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Abstract

Abstract Online portfolio selection is attracting a lot of attention due to its efficiency
and practicability in deriving optimal investment strategies in real investment activities
where the market information is constantly renewed in a very short period. One key
issue in online portfolio selection include predicting the future returns of risky assets
accurately given historical data and providing optimal investment strategies for investors
in a short time. In the existing online portfolio selection studies, the historical return
data of one risky asset is used to estimate its future return. In this talk, we incorpo-
rate the peer impact into the return prediction where the predicted return of one risky
asset not only depends on its past return data but also the other risky assets in the
financial market, which gives a more accurate prediction. An adaptive moving average
method with peer impact (AOLPI) is proposed, in which the decaying factors can be ad-
justed automatically in the investment process. In addition, the adaptive mean-variance
(AMV) model is applied in online portfolio selection where the variance is employed to
measure the investment risk and the covariance matrix can be linearly updated in the
investment process. The adaptive online moving average mean-variance (AOLPIMV)
algorithm is proposed to provide flexible investment strategies for investors with differ-
ent risk preferences. Numerical experiments are presented to validate the effectiveness
and advantages of AOLPIMV.
Keywords: Online portfolio selection; Adaptive moving average method; Peer impact;
Mean-Variance model; Quadratic programming.
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Introduction to Online Portfolio Selection (OLPS)

• Online portfolio selection attracts both researchers and practi-
tioners. It is different from the traditional portfolio selection the-
ory proposed by Markowitz (1952) in his seminal work.

• In a traditional portfolio selection problem, it is usually as-
sumed that the return of a risky asset is subject to a certain
distribution function.

-Based on the distribution function, the expected value and
variance of the return can be calculated to measure the ex-
pected return and risk, respectively.

-Then investors allocate the capital in different assets to achieve
excess investment return or avert the investment risk.
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Introduction to Online Portfolio Selection (OLPS)

• In contrast, online portfolio selection concerns more on em-
ploying modern techniques to predict the future returns of
risky assets and making the optimal investment strategy.

• Online portfolio selection focuses on exploring the most effi-
cient and practical computational intelligence techniques to
deal with real online asset trading problems.

• It is a sequential decision making optimization problem
where the investment strategy is determined at the beginning of
each short period.
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Introduction to Online Portfolio Selection (OLPS)

Online portfolio strategies can be classified into five types.

(I) The first one is called “Benchmark”.

•One widely adopted Benchmark is the Uniform Buy-and-Hold
strategy, which is also called the Market strategy, Li and Hoi
(2014). In this strategy, the available capital is uniformly dis-
tributed into all the risky assets in each period.

• Another Benchmark is called the Best stock strategy, Li and
Hoi (2014), where all the capital is invested into the best asset
in the whole investment process.

• Constant Rebalanced Portfolios (CRP) strategy is a popular
Benchmark where the allocation proportions of the risky assets
are the same in all periods. There are two special CRPs:
Uniform Constant Rebalanced Portfolios (UCRP) Li and Hoi
(2015) and Best Constant Rebalanced Portfolios (BCRP) Cover
(1991).
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Introduction to Online Portfolio Selection (OLPS)

(II) The second type of methods focuses on the “Follow the
Winner” strategy. They are based on the momentum principle
which assumes that the risky assets performing well currently
will continue achieving good performance in the next period.
• Cover (1991) proposed Universal Portfolio (UP) strategy,
which first distributed the capital to various portfolio managers
and derived the corresponding returns, then obtain the weighted
average of returns of all strategies.
• Helmbold et al. (1998) proposed the Exponential Gradient
(EG) method in which exponentiated gradient update was
employed to calculate the investment proportions based on the
past return data.
• Agarwal et al. (2006) employed the Online Newton Step
(ONS) method to tackle online portfolio selection, where the
gradient and Hessian matrix of the log function of cumula-
tive return are computed.
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Introduction to Online Portfolio Selection (OLPS)

(III) There are some “Follow the Loser” approaches built on
the mean reversion principle, which claims that the risky as-
sets performing well in the past may return to normal or perform
poorly in the next period. Therefore, it is encouraged to buy
the current under-performing risky assets and sell the over-
performing assets.

• Borodin et al. (2004) proposed the Anti-correlation (Anticor)
method based on the mean reversion principle, where the
proportions were transferred from the assets performing well to
assets performing poorly, and the explicit amounts of trans-
ferred proportions are determined by the cross-correlation
matrix of different risky assets.
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Introduction to Online Portfolio Selection (OLPS)

• Li et al. (2012) proposed the Passive-aggressive Mean Re-
version (PAMR) method based on a loss function. Current port-
folio will be kept if its return is below a certain return threshold
under the assumption that under-performing risky assets will
perform better in the next period.

• Similar to PAMR, Li et al. (2011, 2013) proposed the Confi-
dence Weighted Mean Reversion (CWMR) method by model-
ing the portfolio vector with Gaussian distribution and update the
distribution constantly following the mean reversion principle.

• Huang et al. (2016) proposed the Robust Median Rever-
sion (RMR) strategy where the robust L1-median estimator was
adopted to exploit the reversion phenomenon. The RMR runs
in linear time which is easy to implement in real algorithmic
trading.
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Introduction to Online Portfolio Selection (OLPS)

• The above PAMR and CWMR employed the single-period
mean reversion assumption where the price of asset in the
next period was estimated with the price of last period, which
may not achieve good performance.

• To improve this, Li et al. (2012, 2015) employed the Mov-
ing Average method to predict the price of next period based
on multiple prices of previous periods and proposed the Online
Moving Average Reversion (OLMAR) method.

