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Abstract

We consider modeling genetic regulatory networks by using Boolean Networks (BNs) and its exten-

sion Probabilistic Boolean Networks (PBNs). BNs (deterministic models) and PBNs (stochastic

models) are useful and effective tools for studying genetic regulatory networks. A PBN is essen-

tially a collection of BNs driven by a Markov chain (a random process). A BN is characterized

by its attractor cycles and a PBN is characterized by its steady-state distribution. We review

some algorithms for finding attractor cycles and steady-state distributions for BNs and PBNs,

respectively. We then discuss an inverse problem, the problem of constructing a PBN given a set

of BNs. It is well-known that the control of a genetic regulatory network is useful for avoiding

undesirable states associated with diseases and this results in a control problem. We formulate

both problems as optimization problems and efficient algorithms are also presented to solve them.

Other applications of PBNs will also be discussed.

∗Research Support in Part by HK RGC Grant and HKU Strategic Research Theme
Fund on Computation and Information.
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The Outline

(1) Boolean Networks (BNs)

(2) Probabilistic Boolean Networks (PBNs)

(3) The Construction Problem.

(4) The Control Problem.

(5) Concluding Remarks and Related Problems.
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1. Boolean Networks and Probabilistic Boolean Networks.

1.1 Motivations and Objectives.

• An important issue in systems biology is to model and under-

stand the mechanism in which the cells execute and control a large

number of operations for their normal functions and also the way

in which they fail in diseases such as cancer (25000 genes in human

Genome). Eventually to design some control strategy to avoid the

undesirable state/situation.

• Genetic Network: A set of molecular components such as genes,

proteins and other molecules, and interactions between them that

collectively carry out some cellular function.

• Gene Expression: The regulation of gene transcription. The

expression of a gene may be controlled during RNA processing and

transport, RNA translation, and the post-translational modification

of proteins.
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• Mathematical Modeling and Computational Study.

(i) Gaining an understanding of the complex patterns of behavior

from the interactions between genes poses a huge scientific chal-

lenge with potentially high industrial payoffs.

(ii) Massive data and advanced experimental techniques, a com-

putational approach is required.

(iii) Formal methods for the modeling and simulation of gene

regulation processes are indispensable (large and complex genetic

regulatory system).
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• A Review of Mathematical Models (De Jong, 2002).

-Boolean Networks (BNs) (Kaufman, 1969a, 1969b, 1974,

1993)

-Differential and Partial Differential Equations (Mestl et al., 1995)

-Probabilistic Boolean networks (PBNs) (Shmulevich et al.,

2002)

-Bayesian Networks (Friedman et al., 2000)

-Linear Models (van Someren et al., 2000)

-Petri Nets (Steggles et al. 2007)

· · · · · · · · ·

• Since genes exhibit “switching behavior”, BNs and PBNs mod-

els have received much attention. We shall focus on these models.
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1.1.1 The Lac Operon

• The lac operon ∗ consists of a promoter/operator region and three
structural genes: lacZ (Gene for β-galactosidase), lacY (Gene for β-
galactoside permease), and lacA (Gene for β-galactoside transacety-
lase).

• lac operon is required for the transport and metabolism of
lactose in E. coli (Lactose → Glucose). The lac operon is
regulated by several factors including the availability of Glucose
and Lactose.

Lactose Glucose Expression

Low High Off
Low Low Off
High High Off
High Low On

∗lac operon is a well-known example of an inducible genetic circuit. It has been using as a model
for understanding gene regulations since late 1950s. An operon is a cluster of structural genes
that are expressed as a group and their associated promoter and operator. lacZ converts lactose
into glucose and galactose and lacY transports lactose into the cell.
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1.2 Boolean Networks

• In a BN, each gene is regarded as a vertex of the network and is

then quantized into two levels only (expressed: 1 or unexpressed:

0) though the idea can be extended to the case of more than two

levels.

• The target gene is predicted by several genes called its input

genes via a Boolean function.

• If the input genes and the corresponding Boolean functions are

given, a BN is said to defined and it can be considered as a deter-

ministic dynamical system.

• The only randomness involved in the network is the initial system

state.
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1.2.1 An Example of a BN of Three Genes

vi(t+1) = f(i)(v1(t), v2(t), v3(t)), i = 1,2,3.

State v1(t) v2(t) v3(t) f(1) f(2) f(3)

1 0 0 0 0 1 1
2 0 0 1 1 0 1
3 0 1 0 1 1 0
4 0 1 1 0 1 1
5 1 0 0 0 1 0
6 1 0 1 1 0 0
7 1 1 0 1 0 1
8 1 1 1 1 1 0

(0,0,0) → (0,1,1) ↔ (0,1,1),

(1,0,1) → (1,0,0) → (0,1,0) → (1,1,0) → (1,0,1),

(0,0,1) → (1,0,1), (1,1,1) → (1,1,0).
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• The transition probability matrix of the 3-gene BN is given by

1 2 3 4 5 6 7 8

A3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0


.

• We note that each column has only one non-zero element and

column sum is one. Thus the matrix is very sparse.
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• Given an initial state, the system will eventually enters into a set
of stable states denoted as attractor cycle. In addition, basin of
attractor is defined as those set of states leading the system to a
specific attractor cycle.

