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1 Background

Technological innovation has completely transformed the fundamentals of the
financial market. As a result, automatic and electronic order-driven trading
platforms have largely replaced the traditional floor-based trading.

Figure 1: Auction Market (Left) Order-driven Market (Right)

In an electronic order-driven market, orders arrive at the exchange and wait in
the Limit Order Book (LOB) to be executed. There are two types of
buy/sell orders for market participants to post:

(1) Market Orders (MO);
(2) Limit Orders (LO).
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Figure 2: Schematic of an LOB

• LO: an order to buy/sell a certain quantity at a given price
• Bid Price: the highest price in limit buy orders
•Ask Price: the lowest price in limit sell orders
•Ask-Bid Spread = Ask Price - Bid Price
•Market Price = Mid-Price=Ask Price+Bid Price

2
•MO: an order to trade a certain quantity at the best available price
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The pricing strategies of dealers have been studied extensively in the micro-
structure literature.

The two most often addressed sources of risk faced by dealers are:

(1) inventory risk arising from uncertainty in the asset’s value;

-Inventory costs arise from uncertainty about market prices of the securities that
the dealer may hold in his portfolio while his limit orders are pending.

(2) asymmetric information risk arising from informed trades.

-Information risk arises when some investors have better information than others
about a firms prospects.
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2 A Review of Two Models

2.1 Ho-Stoll Model

-T. Ho and H. Stoll, Optimal dealer pricing under transactions and return
uncertainty, Journal of Financial Economics, 9 (1981), 47–73.

Ho and Stoll model (1981) imposes the following assumptions:

(i) Transactions are assumed to evolve over time according to Poisson jump
processes. Two Poisson processes are used, one for selling by the
dealer and the other for buying by the dealer

dqa = X{an arrival of a market selling order}Qλadt

and
dqb = X{an arrival of a market buying order}Qλbdt

where XE is the indicator function of the event E, Q is the MO size, and
λa and λb are the intensities of the transactions. Here dqa and dqb are the
increments of the number of market selling and buying orders, respectively.
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(ii) The dealer determines a price of immediacy, b, should a market selling order
arrive and a price, a, should a market buying order arrive.

The dealer does not directly quote b and a, instead, he quotes his bid and
ask prices, respectively, as follows:

pb = p− b and pa = p + a.

Here p is the dealer’s opinion of the true price of the stock at the time he sets
the bid-ask quotation and this price is supposed to be a given constant.

(iii) The intensities, λa and λb, depend on the dealer’s selling fee and buying fee,
respectively.
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(iv) In addition to uncertainty about the timing of subsequent transactions, the
dealer faces uncertainty about the return on his existing portfolio. Conse-
quently, we have dF = rFdt− (p− b)dqb + (p + a)dqa

dI = rIIdt + pdqb − pdqa + IdZI
dY = rY Y dt + Y dZY .

- F, I, Y are the balances of the cash account, inventory account, and base
wealth, respectively,
- rI , rY represent the mean return of inventory account and base wealth per
unit time, respectively,
- r is the constant continuously compounded risk-free rate, and
- ZI and ZY are Wiener processes with mean zero and constant variance
rates, σ2

I and σ2
Y , respectively.

The objective of the dealer is to maximize the expected utility of his
total wealth, Et[U(WT )], at the terminal time T , where

WT = FT + IT + YT .
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2.2 Avellaneda-Stoikov Model

-M. Avellaneda and S. Stoikov, High-frequency trading in a limit order book,
Quantitative Finance, 8 (2008), 217–224.

Avellaneda-Stoikov (2008) modified the model of Ho and Stoll (1981) in some
aspects.

(i) Assume that the money market pays no interest, and the market price, or
mid-price, of the stock evolves over time according to the following zero-drift
diffusion process:

dSu = σdWu (2.1)

where the initial value St = s, {Wu}t≤u≤T is a standard Brownian motion
and σ is a constant, i.e., a constant volatility model.

