLMA achieves the lowest relative error in each
stock, meaning that AOLMA performs better than both SMA and EMA.

Table 1: Average relative errors of SMA, EMA and AOLMA.

Stock SMA(%) EMA(%) AOLMA(%) Stock SMA(%) EMA(%) AOLMA(%)
1 2.06 1.16 1.14 13 1.88 1.06 1.04
2 3.08 1.75 1.69 14 3.69 2.07 2.05
3 2.57 1.44 1.42 15 2.53 1.43 1.39
4 2.11 1.19 1.16 16 3.48 1.96 1.92
5 3.39 1.90 1.87 17 2.72 1.53 1.48
6 2.80 1.58 1.53 18 2.68 1.51 1.48
7 2.62 1.48 1.43 19 3.18 1.79 1.77
8 2.26 1.28 1.25 20 2.72 1.53 1.48
9 4.00 2.25 2.21 21 2.87 1.62 1.57
10 2.62 1.48 1.46 22 2.83 1.59 1.56
11 2.60 1.47 1.45 23 3.52 1.98 1.93
12 2.72 1.53 1.50 24 2.30 1.29 1.29
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Adaptive Online Moving Average Method

Example
-To test the robustness of AOLMA, we conduct multiple experiments with step size τ
ranging from 0.0001 to 0.0010. The final average relative errors are shown in Fig. 2.
-For all the stocks, the maximum difference of average relative errors with different τ
does not exceed 0.09%.
-To show the advantages of AOLMA, for all step sizes τ , we select the worst case of
average relative error for each stock, and compare it with SMA and EMA (See Fig. 3).
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Figure 2: Average relative
errors for different τ
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Figure 3: A comparison with
SMA and EMA
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Net Profit Maximization Model with Transaction Costs

• We propose the Net Profit Maximization Model with Trans-
action Costs. It is worth noting that several general assump-
tions are made in the model.

− Firstly, we assume proportional transaction costs on risky
assets purchases and sales.

− Secondly, we assume that each asset share is arbitrarily di-
visible, and that any required quantities of shares, even frac-
tional, can be bought and sold at the last closing price in any
trading period.

− Thirdly, we assume that market behavior and stock prices are
not affected by any trading strategy / market impact.

− Fourthly, no additional capital is introduced or withdrawn in
the investment period.
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Net Profit Maximization Model with Transaction Costs
• The net profit maximization model (NPM) considering trans-
action cost in each trading period:

max
m∑

i=1

r̂tixti − γ

m∑
i=1

|xti − x̃(t−1)i|.

s.t. xt1 + xt2 + . . .+ xtm = 1,
0 ≤ xti ≤ 1, i = 1, 2, . . . ,m.

(8)

• Here γ is the unit transaction cost rate for buying/selling
assets and x̃t−1 is the actually investment strategy in period (t −
1).
• The model can be transformed into the following LP problem:

max
m∑

i=1

r̂tix̃(t−1)i +

m∑
i=1

(x̃(t−1)i − γ)uti −
m∑

i=1

(x̃(t−1)i + γ)vti.

s.t.
∑m

i=1(uti − vti) = 0,
0 ≤ x̃(t−1)i + uti − vti ≤ 1, i = 1, 2, . . . ,m,

uti ≥ 0, vti ≥ 0, i = 1, 2, . . . ,m.
(9)
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Net Profit Maximization Model with Transaction Costs
• Based on the above NPM model, we can also incorporate the
risk constraint into online portfolio selection decision making.
Similar to the estimation of the return rt, we use the absolute
deviation, Konno and Yamazaki (1991), of the most recent w
prices to measure the risk of the whole portfolio at period t:

1
w

w∑
j=1

∣∣∣∣∣
m∑

i=1

xti(r(t−j)i − r̂ti)

∣∣∣∣∣ .
• Then the NPM model with risk constraint can be expressed as

max
m∑

i=1

r̂tixti − γ

m∑
i=1

|xti − x̃(t−1)i|

s.t.
1
w

w∑
j=1

∣∣∣∣∣
m∑

i=1

xti(r(t−j)i − r̂ti)

∣∣∣∣∣ ≤ θ

xt1 + . . .+ xtm = 1, 0 ≤ xti ≤ 1, i = 1, . . . ,m,

(10)

where θ is the acceptable risk level of the investor.
Wai-Ki Ching On Some Adaptive Online Portfolio Selection Problems



Net Profit Maximization Model with Transaction Costs
• To solve Model (10), we transform the first nonlinear constraint
into a linear one. For each j = 1, 2, . . . ,w,∣∣∣∣∣

m∑
i=1

xti(r(t−j)i − r̂ti)

∣∣∣∣∣
can be expressed as

max

{
m∑

i=1

xti(r(t−j)i − r̂ti), 0

}
+max

{
m∑

i=1

xti(r̂ti − r(t−j)i), 0

}
.