• Since each attractor may consist of one or many states, an at-
tractor containing only one state is called a singleton attractor.
Otherwise, if an attractor contains p states, it is called an attractor
cycle of period p.

• There are 2 interpretations for the biological function of attractors.

- The first one follows Kauffman is that one attractor should cor-
respond to a cell type (Kauffman 1993).

- The second interpretation is that they correspond to different
cell states: growth, differentiation (liver cell, nerve cell etc.) and
apoptosis (Huang 1999).
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1.2.2 A Review on BNs

• A BN G(V, F ) consists of a set of vertices V = {v1, v2, . . . , vn}.
We define vi(t) to be the state (0 or 1) of the vertex vi at time t.

• There is also a list of Boolean functions (fi : {0,1}n → {0,1}):
F = {f1, f2, . . . , fn} to represent the rules of the regulatory interac-

tions among the genes:

vi(t+1) = fi(v(t)), i = 1,2, . . . , n

where

v(t) = (v1(t), v2(t), . . . , vn(t))
T

is called the Gene Activity Profile (GAP).

• The GAP can take any possible form (states) from the set

S = {(v1, v2, . . . , vn)T : vi ∈ {0,1}}

and thus totally there are 2n possible states.
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1.2.3 Finding Attractor Cycles in BNs

• Finding a singleton attractor can be a difficult task (NP-hard)

(Akutsu et al. 1998).

• An algorithm is developed for identifying singleton attractors

and short period attractors in BNs (Zhang et. al 2007a).

Results:

-We show that the algorithm for finding singleton attractors works

in O(1.19n) time for K = 2, which is much faster than the naive

O(2n) time algorithm. Here n is the number of genes and K is the

maximum indegree.

-We also show that finding an attractor with the shortest period is

NP-hard.
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2.1 Probabilistic Boolean Networks (PBNs)

• Since BN is a deterministic model, to overcome this determin-
istic rigidity, an extension to a probabilistic model is natural.

• Reasons for a stochastic model:

- The biological system has its stochastic nature;

- The microarray data sets used to infer the network structure are
usually not accurate because of the experimental noise in the com-
plex measurement process.

• A probabilistic model, Probabilistic Boolean Networks (PBNs), was
proposed by Shmulevich et al. (2002a), (2002b), (2002c), (2002d).
Using PBN, they are able to construct a small size gene network
using gene expression data, Shmulevich et al. (2003).
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• For each vertex vi in a PBN, instead of having only one Boolean

function as in BN, there are a number of Boolean functions (pre-

dictor functions)

f
(i)
j (j = 1,2, . . . , l(i))

to be chosen for determining the state of gene vi.

• The probability of choosing f
(i)
j as the predictor function is

c
(i)
j ,0 ≤ c

(i)
j ≤ 1 and

l(i)∑
j=1

c
(i)
j = 1 for i = 1,2, . . . , n.

• The probability c
(i)
j can be estimated by using the method of

Coefficient of Determination (COD) (Dougherty et al. (2000))

with real gene expression data sets.
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Remark:

-CoD is a measure of relative decrease in error from estimat-
ing transcriptional levels of a target gene through the levels of its
predictor genes in the absence of the predictor genes. The CoDs
obtained are then translated to the predictor probabilities.

-However, the maximum number of possible predictors for each
gene and the number of their corresponding probabilities is equal
to O(22

n
) where n is the number of nodes. This means the number

of parameters in the PBN model is O(n22
n
).

-The major drawback of using CoD is the model complexity and
imprecisions due to insufficient data sample size. Very often,
we may have to impose some constraints on the maximum size of
predictors for each gene.
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• If we let fj be the jth possible realization,

fj = (f(1)j1
, f

(2)
j2

, . . . , f
(n)
jn

), 1 ≤ ji ≤ l(i), i = 1,2, . . . , n.

In an independent PBN (the selection of the Boolean function is

independent), the probability of choosing the jth BN qj is

qj =
n∏

i=1

c
(i)
ji

, 1,2, . . . , N. (1)

• The maximum number of different possible realizations of BNs is

N =
n∏

i=1

l(i). (2)

• There are other types of PBNs such as context-sensitive PBNs

and instantaneously random PBNs (Pal et al., 2005). Here we only

focus on independent PBNs.
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• We note that the transition process among the states in the set

S is a Markov chain process. Let a and b be any two column

vectors in the set S. Then the transition probability

Prob {v(t+1) = a | v(t) = b}

=
N∑

j=1

Prob {v(t+1) = a | v(t) = b, the jth network is selected } · qj.

• By letting a and b to take all the possible states in S, one can

get the transition probability matrix for the process. The transition

matrix is given by

A = q1A1 + q2A2 + · · ·+ qNAN .

Here Aj is the corresponding transition probability matrix of the j-th

BN.

• There are at most N2n nonzero entries for the transition proba-

bility matrix A.
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2.2 Computation of the Steady-state Distribution of a PBN

• Evolution of the network is according to the transition probability
matrix. Under some condition, the network will become “steady”.
To find the steady-state distribution (long run behavior) is a key as-
pect in studying the dynamics of genetic regulatory networks. The
matrix size is large and sparse, i.e., there are many zero entries.

Results:

-An efficient matrix method (Zhang et al. 2007b) was proposed
to construct the sparse transition probability matrix, and power
method based on the sparse matrix-vector multiplication is applied
to compute the steady-state probability distribution.