(ii) The agent’s objective is to maximize the expected exponential
utility of his portfolio at the terminal time T . The exponential
utility is given by

u(w) = − exp(−γw) (2.2)

where γ is the risk-aversion parameter.
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(iii) The Poisson intensity at which the agent’s orders are executed is
supposed to be exponential. In the symmetric case, exponential arrival
rates are assumed to take the following form:

λ(δ) = Ae−kδ (2.3)

where δ is the distance of a LO from the mid-price.

(iv) They introduce the reservation bid and ask prices rb(s, q, t) and
ra(s, q, t), which can be interpreted as the indifference prices for buy-
ing and selling, respectively. They satisfy{

v(x− rb(s, q, t), s, q + 1, t) = v(x, s, q, t)
v(x + ra(s, q, t), s, q − 1, t) = v(x, s, q, t)

(2.4)

where v(x, s, q, t) = Et[u(WT )], x is the initial wealth at time t and q is the
initial inventory level at time t.

-In their model, it is assumed that there is only one monopolistic dealer
in the trading system. The dealer buys or sells one share in the market.
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-The dealer quotes the bid price pb and the ask price pa, and is committed to,
respectively, buy and sell one share of stock at these prices.

-The wealth in cash Xt jumps whenever there is a buy order or sell order and
it is governed by

dXt = padNa
t − pbdNb

t . (2.5)

Here N b
t is the amount of stocks bought by the dealer and Na

t is the amount
of stocks sold. They are assumed to follow Poisson processes with intensities λb

and λa, respectively.

-The number of units of the stock or the inventory level held by the dealer is
then governed by

dqt = dN b
t − dNa

t . (2.6)

-The objective of the dealer who can set limit orders is

u(s, x, q, t) = max
δa,δb

Et [− exp(−γ(XT + qTST ))] (2.7)

where δa = pa − s, δb = s− pb and the dealer holds q stocks at time t.
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• For the case of active dealers, who will make decisions to buy or sell before
the terminal time T , they derived the following HJB equation:

∂u

∂t
+

1

2
σ2∂

2u

∂s2
+ max

δb
λb
[
u(s, x− s + δb, q + 1, t)− u(s, x, q, t)

]
+ max

δa
λa [u(s, x + s + δa, q − 1, t)− u(s, x, q, t)] = 0

u(s, x, q, T ) = − exp(−γ(x + qs)).

(2.8)

• To solve the HJB equation, they consider the simplest case by assuming that
the Poisson intensities take the following form:

λb(δ) = λa(δ) = Ae−kδ.

Then the following form of solution was adopted:

u(s, x, q, t) = − exp(−γx) exp(−γθ(s, q, t))

where θ(s, q, t) is approximated up to the second-order of a Taylor expansion
about the inventory variable q:

θ(s, q, t) = θ(0)(s, t) + θ(1)(s, t)q + θ(2)(s, t)q2 + . . . + . (2.9)
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• Substituting θ into Eq. (2.8) yields
θt + 1

2σ
2θss − 1

2σ
2γθ2

s + max
δb

(
λb(δb)

γ
(1− eγ(s−δb−rb))

)
+ max

δa

(
λa(δa)

γ
(1− e−γ(s+δa−ra))

)
= 0

θ(s, q, T ) = qs.

(2.10)

• Using the first-order optimality condition, the problem can be transformed
into the following one:{

θt + 1
2σ

2θss − 1
2σ

2γθ2
s + A

k+γ

(
e−kδ

a
+ e−kδ

b
)

= 0

θ(s, q, T ) = qs.
(2.11)

• They consider an asymptotic expansion of θ about q, and higher order terms
are assumed to be small enough to be negligible. By considering the coefficients
of q and q2, we obtained the indifference price

r(s, q, t) =
rb(s, q, t) + ra(s, q, t)

2
= s− qγσ2(T − t) (2.12)

and the bid-ask spread

δb + δa = γσ2(T − t) +
2

γ
ln
(

1 +
γ

k

)
. (2.13)
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3 Motivations

• The economic setting of the HFT problem is similar. The main differences
are the nature of “true” price of the underlying asset, the choices of order
types and the objective functions.