Set

max

{
m∑

i=1

xti(r(t−j)i − r̂ti), 0

}
= dj

and

max

{
m∑

i=1

xti(r̂ti − r(t−j)i), 0

}
= gj.
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Net Profit Maximization Model with Transaction Costs

• Then Model (10) can be transformed into

max
m∑

i=1

r̂tixti − γ

m∑
i=1

|xti − x̃(t−1)i|.

s.t.
1
w

w∑
j=1

(dj + gj) ≤ θ,

m∑
i=1

xti(r(t−j)i − r̂ti) ≤ dj,

m∑
i=1

xti(r̂ti − r(t−j)i) ≤ gj,

xt1 + xt2 + . . .+ xtm = 1,
0 ≤ xti ≤ 1, i = 1, 2, . . . ,m,
dj ≥ 0, gj ≥ 0, j = 1, 2, . . . ,w.

(11)
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Net Profit Maximization Model with Transaction Costs
• Then Model (11) can be transformed into


max
m∑

i=1

r̂tix̃(t−1)i +
m∑

i=1

(
x̃(t−1)i − γ

)
uti −

m∑
i=1

(
x̃(t−1)i + γ

)
vti

s.t.
∑w

j=1(dj + gj) ≤ wθ,∑m
i=1(r(t−j)i − r̂ti)uti −

∑m
i=1(r(t−j)i − r̂ti)vti − dj ≤

∑m
i=1(r̂ti − r(t−j)i)x̃(t−1)i,∑m

i=1(r̂ti − r(t−j)i)uti −
∑m

i=1(r̂ti − r(t−j)i)vti − gj ≤
∑m

i=1(r(t−j)i − r̂ti)x̃(t−1)i,∑m
i=1(uti − vti) = 0,

0 ≤ x̃(t−1)i + uti − vti ≤ 1,

uti ≥ 0, vti ≥ 0, i = 1, 2, . . . ,m,

dj ≥ 0, gj ≥ 0, j = 1, 2, . . . ,w.
(12)

It is a LP problem of (2m+2w) variables, including uti, vti, dj and
gj, i = 1, 2, . . . ,m, j = 1, 2, . . . ,w.
• By integrating the AOLMA and NPM together, we have the
Adaptive OnLine Net Profit Maximization (AOLNPM) Algo-
rithm.
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Numerical Experiments (I)

• MSCI, NYSE-O, NYSE-N and TSE are employed as bench-
mark data sets for testing the performances of different online
portfolio selection algorithms.
• MSCI contains 24 stocks which has been employed for verify-
ing the effectiveness of AOLMA method.
• NYSE-O and NYSE-N contain historical return data of stocks
selected from American stock market, where NYSE-O con-
tains the data of 36 stocks ranging from June 3, 1962 to De-
cember 31, 1984, and NYSE-N contains the data of 23 stocks
ranging from January 1, 1985 to June 30, 2010.
• TSE contains 88 stocks selected from Canadian stock mar-
ket ranging from January 4, 1994 to December 31, 1998.
• The total numbers of the trading days for MSCI, NYSE-O,
NYSE-N and TSE are 1043, 5651, 6431 and 1259, respectively.

Wai-Ki Ching On Some Adaptive Online Portfolio Selection Problems



Numerical Experiments (I)
• Numerical results for demonstrating the effectiveness of AOL-
NPM algorithm over other algorithms on benchmark data sets:
MSCI (Li and Ho (2015)), NYSE-O (Konno and Yamazaki (1991)),
NYSE-N (Cover (1991)) and TSE (Borodin et al. (2004)).
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Figure 4: Cumulative returns on different data sets.
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Numerical Experiments (I)

Table 2: Mean excess returns on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI NYSE-O NYSE-N TSE
AOLNPM 2.8819 × 10−3 6.8728 × 10−3 2.5673 × 10−3 6.2786 × 10−3