-The method provides a way for studying the sensitivity of steady-
state distribution to the influence of different genes and BNs.
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2.3 Approximation of the Steady-state distribution of a PBN

• A matrix approximation method for computing the steady-state
distribution of a n-gene PBN was proposed (Ching et al. 2007).

• The idea is to neglect some Boolean networks (BNs) with very
slim selection probabilities, say less than a threshold value τ

during the construction of the transition probability matrix.

Results:

- We gave an error analysis of this approximation method and a the-
oretical result on the distribution of BNs in a PBN with at most two
Boolean functions (random selection probability) for one gene.

-The selection probability distribution of a BN is given by

(− ln(τ))n−1

(n− 1)!
for τ ∈ (0,1).
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2.4 Parsimonious Multivariate Markov Chain Model for PBNs

• A parsimonious multivariate Markov model was proposed (Ching

et al. 2005) for approximating PBNs that can describe the dynamics

of a genetic network using gene expression sequences.

Results:

-The parsimonious model is able to preserve the strength of PBNs

and reduce the complexity of the networks. The number of param-

eters of the model is O(n2) where n is the number of genes involved.

-Efficient estimation methods for solving the model parameters

were given. Numerical examples on synthetic data sets and prac-

tical yeast data sequences (Yeung and Ruzzo, 2001) are given to

demonstrate the effectiveness of the proposed model.

20



2.5 Finding Attractor Cycles in a PBN

• We studied the expected number of singleton attractors in an
independent PBN and designed algorithms for identifying singleton
and small attractor cycles (Hayashida et al., 2009).

Results:

-The expected number is (2 − (1/2)L−1)n, where n is the num-
ber of nodes in a PBN and L is the number of Boolean functions
assigned to each node. In the case of L = 2, this number can be
simplified to 1.5n.

-The average case time complexities for identifying singleton
attractors of a PBN with L = 2 and L = 3 are O(1.601n) and
O(1.763n), respectively. The results of computational experiments
suggest that these algorithms are much more efficient than the naive
algorithm that examines all possible O(2n) states.
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3. The Construction Problem

3.1 The Motivation

• We consider an inverse problem of constructing a PBN from a

given steady-state distribution (Zhang et al., 2010) or a transi-

tion probability matrix (Chen et al. 2011).

• Such problems are very useful for network inference from steady-

state data, as most microarray data sets are assumed to be obtained

from sampling the steady-state data or time-series data.

• This is an inverse problem of huge problem size. The inverse

problem is ill-posed, meaning that there will be many networks or

no network having the desirable properties.

• Here we focus on constructing a PBN based on a given transition

probability matrix and a given set of BNs (Chen et al. 2011).
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3.2 The Problem Formulation

• Suppose that the possible BNs constituting the PBN are known

and their BN matrices are denoted by

{A1, A2, . . . , AN}.

• Transition probability matrix is observed and they are related as

follows:

A =
N∑

i=1

qiAi. (3)

• We are interested in getting the parameters qi (selection prob-

abilities), i = 1,2, . . . , N when A is given.
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• The problem size is huge and A is usually sparse. Here we assume

that each column of A has at most m non-zero entries. In this case,

we have N = m2n and we can order A1, A2, · · · , Am2n systematically.

• We note that qi and Ai are non-negative and there are only m · 2n

non-zero entries in A. Thus we have at most m · 2n equations for

m2n unknowns.

• To reconstruct the PBN, one possible way to get qi is to consider

the following minimization problem:

min
q

∥∥∥∥∥∥∥A−
m2n∑
i=1

qiAi

∥∥∥∥∥∥∥
2

F
subject to

0 ≤ qi ≤ 1 and
m2n∑
i=1

qi = 1.

(4)
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• Here ∥ · ∥F is the Frobenius norm of a matrix. We define a

mapping F from the set of l× l square matrices to the set of l2 × 1

vectors by

F




a11 · · · a1l
... ... ...
... ... ...

al1 · · · all


 = (a11, . . . , al1, a12, . . . , al2, . . . , . . . , a1l, . . . all)

T .

(5)

• If we let

U = [F (A1), F (A2), . . . , F (Am2n)] and p = F (A) (6)

then the minimization problem in Eq. (4) becomes

min
q

∥Uq− p∥22
subject to

0 ≤ qi ≤ 1 and
m2n∑
i=1

qi = 1.

(7)
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• Since

||Uq− p||22 = (Uq− p)T (Uq− p) (8)

we have

min
q

||Uq− p||22 = min
q

{qTUTUq− 2qTUTp+ pTp}. (9)

• Minimization problem (9) without constraints is equivalent to

min
q

{qTUTUq− 2qTUTp}. (10)

• The matrix UTU is a symmetric positive semi-definite matrix.

Solving minimization problem (10) without constraints is equivalent

to solving the linear system

UTUq = UTp (11)

with the Conjugate Gradient (CG) method. The CG method

yields different solutions with different initial guesses. Therefore

there are many solutions for our problem.
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3.3 The Maximum Entropy Approach

• This method can give a solution of the inverse problem. But

usually there are too many solutions. Extra constraint or criterion

has to be introduced in order to narrow down the set of solutions

or even a unique solution.

• In (Chen et al., 2011) it was proposed to consider the solution

which gives the largest Entropy as q itself can be considered as a

probability distribution.