• In this talk, we shall consider some extensions (AOLMA and
AOLPI), Guo et al. (2021, 2024) of the OLMAR method for
predicting prices/returns of risky assets.
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Introduction to Online Portfolio Selection (OLPS)

(IV) The fourth type of online portfolio selection strategies fo-
cuses on “Pattern Matching Based Approaches”.

• There are usually two steps in pattern matching based ap-
proaches.

• The first step is sample selection intended for selecting the
historical price patterns which are similar to the latest price pat-
tern. The selected historical price patterns are used to estimate
the return vector of the whole portfolio in the next period.

• The second step is to construct the portfolio optimization
model based on the selected price patterns.
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Introduction to Online Portfolio Selection (OLPS)

• Györfi et al. (2006) employed the nonparametric kernel-
based sample selection method to search for similar price
patterns by comparing the Euclidean distance of different pat-
terns, and constructed a log-optimal portfolio based on the cap-
ital growth theory.

• Li et al. (2011) employed the correlation-driven nonpara-
metric sample selection method by using the correlation co-
efficient of different patterns, and proposed the Correlation-
driven Nonparametric (CORN) learning algorithm.

(V) The fifth type of online portfolio selection strategies is the
“Meta-learning Approach”. In this approach, multiple base
experts are defined where each expert is equipped with differ-
ent strategies and outputs one portfolio. Then all the output
portfolios are combined together into a final portfolio.
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Problem Formulation (I)

• In online portfolio selection, an investor makes sequential de-
cisions according to the changing financial market.
•Denote the investment strategy in Period t by xt = (xt1, xt2, . . . , xtm),
where xti is the proportion allocated to risky asset i, (t =
1, 2, . . . , n, i = 1, 2, . . . ,m).
• Let the return in Period t be rt = (rt1, rt2, . . . , rtm). We note that
xt should be determined at the beginning of Period t and rt

is known at the end of Period t (See Figure 1).

 

Figure 1: The investment process.
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Problem Formulation (I)

• The return vector rt = (rt1, rt2, . . . , rtm) is calculated as follows:

rt = pt/pt−1

where pt = (pt1, pt2, . . . , ptm) is the price at period t and “/” is an
element-wise division of two vectors.
• The Cumulative Return from the beginning of the investment
to Period n can be expressed as follows:

CRn =

n∏
t=1

rtxT
t . (1)

• We note that transaction cost is NOT considered in Eq. (1).
Recall that the decision variables satisfy the following constraints:

xt1 + xt2 + . . .+ xtm = 1, t = 1, 2, . . . , n, (2)

where 0 ≤ xti ≤ 1, i = 1, 2, . . . ,m.
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Online Moving Average Method

• Li and Hoi (2012, 2015) proposed two moving average meth-
ods to predict the single-period return.
• The first one is a Simple Moving Average (SMA) method:
Given the historical stock prices p1,p2, . . . ,pt and the truncated
window size w, the predicted stock price of pt+1 can be calcu-
lated as follows:

p̂t+1 =
1
w

t∑
i=t−w+1

pi.

• The estimated return for rt+1 can be obtained by

r̂t+1 =
p̂t+1

pt
=

1
w

(
1 +

1
rt

+
1

rt · rt−1
+ · · ·+ 1∏w−2

i=0 rt−i

)
.

Here “1” is the vector of all ones and the product “·” refers to
the element-wise product of vectors.
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Online Moving Average Method

• The second one is the Exponential Moving Average (EMA)
method which uses all the historical stock prices by assigning
each stock price an exponential weight.

• The predicted stock price can be calculated as follows:

p̂t+1 = αpt + (1− α)p̂t = αpt + α(1− α)pt−1 + · · ·+ (1− α)t−1p1

and the estimated return is

r̂t+1 = α1 + (1− α)
r̂t

rt

where α is the decaying factor.
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Adaptive Online Moving Average Method

•We then propose the Adaptive Online Moving Average (AOLMA)
method where the decaying factor can be adjusted automati-
cally according to the performances of risky assets.
• Define the decaying vector of the whole portfolio at Period
t by αt = (αt1, αt2, . . . , αtm), where αti is the decaying factor of
risky asset i (i = 1, 2, . . . ,m).
• Then the predicted price at Period (t + 1) can be expressed
as follows:

p̂t+1 = αt+1 · pt + (1−αt+1) · p̂t (3)

and the predicted return is

r̂t+1 = αt+1 · 1 + (1−αt+1) · r̂t

rt
. (4)
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Adaptive Online Moving Average Method

• The key of the adaptive moving average method lies in the
decaying factor αt. We believe that a time-dependent decaying
factor will further improve the prediction accuracy.

• Consider risky asset i at Period t: the predicted return follow-
ing from Eq. (4) is given by

r̂ti = αti + (1− αti)
r̂(t−1)i

r(t−1)i

and the corresponding error is

rti − r̂ti = rti −
r̂(t−1)i

r(t−1)i
−
(

1−
r̂(t−1)i

r(t−1)i

)
αti. (5)
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Adaptive Online Moving Average Method

• Our aim is to improve (reduce) the prediction error in the
online portfolio selection process. Once rti is known, the error
can be obtained and can be applied to determine the decaying
factor for the next period.
• There are four cases that one needs to consider:

Case 1: rti > r̂ti and r(t−1)i > r̂(t−1)i.

Case 2: rti > r̂ti and r(t−1)i ≤ r̂(t−1)i.

Case 3: rti ≤ r̂ti and r(t−1)i > r̂(t−1)i.