UCRP 2.2166 × 10−5 9.6691 × 10−5 9.0060 × 10−5 −1.6165 × 10−5

BCRP 4.4008 × 10−4 6.3441 × 10−4 3.5015 × 10−4 1.4139 × 10−3

UP 1.0274 × 10−5 8.7757 × 10−5 8.3683 × 10−5 −3.0125 × 10−5

EG 2.1204 × 10−5 9.7442 × 10−5 8.6917 × 10−5 −1.6750 × 10−5

ONS −2.3200 × 10−5 3.5072 × 10−4 2.9386 × 10−4 1.3161 × 10−4

Anticor-1 9.5500 × 10−4 2.3782 × 10−3 1.3924 × 10−3 2.4246 × 10−3

Anticor-2 1.0876 × 10−3 2.8591 × 10−3 2.0296 × 10−3 2.9419 × 10−3

PAMR 1.9613 × 10−3 5.5542 × 10−3 1.2918 × 10−3 4.2222 × 10−3

PAMR-1 1.9799 × 10−3 5.5542 × 10−3 1.2921 × 10−3 4.2222 × 10−3

PAMR-2 2.0692 × 10−3 5.5443 × 10−3 1.3098 × 10−3 4.1742 × 10−3

CWMR-V 2.0837 × 10−3 5.6009 × 10−3 1.3325 × 10−3 4.4938 × 10−3

CWMR-S 2.0845 × 10−3 5.6001 × 10−3 1.3328 × 10−3 4.5034 × 10−3

OLMAR-1 2.2026 × 10−3 6.3133 × 10−3 2.5806 × 10−3 3.8425 × 10−3

OLMAR-2 2.5019 × 10−3 6.6669 × 10−3 2.4707 × 10−3 5.7325 × 10−3

RMR 2.2857 × 10−3 6.4443 × 10−3 2.4826 × 10−3 4.6607 × 10−3

CORN 1.5714 × 10−3 4.0408 × 10−3 7.6987 × 10−4 1.1347 × 10−3

MER =
1
n

n∑
t=1

(Rt − R⋆
t ) = R̄ − R̄⋆.

R⋆
t is the return of the portfolio in period t by using Market strategy, and Rt is the return of the portfolio in period t.
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Numerical Experiments (I)

Table 3: Sharpe ratios on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI NYSE-O NYSE-N TSE
AOLNPM 0.1160 0.2047 0.0872 0.1111
Market 0.0017 0.0552 0.0457 0.0505
UCRP 0.0031 0.0725 0.0501 0.0485
BCRP 0.0381 0.0597 0.0546 0.0725
UP 0.0023 0.0715 0.0496 0.0467
EG 0.0030 0.0722 0.0501 0.0485
ONS 0.0002 0.0767 0.0305 0.0264
Anticor-1 0.0513 0.1583 0.0862 0.0982
Anticor-2 0.0538 0.1502 0.0929 0.0882
PAMR 0.0866 0.1886 0.0589 0.1016
PAMR-1 0.0874 0.1886 0.0589 0.1016
PAMR-2 0.0922 0.1901 0.6000 0.1008
CWMR-V 0.0920 0.1907 0.0594 0.1020
CWMR-S 0.0921 0.1907 0.0591 0.1023
OLMAR-1 0.0897 0.1913 0.0863 0.0714
OLMAR-2 0.1003 0.2014 0.0840 0.1027
RMR 0.0939 0.1960 0.0840 0.0873
CORN 0.0821 0.1383 0.0573 0.0428

SR =
1
σ
(R̄ − rf ).

Here rf is the risk-free return in financial market, R̄ is the average return of the portfolio and σ is the corresponding

standard deviation of daily returns.

Wai-Ki Ching On Some Adaptive Online Portfolio Selection Problems



Numerical Experiments (I)