• This means we are to find q such that it maximizes

−
m2n∑
i=1

qi log(qi). (12)

• The Entropy attains its maximum when q is the uniform distri-

bution.
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• We recall that for the inverse problem, we have m · 2n equations
for m2n unknowns. Thus one may have infinitely many solutions.

• Since q can be viewed as a probability distribution, one possible
way to get a better choice of qi is to consider maximizing the entropy
of q subject to the given constraints, i.e., the following maximization
problem:

maxq


m2n∑
i=1

(−qi log qi)


subject to

Ūq = p̄ and 0 ≤ qi i = 1,2, . . . ,m2n.

(13)

• We remark that the constraints that qi ≤ 1 can be discarded

as we required that

m2n∑
i=1

qi = 1 and 0 ≤ qi i = 1,2, . . . ,m2n.
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• The dual problem of (13) is of the type

min
y

max
q

L(q,y) (14)

where y is the multiplier and L(·, ·) is the Lagrangian function

L(q,y) =
m2n∑
i=1

(−qi log qi) + yT (p̄− Ūq). (15)

• The optimal solution q∗(y) of the inner maximization problem of

(14) solves the equations

∇qiL(q,y) = − log qi − 1− yT Ū·i = 0, i = 1,2, . . . ,m2n

and is thus of the form:

q∗i (y) = e−1−yT Ū·i, i = 1,2, . . . ,m2n (16)

where Ū·i is the ith column of the matrix Ū .
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• After substituting q∗(y) back into (15) the dual problem (14)

can be simplified to

min
y


m2n∑
i=1

e−1−yT Ū·i + yT p̄

 . (17)

• The solution of the primal problem (14) is obtained from the

solution of the dual problem (16) through Problem (17).

• Thus we have transformed a constrained maximization problem

with m2n variables into an unconstrained minimization problem

of m · 2n +1 variables.

• We will then apply Newton’s method in conjunction with Con-

jugate Gradient (CG) method to solving the dual problem.
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3.4 Newton’s Method

• We denote

f(y) =
m2n∑
i=1

e−1−yT Ū·i + yT p̄ (18)

the function we want to minimize.

• In Newton’s method, we have to compute the gradient and the

Hessian of f . They are given, respectively, as follow:

∇f(y) = −Ūq∗(y) + p̄ (19)

and

∇2f(y) = Ū · diag(q∗(y)) · ŪT (20)

where q∗(y) is as defined in Eq. (16) and diag(q∗(y)) is the diagonal

matrix with diagonal entries (q∗(y)).
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Newton’s Method

Choose starting point y0 ∈ Im(Ū)
Initialize : k = 1;

While ||∇f(yk)||2 > tolerance
Find (pk) with ∇2f(yk−1)pk = −∇f(yk−1);
Set yk = yk−1 + pk;
Set k = k +1;

End.

• From Eq. (20), we observe that f is strictly convex on the

subspace Im(Ū).

• Newton’s method will produce a sequence of points yk according

to the iteration yk = yk−1 + pk, where the Newton step pk is the

solution of the Hessian matrix system:

∇2f(yk−1)pk = −∇f(yk−1). (21)
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• We note that ∇2f(yk−1) is a one-to-one mapping of the con-

cerned subspace onto itself.

• Moreover, from Eq. (19) ∇f(y) ∈ Im(Ū) as we have p̄ ∈ Im(Ū)

(from Eq. (13)). Hence, Eq. (21) has an unique solution and

therefore Newton’s method for minimizing f is well defined.

• If we start with y0 ∈ Im(Ū), the Newton’s sequence will remain in

the subspace. It will converge locally at a quadratic rate.

• To enforce global convergence one may wish to resort to line

search or trust region techniques. However, we did not find this

necessary in our computational experiments.
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3.5 Conjugate Gradient Method

• In each iteration of the Newton’s method, one has to solve the

linear system of the form in Eq. (21). We propose to employ the

Conjugate Gradient (CG) method.

• The convergence rate of CG method depends on the effective

condition number

λ1(∇2f(y))

λs(∇2f(y))
(22)

of ∇2f(y). Since ∇2f(y) is singular we have to consider the second

smallest eigenvalue λs(∇2f(y)).

Results: For the Hessian matrix ∇2f(y), we have

2n · e−2(m·2n+1)·∥y∥∞ ≤
λ1(∇2f(y))

λs(∇2f(y))
≤
(√

2n +
√
m
)2

· e2(m·2n+1)·∥y∥∞.
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3.6 Some PBN Examples

• For Newton’s method, we set the tolerance to be 10−7 while the

tolerance of CG method is 10−10.