Case 4: rti ≤ r̂ti and r(t−1)i ≤ r̂(t−1)i.
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Adaptive Online Moving Average Method

• For Case 1, it can be derived from Eq. (5) that the coefficient
of αti is −

(
1− r̂(t−1)i

r(t−1)i

)
< 0.

• Then, the decaying factor for the next period α(t+1)i can be
increased by one step size to reduce the prediction error:

α(t+1)i = αti + τ (6)

where τ is the given step size of the decaying factor.
• For Case 2, the coefficient is −

(
1− r̂(t−1)i

r(t−1)i

)
≥ 0, then the de-

caying factor α(t+1)i can be decreased to reduce the prediction
error as follows:

α(t+1)i = αti − τ. (7)
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Adaptive Online Moving Average Method

• Similarly, for Case 3 and Case 4, the decaying factor can be
updated by Eqs. (6) and (7), respectively.

Remark
-It is reasonable to employ the above decaying factor updating mecha-
nism in online portfolio selection.
-For example, in Case 1, both r̂(t−1)i and r̂ti are underestimated. Then
in the next period, it is necessary to increase the value of r̂(t+1)i by
using a larger α(t+1)i following from Eq. (5) (As r̂ti

rti
< 1).

-The initial value of the decaying factor is set to be α1i = 0.5. If the
iterated decaying factor αti is outside the interval [0, 1], then it is
reset to 0.5.
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Adaptive Online Moving Average Method

Example
-To verify the effectiveness of our proposed AOLMA method, we
employ the classical benchmark data set MSCI which contains
the historical daily returns of 24 stocks from April 1, 2006 to
March 31, 2010, Li and Ho (2015).
-For each stock i, its prediction relative error at the j-th trading
day is given by

Er(j) =
|̂rji − rji|

rji
× 100%

and the average relative error is

Ēr =
1
n

n∑
j=1

|̂rji − rji|
rji

× 100%.
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Adaptive Online Moving Average Method

Example
-We apply SMA (w = 6), EMA (α = 0.5), AOLMA (τ = 0.0006) to
estimate the daily returns and make comparisons with the real returns.
-The average relative errors are shown in Table 1.
-It is clear that AOLMA achieves the lowest relative error in each
stock, meaning that AOLMA performs better than both SMA and EMA.

Table 1: Average relative errors of SMA, EMA and AOLMA.

Stock SMA(%) EMA(%) AOLMA(%) Stock SMA(%) EMA(%) AOLMA(%)
1 2.06 1.16 1.14 13 1.88 1.06 1.04
2 3.08 1.75 1.69 14 3.69 2.07 2.05
3 2.57 1.44 1.42 15 2.53 1.43 1.39
4 2.11 1.19 1.16 16 3.48 1.96 1.92
5 3.39 1.90 1.87 17 2.72 1.53 1.48
6 2.80 1.58 1.53 18 2.68 1.51 1.48
7 2.62 1.48 1.43 19 3.18 1.79 1.77
8 2.26 1.28 1.25 20 2.72 1.53 1.48
9 4.00 2.25 2.21 21 2.87 1.62 1.57
10 2.62 1.48 1.46 22 2.83 1.59 1.56
11 2.60 1.47 1.45 23 3.52 1.98 1.93
12 2.72 1.53 1.50 24 2.30 1.29 1.29
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Adaptive Online Moving Average Method

Example
-To test the robustness of AOLMA, we conduct multiple experiments with step size τ
ranging from 0.0001 to 0.0010.
-The final average relative errors are shown in Fig. 2.
-For all the stocks, the maximum difference of average relative errors with different τ
does not exceed 0.09%.
-To show the advantages of AOLMA, for all step sizes τ , we select the worst case of
average relative error for each stock, and compare it with SMA and EMA (See Fig. 3).
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Figure 2: Average relative
errors for different τ
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Figure 3: A comparison with
SMA and EMA
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Net Profit Maximization Model with Transaction Costs

• We propose the Net Profit Maximization Model with Trans-
action Costs. It is worth noting that several general assump-
tions are made in the model.

− Firstly, we assume proportional transaction costs on risky
assets purchases and sales.

− Secondly, we assume that each asset share is arbitrarily di-
visible, and that any required quantities of shares, even frac-
tional, can be bought and sold at the last closing price in any
trading period.

− Thirdly, we assume that market behavior and stock prices
are NOT affected by any trading strategy / market impact.

− Fourthly, NO capital is added or removed from the portfolio.
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Net Profit Maximization Model with Transaction Costs

• The net profit maximization model (NPM) considering trans-
action cost in each trading period: max

m∑
i=1

r̂tixti − γ
m∑

i=1

|xti − x̃(t−1)i|.

s.t. xt1 + xt2 + . . .+ xtm = 1, 0 ≤ xti ≤ 1, i = 1, 2, . . . ,m.
(8)

• Here γ is the unit transaction cost rate for buying/selling
assets, x̃t−1 is the actually investment strategy in period (t − 1).
• The model can be transformed into the following LP problem:

max
m∑

i=1

r̂tix̃(t−1)i +

m∑
i=1

(x̃(t−1)i − γ)uti −
m∑

i=1

(x̃(t−1)i + γ)vti.

s.t.
∑m

i=1(uti − vti) = 0,
0 ≤ x̃(t−1)i + uti − vti ≤ 1, i = 1, 2, . . . ,m, uti ≥ 0, vti ≥ 0, i = 1, 2, . . . ,m.