Table 4: Information ratios on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI NYSE-O NYSE-N TSE
AOLNPM 0.1643 0.2016 0.0778 0.1063
UCRP 0.0277 0.0337 0.0238 −0.0075
BCRP 0.0359 0.0386 0.0280 0.0617
UP 0.0128 0.0306 0.0221 −0.0139
EG 0.0281 0.0345 0.0242 −0.0082
ONS −0.0027 0.0394 0.0121 0.0069
Anticor-1 0.1235 0.1576 0.0765 0.0903
Anticor-2 0.1057 0.1447 0.0837 0.0802
PAMR 0.1291 0.1839 0.0462 0.0956
PAMR-1 0.1305 0.1839 0.0462 0.0956
PAMR-2 0.1400 0.1856 0.0473 0.0948
CWMR-V 0.1375 0.1863 0.0469 0.0963
CWMR-S 0.1375 0.1863 0.0466 0.0965
OLMAR-1 0.1297 0.1870 0.0771 0.0659
OLMAR-2 0.1466 0.1982 0.0745 0.0976
RMR 0.1373 0.1918 0.0746 0.0820
CORN 0.1161 0.1302 0.0399 0.0331

IR = (R̄ − R̄⋆)/σ(R − R⋆).

Here σ(R − R⋆) is the standard deviation of the excess return over Market strategy.
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Numerical Experiments (I)

Table 5: Calmar ratios on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI NYSE-O NYSE-N TSE
AOLNPM 0.1802 0.4126 0.1438 0.1937
Market 0.0023 0.0835 0.0637 0.0675
UCRP 0.0042 0.1113 0.0704 0.0650
BCRP 0.0520 0.0941 0.0804 0.1199
UP 0.0032 0.1096 0.0697 0.0626
EG 0.0041 0.1106 0.0704 0.0649
ONS 0.0002 0.1252 0.0457 0.0406
Anticor-1 0.0751 0.2862 0.1368 0.1635
Anticor-2 0.0797 0.2726 0.1541 0.1452
PAMR 0.1281 0.3798 0.0946 0.1828
PAMR-1 0.1294 0.3798 0.0946 0.1828
PAMR-2 0.1370 0.3842 0.0965 0.1814
CWMR-V 0.1377 0.3853 0.0960 0.1905
CWMR-S 0.1378 0.3853 0.0959 0.1910
OLMAR-1 0.1365 0.3737 0.1420 0.1233
OLMAR-2 0.1549 0.4001 0.1380 0.1788
RMR 0.1430 0.3907 0.1389 0.1539
CORN 0.1289 0.2607 0.0916 0.0696

CR = R̄net/MDD, MDD =

√√√√1
n

n∑
t=1

min{Rt − 1, 0}2.

Here R̄net is the average daily net profit return rate, and MDD (the maximum drawdown of return) only covers the

return which is less than 1.
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Numerical Experiments (I)
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Figure 5: Impact of AOLMA and NPM: AOLNPM, NPM with EMA and OLMAR

The blue curve is the cumulative return derived by the OLMAR method. The green

curve refers to the return by using EMA and our NPM model. The red curve is ob-

tained by using AOLMA and NPM (AOLNPM) simultaneously.
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Numerical Experiments (I)
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Figure 6: Cumulative returns with different transaction cost rates.

To study the relationship between the transaction cost rate γ and the cumulative return,
we set different rates ranging from 0.1% to 0.7%. It is found that AOLNPM dominates
other algorithms with high or low transaction cost rate.
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Numerical Experiments (I)

To study the impact of the risk constraint on online portfolio
selection, we solve Model (12) where the risk levels θ are set
as constants ranging from 0.070 to 0.100. For our NPM model
without considering risk constraint, the corresponding value of θ
is set as infinity. Table 6 presents the cumulative returns of our
NPM model in all the four data sets.

Table 6: Cumulative returns under different risk levels.

θ MSCI NYSE-O NYSE-N TSE
0.070 8.4688 1.0144 × 1015 2.5632× 106 49.7796
0.075 9.1502 1.6913 × 1015 3.3654× 106 59.9744
0.080 10.0596 2.9023 × 1015 4.0816× 106 68.4651
0.085 11.1557 4.4478 × 1015 4.6710× 106 74.7941
0.090 11.9467 6.3118 × 1015 5.2353× 106 82.0197
0.095 12.5697 8.9063 × 1015 5.9611× 106 93.4080
0.100 13.3096 1.1688 × 1016 6.3234× 106 106.2034
Infinity 14.9357 3.4535 × 1016 7.7277 × 106 529.6150
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Introduction to OLPS with Constant Cash Inflows

• We consider a portfolio selection task in a financial market over
n periods with (m + 1) assets, including one cash asset and m
risky assets.

• In the tth period, the prices of all assets are represented by
the closing price vector pt ∈ Rm+1

+ with each element pti repre-
senting the closing price of asset i.