• It seems that the existing literature paid more attention to trading strategies
in a single agent’s framework while relatively little attention has been paid to a
multi-agent case. Part of the reason for this is that the accounting for multiple
agents leads to
(i) high dimensional problems and
(ii) complicated interactions, and
(iii) typically renders the analysis intractable using standard techniques
in stochastic optimal control.

• Intuitively speaking, other than in economic field, large population dynamical
multiple-agent competitive phenomena occur in various other field including
communication networks, biological systems and social sciences.
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• We extend Avellaneda-Stoikov (2008)’s quantitative model for a single agent
to the case of multiple agents, and investigate the optimal High Frequency Trad-
ing (HFT) strategy in a competitive trading environment.

• Our research work contributes to the HFT literature in various aspects:

(i) We derive the optimal bid and ask prices for each agent when the agent is
informed the severity of the competition (for example, how many active agents
are in the market)

(ii) We compare quoting prices with those obtained in Avellaneda and Stoikov
(2008) to shed some lights on trading competition in the market

(iii) We also conduct comparison of the profit generated by agents in competi-
tive markets with that in single agent markets. This comparison may hopefully
enhance our understanding on how HFT agents gain profit by providing stock
liquidity.
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4 The Limit Order Book Rates

• (Single-agent). In Avellaneda-Stoikov’s model, the arrival rates of market
buy/sell orders that will reach a monopolistic agent is given by

λa(δ) = λb(δ) = Ae−kδ

where δ represents the distance of a LO from the mid-price.

• (Multi-agent). In the case of multi-agent market under competition (e.g.,
N agents), suppose that agents’ impacts on the overall frequency of orders

λa(δa1, . . . , δ
a
N) and λb(δb1, . . . , δ

b
N)

are “separable” and have an “identical functional form”, i.e.,

λa(δa1, · · · , δaN) = f1(δa1)f2(δa2) · · · fN(δaN) and fi(δ
a
i ) = f (δai )

βi.

• Here βi describes Agent i’s impact on orders’ overall frequency.
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• The assumption that the intensities are “separable” and of “identical form”
means that in our framework, the market is assumed to be perfect (no asym-
metric information risk) and the sensitivity of the market demand with respect
to individual supply changes remain the same.

• Then we have
λa(δa1, . . . , δ

a
N) = Ae−k(β1δ

a
1+···+βNδaN ).

• Furthermore, if the distribution of the size of orders Q obeys a “power law”

fQ(x) ∝ x−1−α

and the market impact follows a “log law”, i.e.,

∆p ∝ ln(Q)

then it can be shown that

λai = Ae−k(β1δ
a
1+···+βNδaN )e−(1− 1

N )βiδ
a
i
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5 The Multiple-Agent Problem

5.1 The Basic Model

• Assume that the mid-price evolves according to

dSt = σdWt

• Each agent (e.g., Agent i) has controls over his ask/bid prices pai (t) and pbi(t)
during the trading horizon [0, T ]

• The wealth (in cash) of Agent i jumps whenever there is a buy or a sell order
executed

dXi(t) = pai (t)dN
a
i (t)− pbi(t)dN b

i (t)

where
Na
i (t) ∼ Poi(λai (t)) and N b

i (t) ∼ Poi(λbi(t))

with intensities given by{
λai (t) = Ae−k(β1δ

a
1+···+βNδaN )e−βi(1−

1
N )δai

λbi(t) = Ae−k(β1δ
b
1+···+βNδbN )e−βi(1−

1
N )δbi

(5.1)
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• The number of shares held by Agent i, qi(t), satisfies

dqi(t) = dN b
i (t)− dNa

i (t) .