Example 3.1 In the first example, we consider the case n = 2

and m = 2 and we suppose that the observed/estimated transition

probability matrix of the PBN is given as follows:

A2,2 =


0.1 0.3 0.5 0.6
0.0 0.7 0.0 0.0
0.0 0.0 0.5 0.0
0.9 0.0 0.0 0.4

 . (23)
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• Then there are 16 possible BNs for constituting the PBN and they
are listed below:

A1 =

( 1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
A2 =

( 1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1

)
A3 =

( 1 1 0 1
0 0 0 0
0 0 1 0
0 0 0 0

)
A4 =

( 1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)

A5 =

( 1 0 1 1
0 1 0 0
0 0 0 0
0 0 0 0

)
A6 =

( 1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1

)
A7 =

( 1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

)
A8 =

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

A9 =

( 0 1 1 1
0 0 0 0
0 0 0 0
1 0 0 0

)
A10 =

( 0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1

)
A11 =

( 0 1 0 1
0 0 0 0
0 0 1 0
1 0 0 0

)
A12 =

( 0 1 0 0
0 0 0 0
0 0 1 0
1 0 0 1

)

A13 =

( 0 0 1 1
0 1 0 0
0 0 0 0
1 0 0 0

)
A14 =

( 0 0 1 0
0 1 0 0
0 0 0 0
1 0 0 1

)
A15 =

( 0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

)
A16 =

( 0 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

)
.
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• Suppose we have

A =
16∑
i=1

qiAi

and the followings are the 8 equations governing qi (cf. Eq. (6)):

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1





q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13
q14
q15
q16



=



0.1
0.0
0.0
0.9
0.3
0.7
0.0
0.0
0.5
0.0
0.5
0.0
0.6
0.0
0.0
0.4



.
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Fig. 3.1. The Probability Distribution q for the case of A2,2.
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State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 0 0
4 1 1 0 0

Table 3.1: The Truth Table for A13.

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 0 0
4 1 1 1 1

Table 3.2: The Truth Table for A14.

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 1 0
4 1 1 0 0

Table 3.3 : The Truth Table for A15.

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1
2 0 1 0 1
3 1 0 1 0
4 1 1 1 1

Table 3.4 : The Truth Table for A16.

39



Example 3.2 We then consider the case n = 3 and m = 2 and we

suppose that the observed transition matrix of the PBN is given as

follows:

A3,2 =



0.1 0.3 0.5 0.6 0.2 0.1 0.6 0.8
0.0 0.7 0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0


.

• There are 256 possible BNs for constituting the PBN. The solution

is shown in Figure 3.2. We note that the PBN is dominated (over

60%) by 25 BNs.
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41



Example 3.3 We consider a popular PBN (Shmulevich et al. (2002a)):

Network State f
(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

000 0 0 0 0 0
001 1 1 1 0 0
010 1 1 1 0 0
011 1 0 0 1 0
100 0 0 1 0 0
101 1 1 1 1 0
110 1 1 0 1 0
111 1 1 1 1 1

c
(i)
j 0.6 0.4 1 0.5 0.5

Table 3.5 : Truth Table (Taken from Shmulevich et al.

(2002a)).

BN1 1 7 7 6 3 8 6 8
BN2 1 7 7 5 3 7 5 8
BN3 1 7 7 2 3 8 6 8
BN4 1 7 7 1 3 7 5 8
Table 3.6 : The Four BNs.
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• We consider adding some perturbations to the first two rows

and the non-zeros entries of the transition probability matrix A4,4

as follows:

1.0− δ δ δ 0.2+ δ δ δ δ δ
δ δ δ 0.2+ δ δ δ δ δ

0.0 0.0 0.0 0.0 1.0− 2δ 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.3− δ 0.0 0.0 0.5− δ 0.0
0.0 0.0 0.0 0.3− δ 0.0 0.0 0.5− δ 0.0
0.0 1.0− 2δ 1.0− 2δ 0.0 0.0 0.5− δ 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5− δ 0.0 1.0− 2δ


.

• For δ = 0.01,0.02,0.03 and 0.04, we apply our algorithm and
obtain 16 major BNs (out of 10368 BNs) (Table 3.7) and these
BNs actually contribute, respectively, 94%, 90%, 84% and 79% of
the network.

• We note that the 1st, 8th, 9th and the last major BNs match with
the four BNs (BN1, BN2, BN3, BN4) in Table 3.7.
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BNs δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04
1* 1 7 7 1 3 7 5 8 0.047 0.045 0.042 0.040
2 1 7 7 1 3 7 6 8 0.047 0.045 0.042 0.040
3 1 7 7 1 3 8 5 8 0.047 0.045 0.042 0.040
4 1 7 7 1 3 8 6 8 0.047 0.045 0.042 0.040
5 1 7 7 2 3 7 5 8 0.047 0.045 0.042 0.040
6 1 7 7 2 3 7 6 8 0.047 0.045 0.042 0.040
7 1 7 7 2 3 8 5 8 0.047 0.045 0.042 0.040
8* 1 7 7 2 3 8 6 8 0.047 0.045 0.042 0.040
9* 1 7 7 5 3 7 5 8 0.071 0.067 0.063 0.059
10 1 7 7 5 3 7 6 8 0.071 0.067 0.063 0.059
11 1 7 7 5 3 8 5 8 0.071 0.067 0.063 0.059
12 1 7 7 5 3 8 6 8 0.071 0.067 0.063 0.059
13 1 7 7 6 3 7 5 8 0.071 0.067 0.063 0.059
14 1 7 7 6 3 7 6 8 0.071 0.067 0.063 0.059
15 1 7 7 6 3 8 5 8 0.071 0.067 0.063 0.059
16* 1 7 7 6 3 8 6 8 0.071 0.067 0.063 0.059

Table 3.7: The 16 Major BNs and their Selection Probabilities.
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3.7 The performance of Newton’s Method and CG Method

We also present the number of Newton’s iterations required for con-

vergence and the average number of CG iterations in each Newton’s

iteration in the following table.

n m Number of BNs Newton’s Iterations Average Number
of CG Iterations

2 2 16 9 9
2 3 81 7 9
3 2 256 7 7
3 3 6561 11 13

Table 3.8 : Number of Iterations.
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3.8 The Projection-based Gradient Descent Method

• We developed a projection-based gradient descent method

(Wen et. al. (2015)) for solving the following problem:

min
q∈Ω

ϕ(q) ≡
1

2
∥Uq− p∥22

where
Ω = {q : qi ≥ 0,

∑
i qi = 1} .