• Their price changes in period t are represented by a price
relative (return) vector, i.e., rt ∈ Rm+1

+ . The element

rti =
pti

p(t−1)i

represents the ratio of price change of Asset i in Period t.
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Problem Formulation (II)

• The allocation over the portfolio at period t is specified by the
portfolio vector

xt = (xt0, xt1, . . . , xtm)

where xti is the proportion of capital invested in the ith risky asset
at period t, i = 1, 2, . . . ,m, and xt0 represents the proportion of
capital invested in cash asset. Typically, we assume no short
selling is allowed, and then xt ∈ ∆m, where

∆m =

{
xt : xt ∈ Rm+1

+ ,

m∑
i=0

xti = 1

}
.

We assume that the portfolio generally starts with uniform port-
folio, i.e., x1 = ( 1

m+1 , . . . ,
1

m+1).
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Problem Formulation (II)

• At the beginning of period t, the manager decides a new port-
folio xt and rebalances from the allocation x̄t−1 to xt. We note
that at the end of period (t − 1), the allocation x̄t−1 differs from
xt−1 due to price changes during period (t − 1) where

x̄(t−1)i =
x(t−1)ir(t−1)i

xt−1r⊤t−1
, i = 0, 1, . . . ,m.

• After investing the cash inflow K, the allocation changes from
x̄t−1 to

x̂t−1 =
St−1x̄t−1 + Kc

St−1 + K
. (13)

Here St−1 is the capital at the end of period (t − 1) and c =
(1, 0, . . . , 0) is the (m + 1)-dimensional vector with c0 = 1, ci =
0, i = 1, . . . ,m. The portfolio’s capital becomes (St−1 + K).
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Problem Formulation (II)

• Recall γ ∈ [0, 1] is transaction cost rate for selling and buying
assets. And wt−1 is the transaction remainder factor, which is
the net proportion after transaction costs are deducted.

• It is important to note that there is no transaction cost when
trading the cash asset.

• We have

1 = wt−1 + γ

m∑
i=1

|xtiwt−1 − x̂(t−1)i| (14)

which means that the summation of the transaction remainder
factor and the transaction costs always equals to 1. As a result of
rebalancing, the remaining capital becomes (St−1 + K)× wt−1.
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Problem Formulation (II)

• During the period t, the allocation xt changes the wealth by a
factor of

xtr⊤t =

m∑
i=0

xti · rti.

To summarize, in period t, the portfolio wealth changes from
(St−1 + K) to

(St−1 + K)× wt−1 × (xtr⊤t ).

• Since we re-invest and use relative prices, the wealth grows in
a multiplicative manner. The cumulative wealth of the port-
folio at the end of period n is given by

Sn = S0

n∏
t=1

wt−1 × (xtr⊤t ) + K
n∑

k=2

n∏
t=k

wt−1 × (xtr⊤t ) (15)

where the initial wealth S0 is set to 1 for convenience.
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Problem Formulation (II) [Model Optimization]
• Eq. (14) reveals the relationship between transaction remain-
der factor and transaction costs. It is obvious that |xtiwt−1−x̂(t−1)i|
is a nonlinear function.
• We employ the method of change of variables to transform
Eq. (14) into a linear function that is much easier to solve. We
suppose that there are uti and vti satisfying

|xtiwt−1 − x̂(t−1)i| = uti + vti.

xtiwt−1 − x̂(t−1)i = uti − vti i = 0, 1, . . . ,m.

uti ≥ 0, vti ≥ 0.

(16)

• In case that xtiwt−1 − x̂(t−1)i ≥ 0, we have uti ≥ 0, vti = 0;
otherwise, uti = 0, vti > 0.
• Therefore, we can always find corresponding solutions of ut,i

and vt,i that fall into:

(1)uti > 0, vti = 0; (2)uti = 0, vti = 0; (3)uti = 0, vti > 0.
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Problem Formulation (II) [Model Optimization]

• Then we can transform Eq. (14) into the following equation:

wt−1 = 1 − γ

m∑
i=1

(uti + vti) = 1 − γ(ut + vt)1 + γ(ut0 + vt0). (17)

• The portfolio vector xt can be expressed as follows:

xt =
x̂t−1 + ut − vt

wt−1
=

x̂t−1 + ut − vt

1 − γ(ut + vt)1 + γ(ut0 + vt0)
. (18)