(9)
• Integrating AOLMA and NPM together, we have Adaptive On-
Line Net Profit Maximization (AOLNPM) Algorithm.
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Numerical Experiments (I)

• MSCI, NYSE-O, NYSE-N and TSE are employed as bench-
mark data sets for testing the performances of different online
portfolio selection algorithms.
• MSCI contains 24 stocks which has been employed for verify-
ing the effectiveness of AOLMA method.
• NYSE-O and NYSE-N contain historical return data of stocks
selected from American stock market, where NYSE-O con-
tains the data of 36 stocks ranging from June 3, 1962 to De-
cember 31, 1984, and NYSE-N contains the data of 23 stocks
ranging from January 1, 1985 to June 30, 2010.
• TSE contains 88 stocks selected from Canadian stock mar-
ket ranging from January 4, 1994 to December 31, 1998.
• The total numbers of the trading days for MSCI, NYSE-O,
NYSE-N and TSE are 1043, 5651, 6431 and 1259, respectively.
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Numerical Experiments (I)

• Numerical results for demonstrating the effectiveness of AOL-
NPM algorithm over other algorithms on benchmark data sets:
MSCI (Li and Ho (2015)), NYSE-O (Konno and Yamazaki (1991)),
NYSE-N (Cover (1991)) and TSE (Borodin et al. (2004)).
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Figure 4: Cumulative returns on different data sets.
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Numerical Experiments (I)

Table 2: Mean excess return on MSCI, NYSE-O, NYSE-N and TSE
Method MSCI1 NYSE-O1 NYSE-N2 TSE1

AOLNPM 0.5781 0.9910 0.8651 0.6791
Anticor-1 0.5271 0.8816 0.8011 0.5982
Anticor-2 0.5305 0.9089 0.8606 0.6066
BCRP 0.5133 0.6707 0.6500 0.5618
CWMR-V 0.5624 0.9841 0.7596 0.6527
CWMR-S 0.5624 0.9841 0.7591 0.6530
CORN 0.5477 0.9509 0.7044 0.5372
EG 0.4973 0.6048 0.6089 0.5149
Market 0.4968 0.5862 0.5931 0.5156
ONS 0.4938 0.6438 0.5947 0.5137
OLMAR-1 0.5649 0.9897 0.8872 0.6049
OLMAR-2 0.5745 0.9920 0.8786 0.6752
PAMR 0.5583 0.9835 0.7550 0.6459
PAMR-1 0.5589 0.9835 0.7550 0.6459
PAMR-2 0.5621 0.9835 0.7588 0.6443
TCO-1 0.5546 0.9806 0.8602 0.6325
TCO-2 0.5471 0.9753 0.8723 0.6421
UCRP 0.4974 0.6048 0.6093 0.5149
UP 0.4970 0.6032 0.6081 0.5143

MER =
1
n

n∑
t=1

(Rt − R?t ) = R̄− R̄?.

R?
t is the return of the portfolio in period t by using Market strategy, and Rt is the return of the portfolio in period t.
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Numerical Experiments (I)

Table 3: Sharpe ratios on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI1 NYSE-O2 NYSE-N7 TSE1

AOLNPM 0.1034 0.1907 0.0799 0.1046
Anticor-1 0.0513 0.1583 0.0862 0.0982
Anticor-2 0.0538 0.1502 0.0929 0.0882
BCRP 0.0381 0.0597 0.0166 0.0725
CWMR-V 0.0920 0.1907 0.0594 0.1020
CWMR-S 0.0921 0.1907 0.0591 0.1023
CORN 0.0821 0.1383 0.0573 0.0428
EG 0.0030 0.0722 0.0501 0.0485
Market 0.0017 0.0552 0.0457 0.0505
ONS 0.0002 0.0767 0.0305 0.0264
OLMAR-1 0.0897 0.1913 0.0863 0.0714
OLMAR-2 0.1003 0.2014 0.0840 0.1027
PAMR 0.0866 0.1886 0.0589 0.1016
PAMR-1 0.0874 0.1886 0.0589 0.1016
PAMR-2 0.0922 0.1901 0.0600 0.1008
TCO-1 0.0893 0.2119 0.0902 0.0899
TCO-2 0.0768 0.1945 0.0887 0.0929
UCRP 0.0031 0.0725 0.0501 0.0485
UP 0.0023 0.0715 0.0496 0.0467

SR =
1
σ

(R̄− rf ).

Here rf is the risk-free return in financial market, R̄ is the average return of the portfolio and σ is the corresponding

standard deviation of daily returns.
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Numerical Experiments (I)

Table 4: Information ratios on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI2 NYSE-O4 NYSE-N7 TSE1

AOLNPM 0.1522 0.1871 0.0701 0.0998
Anticor-1 0.1235 0.1576 0.0765 0.0903
Anticor-2 0.1057 0.1447 0.0837 0.0802
BCRP 0.0359 0.0386 −0.0057 0.0617
CWMR-V 0.1375 0.1863 0.0469 0.0963
CWMR-S 0.1375 0.1863 0.0466 0.0965
CORN 0.1161 0.1302 0.0399 0.0331
EG 0.0281 0.0345 0.0242 −0.0082
ONS −0.0027 0.0394 0.0121 0.0069
OLMAR-1 0.1297 0.1870 0.0771 0.0659
OLMAR-2 0.1466 0.1982 0.0745 0.0976
PAMR 0.1291 0.1839 0.0462 0.0956
PAMR-1 0.1305 0.1839 0.0462 0.0956
PAMR-2 0.1400 0.1856 0.0473 0.0948
TCO-1 0.1665 0.2123 0.0797 0.0838
TCO-2 0.1410 0.1940 0.0790 0.0872
UCRP 0.0277 0.0337 0.0238 −0.0075
UP 0.0128 0.0306 0.0221 −0.0139

IR = (R̄− R̄?)/σ(R− R?).