(24)

• The challenge comes from the fact that the matrix U is huge in

practice such that it is not desirable to store the matrix. A ma-

trix free method is therefore desirable for computational purpose.

Results: We prove its convergence and apply it to the PBN con-

struction problem. Similar but more sparse solutions are obtained.
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Fig. 3.3 The probability distribution q: Entropy Method (Left), Projection-based Method (Right)
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Fig. 3.4 The convergence curve of our method.
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Fig. 3.5 The probability distribution q: Entropy Method (Left), Projection-based method (Right)

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

O
bj

 F
un

ct
io

n

Fig. 3. The convergence curve of our method.
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3.9 A Heuristic Method

• A heuristic method was proposed for the PBN construction prob-
lem in (Ching et al., 2009a).

Results:

-By exploiting the fact that the transition probability matrix can be
written as a weighted sum of Boolean network matrices, a heuristic
algorithm of O(m2n) complexity was proposed.

Here n and m are the number of genes, and the number of non-zero
entries in the transition matrix, respectively.

-The algorithm was also analyzed numerically.
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4. The Optimal Control Problem

4.1 The Motivation

• Intervention can be achieved through removing a gene or trans-
planting a gene, as done in gene therapy. It is an efficient way
to generate mutations and also hoped to be an efficient way for
correcting mutation (therapy).

• Simian Virus 40 (SV40) was discovered in 1950s during the de-
velopment of vaccine for certain poliovirus.

- It was found that SV40 can develop tumors when injected in mice.
Moreover, SV40 DNA was also found in some human brain tumors
and cause cancer in mouse cell.

- Large T-antigen, the protein encoded by SV40 inactivate the
function of Gene p53. It is likely that p53 is a key gene for
controlling the global behavior of the genetic network.
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4.2 The Formulation

• Given a PBN, one can consider structural intervention (perma-
nently alter the underlying network structure with minimal structural
modification) (Pal et al., 2005) and external control (apply exter-
nal perturbation to alter the network dynamics) (Pal et al., 2006)
of the network. Here shall consider the later one.

• Here we study a discrete time control problem, (Ching et al.
2009b). Beginning with an initial probability distribution v0 the PBN
evolves according to two possible transition probability matrices P0
and P1.

• Without any external control, we assume that the PBN evolves
according to a fixed transition probability matrix P0.

• When a control is applied to the network, the PBN will then
evolve according to another transition probability matrix P1 (with
more favorable steady states or a BN) but it will return back to P0
again when no more control is applied to the network.
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• We remark that one can have more than one type of control, i.e.,

more than one transition probability matrix P1 to choose in each

time step.

• We then suppose that the maximum number of controls that

can be applied to the network during the finite investigation period

T (finite-horizon) is K where K ≤ T .

• The objective here is to find an optimal control policy such that

the state of the network is close to a target state vector z.

• Here z can be a unit vector (a desirable state) or a probability

distribution (a weighted average of desirable states).
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• To facilitate our discussion, we define the following state proba-

bility distribution vectors

v(ikik−1 . . . i1) = Pik · · ·Pi1v0

to represent all the possible network state probability distribution

vectors up to time k. Here

i1, i2, . . . , ik ∈ {0,1} and
k∑

j=1

ij ≤ K

and ikik−1 . . . i1 is a Boolean string of size k.

• We then define

U(k) = {v(ikik−1 . . . i1) : i1, . . . , ik ∈ {0,1} and
k∑

j=1

ij ≤ K}

to be the set containing all the possible state probability vectors up

to time k.
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• We note that one can conduct a forward calculation to compute

recursively all the state vectors in the sets

U(1), U(2), . . . , U(T ).

• Beginning with v0, we have

v(0) = P0v0 and v(1) = P1v0

and therefore

U(1) = {v(0),v(1)} = {P0v0, P1v0}.

Similarly, we have

U(2) = {v(00),v(01),v(10),v(11)}
= {P0P0v0, P1P0v0, P0P1v0, P1P1v0}.

Recursively, one can compute

U(3), U(4), . . . , U(T ).
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• The main computational cost is the matrix-vector multiplica-

tion.

• We adopted the sparse matrix structure for the transition prob-

ability matrix, thus the computational cost for each matrix-vector

multiplication is at most O(N2n) where n is the number of genes

and N is the number of BNs in the network.

• We don’t need to compute and store all the 2T vectors as some

state probability distribution does not exist (the maximum number

of controls is K). The total number of vectors involved is

K∑
j=0

T !

j!(T − j)!
.