Here 1 is the (m + 1)-dimensional column vector of all ones.
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Problem Formulation (II) [Price Relative Vector
Prediction]

• In order to implement the portfolio selection strategies, we
make prediction on the price relative vector r̃t for the period t.
• Various methods have been proposed to predict r̃t. We employ
two popular methods: Exponential Moving Average (EMA)
and Robust Median Reversion (RMR).
• RMR: To predict the next price relative r̃t, we calculate the
multivariate L1-median of historical prices. The L1-median of a k-
historical price window is the solution of following optimization:

µ = argmin
µ

k∑
i=1

∥pt−i − µ∥2

where ∥ · ∥2 is the Euclidean norm. RMR predicts the next price
using a robust L1-median estimator at the end of (t−1)th period.
The predicted value of price relative vector is

r̃t(k) = µ/pt−1.
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Formulation (II)

• We then formulate the framework for online portfolio selection
with transaction costs and constant cash inflows.

• The objective of this task is to maximize the portfolio’s cumu-
lative wealth Sn, which is equivalent to maximizing the portfolio’s
expected return in each period.

• Objective: As for period t:

xt = argmax
x∈∆m

wt−1 × (xr̃⊤t )− λ||xwt−1 − x̂t−1||1. (19)

• The first term of the objective function is the expected return
and the second term is the L1-penalty term for period t.
• Here λ ≥ 0 is the trade-off parameter to balance the expected
return and L1-penalty term.
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Formulation (II)
• By using Eqs. (16-18), we can transform Problem (19) into the
following problem, Transaction cost with Cash Inflow (TCI):

(ut,vt) = argmax
u,v∈Rm+1

(x̂t−1 + u − v)r̃⊤t − λ(u + v)1

s.t. (u − v)1 + γ(u + v)1 − γ(u0 + v0) = 0,
x̂t−1 + u − v ≥ 0,u ≥ 0,v ≥ 0

(20)

where the constraint condition

(u − v)1 + γ(u + v)1 − γ(ut0 + vt0) = 0

is a transformation of
∑m

i=0 xi = 1.

Theorem
Problem (19) achieves the optimal solution x⋆

t if and only if
Problem (20) achieves the optimal solution (u⋆

t ,v⋆
t ), where x⋆

t
and (u⋆

t ,v⋆
t ) satisfies equation (16).
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Numerical Experiments (II) [Transaction Costs
Analysis]

• Numerical experiments are given to demonstrate the effective-
ness of our algorithm over other online portfolio selection algo-
rithms.

• In the numerical experiments, we use four public data sets:
NYSE-O, and its following data set, NYSE-N, TSE and MSCI.

• We implement the optimization Model (20) with two different
predictors RMR and EMA. We compare the performance of TCIR
(RMR) and TCIE (EMA) with 13 other algorithms.

• For the parameters in TCIR and TCIE, we set the trade off
parameter to λ = 5 ∗ γ, the window size in RMR prediction to
k = 5, and the decaying factor in EMA prediction α = 0.5.
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Numerical Experiments (II) [Cumulative Wealth K = 0]
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Numerical Experiments (II) [Cumulative Wealth
K = 0.1]
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Numerical Experiments (II) [Sharpe Ratio K = 0.1]
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Numerical Experiments (II) [Information Ratio K = 0.1]
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Conclusions

Conclusions:
A new adaptive decaying factor method is introduced, by
which we gain predicted returns with better relative errors.

- Transaction costs are introduced in maximizing the net
profit of the whole portfolio in each period.

- The nonlinear Net Profit Model is transformed into an equiv-
alent linear programming problem, which is easy to solve
and implement.

- The AOLNPM algorithm outperforms traditional online port-
folio selection algorithms in multiple numerical experiments
with different benchmark data sets.
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Conclusions

We propose a framework for online portfolio selection with
transaction costs and constant cash inflows.

- We propose a new method to calculate transaction re-
mainder factor and portfolio vector simultaneously.

- Two algorithms, TCIR and TCIE, are developed to solve the
proposed online portfolio selection model, and a series of
numerical experiments are conducted to verify the effective-
ness of our algorithms.
Future Works:

- Employ regime-switching model in the prediction step.
- To consider mean-variance, VaR, CVaR, etc. in the opti-

mization step.
- To consider the market impact on the price.
- Using machine learning method to combine the two steps:

prediction and optimization.
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