Here σ(R− R?) is the standard deviation of the excess return over Market strategy.
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Numerical Experiments (I)

Table 5: Calmar ratios on MSCI, NYSE-O, NYSE-N and TSE.

Method MSCI1 NYSE-O9 NYSE-N7 TSE6

AOLNPM 0.1609 0.3724 0.1277 0.1810
Anticor-1 0.0751 0.2862 0.1368 0.1635
Anticor-2 0.0797 0.2726 0.1541 0.1452
BCRP 0.0520 0.0941 0.0244 0.1199
CWMR-V 0.1377 0.3853 0.0960 0.1905
CWMR-S 0.1378 0.3853 0.0959 0.1910
CORN 0.1289 0.2607 0.0916 0.0696
EG 0.0041 0.1106 0.0704 0.0649
Market 0.0023 0.0835 0.0637 0.0675
ONS 0.0002 0.1252 0.0457 0.0406
OLMAR-1 0.1365 0.3737 0.1420 0.1233
OLMAR-2 0.1549 0.4001 0.1380 0.1788
PAMR 0.1281 0.3798 0.0946 0.1828
PAMR-1 0.1294 0.3798 0.0946 0.1828
PAMR-2 0.1370 0.3842 0.0965 0.1814
TCO-1 0.1359 0.4443 0.1484 0.1646
TCO-2 0.1165 0.3850 0.1478 0.1788
UCRP 0.0042 0.1113 0.0704 0.0650
UP 0.0032 0.1096 0.0697 0.0626

CR = R̄net/MDD, MDD =

√√√√1
n

n∑
t=1

min{Rt − 1, 0}2.

Here R̄net is the average daily net profit return rate, and MDD (the maximum drawdown of return) only covers the

return which is less than 1.
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Figure 5: Impact of AOLMA and NPM: AOLNPM, NPM with EMA and OLMAR

The blue curve is the cumulative return derived by the OLMAR method. The green

curve refers to the return by using EMA and our NPM model. The red curve is ob-

tained by using AOLMA and NPM (AOLNPM) simultaneously.
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Figure 6: Cumulative returns with different transaction cost rates.
To study the relationship between the transaction cost rate γ and the cumulative return,
we set different rates ranging from 0.1% to 0.7%. It is found that AOLNPM dominates
other algorithms with high or low transaction cost rate.
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Online Moving Average with Peer Impact Method
(Motivation)

In a financial market, the performance of one asset may be
affected by that of other assets and the financial market.
Therefore, it is useful to consider the impact of peer
assets.
The price fluctuation of different assets may differ a lot and
it is therefore better to employ different decaying
factors for different assets.
In real applications, risk-neural and risk-averse investors
treat controlling investment risk as one important objective.
It is necessary and important to incorporate investment
risk into the objective of OLPS.
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Adaptive Online Moving Average with Peer Impact
Method

Recall that the investor invests into m risky assets within
the investment horizon of n periods. At the beginning of
period t, the investment strategy xt = (xt,1, xt,2, . . . , xt,m)
should be determined. Suppose that the price relative
vector at period t is rt = (rt,1, rt,2, . . . , rt,m). The final
wealth at the end of period n is as follows:

Sn = S0

n∏
t=1

(
xtr>t − γ ‖ xt − x̃t−1 ‖1

)
. (10)

The prediction method EMA only depends on the past
historical data sequence Dt,i = (r1,i, r2,i, . . . , r(t−1),i). In this
talk, we introduce the peer impact. For Asset i, we denote
the average return data of all the other assets as D̄t,i,
where

D̄t,i =
(

R1,i, R2,i, . . . , R(t−1),i

)
=

(∑
k 6=i r1,k

m− 1
,

∑
k 6=i r2,k

m− 1
, . . . ,

∑
k 6=i r(t−1),k

m− 1

)
.
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Adaptive Online Moving Average with Peer Impact
Method

From the data sequence Dt,i, we derive

ut,i = θ̄
(1)
t,i + (1− θ̄(1)

t,i ) ·
r̂(t−1),i

r(t−1),i
.

Similarly, for data sequence D̄t,i, we derive

vt,i = θ̄
(2)
t,i + (1− θ̄(2)

t,i ) ·
R̂(t−1),i

R(t−1),i
,

where θ̄(1)t,i and θ̄(2)t,i are the decaying factors of asset i at
period t for Dt,i and D̄t,i, respectively.
Then, we estimate the future return rt,i based on ut,i and
vt,i, which can be expressed as follows:

r̂t,i = αiut,i + βivt,i

where αi and βi are the weighting factors, meaning that
r̂t,i is both affected by the historical data Dt,i and D̄t,i.
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Adaptive Online Moving Average with Peer Impact
Method

At the beginning of period t, all the historical data Dt,i and
D̄t,i are available and the values of ut,i and vt,i can be
derived. Then, the sum of mean squared errors over the
first (t − 1) periods is

MSEi =

t−1∑
k=1

(αiuk,i + βivk,i − rk,i)
2.