• For example, if K = 1 and the number of nonzero entries in the

control matrix is no more than N2n, then the complexity of the

algorithm is O(TN2n).
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4.3. Two Examples of Objective Functions

• The first objective that one can try is to minimize the terminal

distance with a target vector z, i.e.,

min
v(iT iT−1...i1)∈U(T )

∥v(iT iT−1 . . . i1)− z∥. (25)

• The second possible objective is to minimize the overall average

of the distances of the state vectors v(it . . . i1) (t = 1, . . . , T ) to a

target vector z:

min
v(itit−1...i1)∈U(T )

1

T

T∑
t=1

∥v(it . . . i1)− z∥. (26)
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• For the first optimal control problem (25), once we compute all

the feasible state vectors U(T ), we can then compute the minimum

of the following:

min{∥v(iT iT−1 . . . i1)− z∥}.

The optimal control policy can be found accordingly.

• For the second optimal control problem (26), we define the fol-

lowing cost function:

D(v(wt), t, k), 1 ≤ t ≤ T, 0 ≤ k ≤ K

as the minimum total distance to the terminal time T when be-

ginning with state distribution vector v(wt) at time t and that the

number of controls used is k.

• Here wt is a Boolean string of length t.
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• To reduce the duplication in the calculation of distances, we con-

sider the following Dynamic Programming (DP) formulation:

D(v(wt−1), t− 1, k) = min{∥v(0wt−1)− z∥+D(v(0wt−1), t, k),

∥v(1wt−1)− z∥+D(v(1wt−1), t, k +1)}.(27)

Here 0wt−1 and 1wt−1 are Boolean strings of size t.

• The first term in the right-hand-side of (27) is the cost (distance)

when no control is applied at time t.

• The second term is the cost when a control is applied. The

optimal control policy can be obtained during the process of solving

Eq. (27).
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• To solve our optimal control problem:

min
0≤k≤K

{D(v0,0, k)}

we need the following boundary conditions:

D(v(wt), t,K +1) = ∞ for all wt and t.

For k = 0,1, . . . ,K,

D(v(wT ), T, k) = ||v(wT )− z∥

for

wT = iT . . . i1, and
T∑

j=1

ij ≤ K.
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4.4 An Approximation Method

• One of the main cost in the algorithm is the matrix-vector multi-

plication. We proposed an approximation method based on the idea

discussed in (Ching et al. 2007).

• The idea of the approximation method here is to neglect those

BNs with small selection probabilities. Theoretical results on

the distribution of BNs in a PBN has shown that there are a large

amount of BNs will be chosen with very small probabilities.

• We assume

P0 =
N∑

i=1

qiAi

where Ai is the transition probability of a BN and qi is the probability

of choosing the corresponding BN in the PBN.
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• The idea is to remove those BNs whose selection probability is less

than a certain threshold value τ . After removing such BNs, the

number of nonzero entries in the PBN will be reduced significantly.

• Suppose that there are nτ Boolean networks being removed

whose corresponding transition matrices are

A1, A2, . . . , Anτ

and their selection probabilities are given by

q1, q2, . . . , qnτ

respectively.

• Then after the removal of these nτ Boolean networks and making

a normalization, the transition probability matrix becomes

P̃0 =
(P0 − (q1A1 + q2A2 + . . .+ qnτAnτ))

1− (q1 + q2 + . . .+ qnτ)
. (28)
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4.5 The Error Bounds

Results: If P̃0 is used instead of P0, the errors of the optimal

objective values are bounded above, respectively, by

(1 + ∥P0 − P̃0∥1)T−k − 1

and

1

T

k[(∥P0 − P̃0∥1 +1)T−k − 1] +
T−k∑
i=1

[(∥P0 − P̃0∥1 +1)i − 1]


when objective functions (25) and (26) are applied. Here k (0 ≤
k ≤ K) is the number of controls applied in the control policy. The

two bounds can be further approximated, respectively, by

(T − k)∥P0 − P̃0∥1 and
∥P0 − P̃0∥1

2T
(T − k)(T + k +1)

when ∥P0 − P̃0∥1 ≈ 0.
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4.6 Numerical Experiments

4.6.1 A small network example

• We first consider a small three-gene network whose transition

probability matrix (column sum is one) when there is no control is

given by

P0 =



0.3 0.3 0.0 0.2 0.3 0.0 0.0 0.2
0.3 0.0 0.0 0.3 0.1 0.0 0.2 0.3
0.1 0.0 0.5 0.0 0.1 0.3 0.1 0.0
0.0 0.0 0.3 0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.2
0.0 0.1 0.0 0.3 0.2 0.1 0.2 0.1
0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.2
0.3 0.5 0.0 0.0 0.3 0.0 0.2 0.0


.
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• The transition probability matrix when the control is applied is

given by

P1 =



0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3


.
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• The target state vector is

z = 0.3(1,0,0,0,0,0,0,0)T +0.7(0,0,0,0,0,0,0,1)T

a probability distribution or actually a weighted average of two state

vectors.

• The initial state vector is assumed to be the uniform distribu-

tion vector

v0 =
1

8
(1,1,1,1,1,1,1,1)T .

• We assume that the total time T to be 12.

• We try several different maximum number of controls K = 1,2,3,4,5.
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• Tables 4.1 and 4.2 report the numerical results when two different

objective functions (25) and (26) are used, respectively.

• All computations were done in a PC Pentium 4HT with MAT-

LAB 7.0. The computational time for solving the optimal policy

in all the cases is less than two seconds.

K 1 2 3 4 5
Control [10] [10] [7,9,10] [2,4,6,10] [2,4,6,8,10]
Objective 0.486 0.486 0.486 0.486 0.486

Table 4.1: A small example of three-gene network when

Objective function (25) is used.

K 1 2 3 4 5
Control [1] [1,4] [1,4,12] [1,4,7,10] [1,2,10,11,12]
Objective 0.655 0.652 0.649 0.646 0.643
Table 4.2: A small example of three-gene network when

Objective function (26) is used.
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4.6.2 A 12-gene Network Example

• We give a more complex example, a 12-gene network is randomly
generated. For each gene i, there are two Boolean functions f

(i)
1

and f
(i)
2 .

• All the Boolean functions and their variables are generated ran-
domly.

• Thus there are total 4096 BNs involved in the PBN. The two
objective functions (25) and (26) are used.

• Again we assume T = 12. Tables 4.3 and 4.4 give the numerical
results for τ = 10−4, where τ is the threshold value. The number
of removed BNs is 2499.

• The target vector is 1
2n(0, . . . ,0,1, . . . ,1)

T . When a control is
applied it will turn off the first gene and make no change to other
genes.
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K 1 2 3 4 5
ControlOri [10] [8,10] [6,8,10] [4,6,8,10] [2,4,6,8,10]
ControlApp [10] [8,10] [6,8,10] [4,6,8,10] [2,4,6,8,10]
Error∥·∥2 0 0 0 0 0

ControlOri [12] [9,12] [5,7,12] [5,7,9,12] [3,5,7,9,12]
ControlApp [12] [9,12] [5,7,12] [5,7,9,12] [3,5,7,9,12]
Error∥·∥1 0 0 0 0 0

ControlOri [10] [8,10] [8,10] [4,6,8,10] [2,4,6,8,10]
ControlApp [10] [8,10] [8,10] [4,6,8,10] [2,4,6,8,10]
Error∥·∥∞ 0 0 0 0 0

Table 4.3: A 12-gene network with objective function (25)
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K 1 2 3 4 5
ControlOri [1] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
ControlApp [1] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
Error∥·∥2 0 0 0 0 0

ControlOri [1] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
ControlApp [1] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
Error∥·∥1 0 0 0 0 0

ControlOri [1] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
ControlApp [2] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5]
Error∥·∥∞ 0.0005 0 0 0 0

Table 4.4: A 12-gene network with objective function (26)
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K 1 2 3 4 5
Objective TimeOri 1.72 2.43 4.22 7.44 11.73
function (3) TimeApp 1.65 2.17 3.45 5.77 8.86
Objective TimeOri 1.74 2.49 4.35 7.69 12.15
function (4) TimeApp 1.70 2.29 3.79 6.48 10.06

Table 4.5: Time consumed for the 12-gene network (in sec.)
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Finite-horizon Control of PBNs with Multiple Hard-constraints

• The problem was further studied in (Cong et al., 2009) and (Chen

et al., 2013 )

Results:

-The case of multiple hard-constraints was studied, an algorithm

was developed for finding all optimal control policies.

-A heuristic approach was developed in order to deal with large size

networks. A different and more efficient algorithm, using integer

linear programming with hard constraints, was presented later by

(Chen et al., 2013) using WNT5A network (Kim et al., 2002) as a

typical example.
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4.8 State Reduction Approach for Optimal Control Policy in
a PBN

• A state reduction method (Qian et al., 2010), an approximation
method was introduced in (Chen et al., 2012) to find the optimal
control policy for a PBN so as to avoid the network from entering
into undesirable states. Such problem is NP-hard in general (Akutsu
et al., 2007).

Results:

-Inspired by the state reduction strategies (instead of deleting the
nodes in a network, we delete the out-most states having less influ-
ence to the network), Dynamic Programming (DP) method was
adopted in conjunction with state reduction approach to reduce the
computational cost of the DP method.

-Numerical examples are given to demonstrate both the effectiveness
and the efficiency of our proposed method.
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5. Concluding Remarks

• In this talk, we reviewed the BN and PBN approach for modeling

genetic networks. They can be studied in a Markov chain context.

We then introduced some major issues in studying PBNs, they in-

clude the computation of the steady-state distribution, finding

attractor cycles, formulation and algorithms for construction

and control for PBNs.

• We remark that PBNs are not only useful for analyzing complex

biological systems at molecular level but also at physiological level

with potential application at clinical level.

-For example, (Ma et al., 2008) applied PBN in processing func-

tional Magnetic Resonance Imaging (fMRI) signals to infer a brain

connectivity network for Parkinson disease patients.
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• Boolean network model is constructed for representation of the
evolution of patterns of economic behavior in financial crisis (Cae-
tano and Yoneyama, 2015).

• Application of PBNs in investigating the relationship between cor-
related defaults of different industrial sectors and business cycles as
well as the impacts of business cycles on modeling and predicting
correlated defaults. These are central issues in credit risk measure-
ment and management (Gu et al., 2013).

• Boolean network models produce realistic behavior and also some
insights into the reasons for stability in industrial networks (Easton
et al., 2008).

• PBNs were employed to study the relationship between machine
components, their reliability and function (Torres et al., 2015). The
modeling of manufacturing processes through PBNs assists the de-
sign of new systems for predictions of future behavior, identifies
improvement areas, and evaluates changes to existing systems.
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