To minimize the sum of mean squared errors (MSE), we
set the derivatives with respect to αi and βi.
We derive the estimations for αi and βi:

α̂i =
(
∑t−1

k=1 rk,iuk,i)(
∑t−1

k=1 v
2
k,i)− (

∑t−1
k=1 uk,ivk,i)(

∑t−1
k=1 rk,ivk,i)

(
∑t−1

k=1 u
2
k,i)(
∑t−1

k=1 v
2
k,i)− (

∑t−1
k=1 uk,ivk,i)2

β̂i =
(
∑t−1

k=1 rk,ivk,i)(
∑t−1

k=1 u
2
k,i)− (

∑t−1
k=1 uk,ivk,i)(

∑t−1
k=1 uk,irk,i)

(
∑t−1

k=1 u
2
k,i)(
∑t−1

k=1 v
2
k,i)− (

∑t−1
k=1 uk,ivk,i)2

.
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Adaptive Online Moving Average with Peer Impact
Method

Then, we have

r̂t,i = α̂i

[
θ̄
(1)
t,i + (1− θ̄(1)

t,i ) ·
r̂(t−1),i

r(t−1),i

]
+ β̂i

[
θ̄
(2)
t,i + (1− θ̄(2)

t,i ) ·
R̂(t−1),i

R(t−1),i

]
,

and the corresponding estimation error is

rt,i−r̂t,i = rt,i−α̂i

 θ̄(1)
t,i r(t−1),i + (1− θ̄(1)

t,i )̂r(t−1),i

r(t−1),i

−β̂i

 θ̄(2)
t,i R(t−1),i + (1− θ̄(2)

t,i )R̂(t−1),i

R(t−1),i

 .

Here θ̄(1)t,i can be updated to potentially reduce the
estimation error of the next period, see Table 6.

Table 6: Decaying factor iteration table.

α̂i(r(t−1),i − r̂(t−1),i) ≥ 0 α̂i(r(t−1),i − r̂(t−1),i) < 0

rt,i ≥ r̂t,i θ̄
(1)
t,i = θ̄

(1)
t,i + δ θ̄

(1)
t,i = θ̄

(1)
t,i − δ

rt,i < r̂t,i θ̄
(1)
t,i = θ̄

(1)
t,i − δ θ̄

(1)
t,i = θ̄

(1)
t,i + δ

For the factor θ̄(2)t,i , we use similar iteration mechanism. The
initial value of the decaying factor is set to be 0.5.
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Method
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Figure 7: A comparison of the average relative errors of AOLMA and
AOLPI.
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Adaptive Mean-Variance Model
Then, we propose Adaptive Mean-Variance (AMV) model
to solve the practical OLPS problem. The variance of the
risky asset is employed as a measure of the investment
risk. The AMV model is given as follows:

max xtr>t − ηxtΣtx>t − γ ‖ xt − x̃t−1 ‖1

s.t. xt1> = 1,
0 ≤ xt ≤ 1

(11)

Here Σt is the covariance matrix of all assets estimated at
the beginning of period t, η is the weighting factor (η > 0).
The updating process of Σt can be expressed as follows:

Σt =



σ
(t)
1,1 σ

(t)
1,2 σ

(t)
1,3 · · · σ

(t)
1,m

σ
(t)
2,1 σ

(t)
2,2 σ

(t)
2,3 · · · σ

(t)
2,m

σ
(t)
3,1 σ

(t)
3,2 σ

(t)
3,3 · · · σ

(t)
3,m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
σ
(t)
m,1 σ

(t)
m,2 σ

(t)
m,3 · · · σ

(t)
m,m


,

where each σ(t)i,j is the covariance of Assets i and j at the
beginning of period t.
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Adaptive Mean-Variance Model

For Asset i, the average value of the past returns µt,i is
defined as follows:

µt,i =

∑t−1
k=1 rk,i

t − 1
.

The iteration formula relating µt,i and µ(t+1),i can be
derived as follows:

µ(t+1),i =

∑t
k=1 rk,i

t
=

(t − 1)µt,i + rt,i

t
=

(
t − 1

t

)
µt,i +

1
t

rt,i.

The variance of Asset i can be calculated by

σ
(t)
i,i =

1
t − 2

t−1∑
k=1

(rk,i − µt,i)
2,

and the iteration formula relating σ(t)
i,i and σ(t+1)

i,i is

σ
(t+1)
i,i =

t − 2
t − 1

σ
(t)
i,i +

1
t
(rt,i − µt,i)

2.
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Adaptive Mean-Variance Model

For Assets i and j, we have

σ
(t)
i,j =

1
t − 2

t−1∑
k=1

(rk,i − µt,i)(rk,j − µt,j).

Then, the iteration formula relating σ(t)i,j and σ(t+1)
i,j can be

derived as follows:

σ
(t+1)
i,j =

t − 2
t − 1

σ
(t)
i,j +

1
t
(rt,i − µt,i)(rt,j − µt,j).

The covariance matrix can be updated when new return
data is obtained at the end of period t, which is given by

Σt+1 =

(
t − 2
t − 1

)
Σt +

1
t

Mt

where Mt is an n× n matrix with its (i, j)-th entry being
given by (rt,i − µt,i)(rt,j − µt,j).
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Adaptive Mean-Variance Model

We then combine the AOLPI method with the AMV model
together in solving the following optimization problem: max xt r̂

>
t − ηxtΣtx>t − γ ‖ xt − b̃t−1 ‖1

s.t. xt1> = 1,
0 ≤ xt ≤ 1,

(12)

where the first two terms xt r̂t, ηxtΣtx>t in the objective
function is standard quadratic programming.
We employ the method of change of variables to
transform γ||xt − x̃t−1||1 into a linear one. Suppose that
there are non-negative variables ut,i and vt,i such that(

|xt,i − x̃(t−1),i|
xt,i − x̃(t−1),i

)
=

(
1 1
1 −1

)(
ut,i

vt,i

)
, i = 1, 2, . . . ,m.
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Adaptive Mean-Variance Model

It can be derived that xt,i = x̃(t−1),i + ut,i − vt,i. Then,

xt = (ut,vt)N + x̃t−1,

where N = (Im,−Im)> and Im is an identity matrix of size m× m.
The transaction cost term can be transformed into

γ ‖ xt − b̃t−1 ‖1= γ

m∑
i=1

(ut,i + vt,i) = γ(ut, vt)(1, 1)>,

where (1,1) is the 1× 2m row vector of all ones.
Model (12) can be reformulated as follows:

max (ut, vt)F>t − η(ut, vt)Ht(ut, vt)
> + Ct

s.t. (ut − vt)1> = 0,
−x̃t−1 ≤ (ut, vt)N ≤ 1− x̃t−1,
0 ≤ ut, 0 ≤ vt,

(13)

where Ft = r̂tN> − γ(1,1)− 2ηNΣtx̃
>
t−1, Ht = NΣtN> and

Ct = x̃t−1r̂>t − ηx̃t−1Σtx̃
>
t−1.
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Adaptive Mean-Variance Model

Theorem
The matrix Ht in Model (13) is semi-positive definite for
t = 3, 4, . . . , n.

Theorem
There is at least one optimal solution for Model (13) if the feasible
region is not empty.

In addition, we can also derive the following theorem.

Theorem
Model (13) achieves the optimal solution u∗t = (u∗t,1, u

∗
t,2, . . . , u

∗
t,m)

and v∗t = (v∗t,1, v
∗
t,2, . . . , v∗t,m) if and only if Model (12) achieves the

optimal solution x∗t = (x∗t,1, x
∗
t,2, . . . , x

∗
t,m).
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Numerical Experiments

We conduct numerical experiments to validate the
effectiveness of our proposed AOLPIMV algorithm over
some other OLPS algorithms. Some real data sets are
employed, including MSCI, NYSE-O, NYSE-N and TSE.
In addition, we collect the historical return data of another
20 stocks in the American stock market ranging from
January 3, 2006, to October 7, 2010, which are contained
in the data set NASTDA.
AOLPIMV employs the adaptive decaying factors, and the
corresponding iteration step size δ is set as 0.00040,
0.00045, 0.00010, 0.00065, and 0.00010 for MSCI, NYSE-O,
NYSE-N, TSE, and NASTDA, respectively. The risk
weighting factor η is set as 0.6, 0.05, 0.1, 0.7 and 0.005,
respectively. The window size w is set to 6. The
transaction cost γ is set to be 0.0005.
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Numerical Experiments

Table 7: Mean excess return on MSCI, NYSE-O, NYSE-N, TSE, and NASTDA.
Method MSCI1 NYSE-O1 NYSE-N1 TSE1 NASTDA2

AOLPIMV 0.5819 0.9922 0.8902 0.6817 0.5528
AOLNPM 0.5781 0.9910 0.8651 0.6791 0.5288
Anticor-1 0.5271 0.8816 0.8011 0.5982 0.5342
Anticor-2 0.5305 0.9089 0.8606 0.6066 0.5410
BCRP 0.5133 0.6707 0.6500 0.5618 0.5563
CWMR-V 0.5624 0.9841 0.7596 0.6527 0.5234
CWMR-S 0.5624 0.9841 0.7591 0.6530 0.5234
CORN 0.5477 0.9509 0.7044 0.5372 0.5000
EG 0.4973 0.6048 0.6089 0.5149 0.5161
Market 0.4968 0.5862 0.5931 0.5156 0.5155
ONS 0.4938 0.6438 0.5947 0.5137 0.5350
OLMAR-1 0.5649 0.9897 0.8872 0.6049 0.5467
OLMAR-2 0.5745 0.9920 0.8786 0.6752 0.5279
PAMR 0.5583 0.9835 0.7550 0.6459 0.5204
PAMR-1 0.5589 0.9835 0.7550 0.6459 0.5204
PAMR-2 0.5621 0.9835 0.7588 0.6443 0.5222
TCO-1 0.5546 0.9806 0.8602 0.6325 0.5478
TCO-2 0.5471 0.9753 0.8723 0.6421 0.5489
UCRP 0.4974 0.6048 0.6093 0.5149 0.5187
UP 0.4970 0.6032 0.6081 0.5143 0.5187

It can be seen that AOLPIMV gains the largest Mean excess
return on MSCI, NYSE-O, NYSE-N and TSE, and the second
largest return on NASTDA.
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Table 8: Sharpe ratios on MSCI, NYSE-O, TSE, and NASTDA.
Method MSCI1 NYSE-O2 NYSE-N3 TSE1 NASTDA3

AOLPIMV 0.1115 0.2032 0.0870 0.1072 0.0552
AOLNPM 0.1034 0.1907 0.0799 0.1046 0.0382
Anticor-1 0.0513 0.1583 0.0862 0.0982 0.0472
Anticor-2 0.0538 0.1502 0.0929 0.0882 0.0498
BCRP 0.0381 0.0597 0.0166 0.0725 0.0627
CWMR-V 0.0920 0.1907 0.0594 0.1020 0.0344
CWMR-S 0.0921 0.1907 0.0591 0.1023 0.0344
CORN 0.0821 0.1383 0.0573 0.0428 0.0155
EG 0.0030 0.0722 0.0501 0.0485 0.0321
Market 0.0017 0.0552 0.0457 0.0505 0.0317
ONS 0.0002 0.0767 0.0305 0.0264 0.0492
OLMAR-1 0.0897 0.1913 0.0863 0.0714 0.0503
OLMAR-2 0.1003 0.2014 0.0840 0.1027 0.0376
PAMR 0.0866 0.1886 0.0589 0.1016 0.0322
PAMR-1 0.0874 0.1886 0.0589 0.1016 0.0322
PAMR-2 0.0922 0.1901 0.0600 0.1008 0.0335
TCO-1 0.0893 0.2119 0.0902 0.0899 0.0549
TCO-2 0.0768 0.1945 0.0887 0.0929 0.0556
UCRP 0.0031 0.0725 0.0501 0.0485 0.0359
UP 0.0023 0.0715 0.0496 0.0467 0.0358

It is clear that AOLPIMV performs the best in MSCI and TSE,
achieving the second largest ratio on NYSE-O, and the third
largest ratio on NYSE-N and NASTDA. This shows that
AOLPIMV achieves relatively good and steady performance.
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Table 9: Information ratios on MSCI, NYSE-O, TSE, and NASTDA.
Method MSCI2 NYSE-O2 NYSE-N5 TSE1 NASTDA6

AOLPIMV 0.1584 0.2001 0.0770 0.1022 0.0495
AOLNPM 0.1522 0.1871 0.0701 0.0998 0.0291
Anticor-1 0.1235 0.1576 0.0765 0.0903 0.0459
Anticor-2 0.1057 0.1447 0.0837 0.0802 0.0477
BCRP 0.0359 0.0386 −0.0057 0.0617 0.0562
CWMR-V 0.1375 0.1863 0.0469 0.0963 0.0241
CWMR-S 0.1375 0.1863 0.0466 0.0965 0.0241
CORN 0.1161 0.1302 0.0399 0.0331 −0.0029
EG 0.0281 0.0345 0.0242 −0.0082 0.0096
ONS −0.0027 0.0394 0.0121 0.0069 0.0515
OLMAR-1 0.1297 0.1870 0.0771 0.0659 0.0445
OLMAR-2 0.1466 0.1982 0.0745 0.0976 0.0284
PAMR 0.1291 0.1839 0.0462 0.0956 0.0214
PAMR-1 0.1305 0.1839 0.0462 0.0956 0.0213
PAMR-2 0.1400 0.1856 0.0473 0.0948 0.0229
TCO-1 0.1665 0.2123 0.0797 0.0838 0.0535
TCO-2 0.1410 0.1940 0.0790 0.0872 0.0542
UCRP 0.0277 0.0337 0.0238 −0.0075 0.0503
UP 0.0128 0.0306 0.0221 −0.0139 0.0378

The benchmark is set as the Market strategy. It is clear that
AOLPIMV achieves the largest Information ratios on TSE and
the second largest ratio on MSCI and NYSE-O.
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Table 10: Calmar ratios on MSCI, NYSE-O, TSE, and NASTDA.
Method MSCI1 NYSE-O2 NYSE-N4 TSE3 NASTDA2

AOLPIMV 0.1721 0.4062 0.1427 0.1898 0.0851
AOLNPM 0.1609 0.3724 0.1277 0.1810 0.0578
Anticor-1 0.0751 0.2862 0.1368 0.1635 0.0731
Anticor-2 0.0797 0.2726 0.1541 0.1452 0.0790
BCRP 0.0520 0.0941 0.0244 0.1199 0.1001
CWMR-V 0.1377 0.3853 0.0960 0.1905 0.0523
CWMR-S 0.1378 0.3853 0.0959 0.1910 0.0524
CORN 0.1289 0.2607 0.0916 0.0696 0.0226
EG 0.0041 0.1106 0.0704 0.0649 0.0457
Market 0.0023 0.0835 0.0637 0.0675 0.0448
ONS 0.0002 0.1252 0.0457 0.0406 0.0744
OLMAR-1 0.1365 0.3737 0.1420 0.1233 0.0786
OLMAR-2 0.1549 0.4001 0.1380 0.1788 0.0572
PAMR 0.1281 0.3798 0.0946 0.1828 0.0491
PAMR-1 0.1294 0.3798 0.0946 0.1828 0.0490
PAMR-2 0.1370 0.3842 0.0965 0.1814 0.0511
TCO-1 0.1359 0.4443 0.1484 0.1646 0.0878
TCO-2 0.1165 0.3850 0.1478 0.1788 0.0880
UCRP 0.0042 0.1113 0.0704 0.0650 0.0513
UP 0.0032 0.1096 0.0697 0.0626 0.0512

The benchmark is set as the Market strategy. It is clear that
AOLPIMV achieves the largest Information ratios on MSCI, the
second on NYSE-O and NASTDA and third on TSE.
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Numerical Experiments

To further study the influence of introducing peer impact, we
use the adaptive moving average mean-variance (AOLMAMV)
algorithm, where the AOLMA is used to predict the future
returns of risky assets without considering the peer impact.
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Figure 8: Cumulative returns of AOLPIMV and AOLMAMV (Different Step Size δ).
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Numerical Experiments
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Figure 9: Number of assets in the last 43 periods.
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Conclusions

To accurately predict the future returns of assets, we
propose the AOLPI method, which considers the historical
returns of assets and the peer impact of other assets.
Meanwhile, we construct the AMV model where the
investment return and risk are considered simultaneously
in the decision making process.
We integrate AOLPI and AMV and propose the AOLPIMV
algorithm to solve practical online portfolio selection
issues. Numerical experiments are provided to verify the
effectiveness of the AOLPIMV algorithm.
We shall study other time series model such as ARIMA
for prediction and other risk measure such as CVaR.
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