• Let
δai (t) = pai (t)− St and δbi (t) = St − pbi(t)

Agent i’s mark-to-market wealth

Yi = Xi + qiS

evolves according the following dynamics:

dYi(t) = δai (t)dN
a
i (t) + δbi (t)dN

b
i (t) + σqi(t)dWt (5.2)

• For any agent (e.g., Agent i), suppose his objective is to find the optimal
control for

ui(s, xi, qi, t) = max
δai ,δ

b
i

Et [− exp(−γiYi(T ))] (5.3)
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5.2 An Inactive Agent

• Consider an inactive agent i, who does not have any LOs and simply holds
an inventory of qi stocks until the terminal time T . It is a special case of the
feedback control problem in which (δai , δ

b
i ) = (∞,∞). Under this setting,

ui(s, xi, qi, t) = − exp(−γixi) exp(−γiqis) exp

(
γ2
i q

2
i σ

2(T − t)
2

)
(5.4)

which is the same as the one calculated in the monopolistic market.
• The reservation bid and ask prices are given implicitly by the relations{

ui(s, xi − rbi (s, qi, t), qi + 1, t) = ui(s, xi, qi, t)
ui(s, xi + rai (s, qi, t), qi − 1, t) = ui(s, xi, qi, t)

(5.5)

which means that the agent is indifferent between keeping inactive and buying
one stock at the reservation bid price rbi (or, selling one stock at the reservation
ask price rai ). It is straightforward to calculate that{

rbi (s, qi, t) = s− (1 + 2qi)
γiσ

2(T−t)
2

rai (s, qi, t) = s + (1− 2qi)
γiσ

2(T−t)
2

(5.6)

and hence the reservation (or indifference) price is given by

ri(s, qi, t) =
rai (s, qi, t) + rbi (s, qi, t)

2
= s− qiγiσ2(T − t) (5.7)
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5.3 An Active Agent

Market 1

2

3

· · ·

N

• In general, it is difficult determine the optimal quoting strategies for dealers
in a competitive market.

• In the market, each active agent’s action depends not only on his
own but also his competitor’s characteristics.

• They all need to solve a relatively complex Dynamic Programming (DP)
problem than the one encountered in the single dealer case.
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5.3.1 The One-period Model

tn−1 tn

• Assume that trades occur immediately after time tn−1. Agents choose their
bid/ask quotes at the beginning of the trading session, tn−1, defined through

the controls (δi,bn−1, δ
i,a
n−1)Ni=1.

• These quotes influence the arrival rates of market orders over the time interval
(tn−1,, tn). By Eq. (5.1), the arrival rates take the following forms:{

λi,an−1 = Ae−k(β1δ
1,a
n−1+···+βNδ

N,a
n−1)e−(1− 1

N )βiδ
i,a
n−1

λi,bn−1 = Ae−k(β1δ
1,b
n−1+···+βNδ

N,b
n−1)e−(1− 1

N )βiδ
i,b
n−1.

(5.8)

• For any agent in this competitive market, the objective is to determine the
optimal bid/ask quotes to maximize his own expected utility function:

V i(sn−1, x
i
n−1, γ1, · · · , γN , q1

n−1, · · · , qNn−1, tn−1)
= max

δ
i,a
n−1,δ

i,b
n−1

{
E
[
− exp(−γi

(
X i
T + qiTST

)
)|Fn−1

]}
(5.9)
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• For any agent, he can only determines his own bid/ask quotes δi,bn−1 and δi,an−1.
However, the stochastic feedback problem is also related to other agents’ bid/ask

quotes δ1,b
n−1, · · · , δ

N,b
n−1 and δ1,a

n−1, · · · , δ
N,a
n−1.

• Suppose all agents achieve their Nash equilibrium in this game problem, then
the optimal quoting policy in the one-period case is

δi,an−1 =
1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − tn−1)

2
(−2qin−1 + 1)

δi,bn−1 =
1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − tn−1)

2
(2qin−1 + 1)

(5.10)

and Agent i’s utility is given by

V i(sn−1, x
i
n−1, γ1, · · · , γN , q1

n−1, · · · , qNn−1, tn−1)

= − exp
(
−γi(xin−1 + qin−1sn−1)

)
exp

(
γ2
i σ

2(qin−1)2(T − tn−1)

2

)
[
1− γi∆tn−1

(k+1− 1
N )βi+γi

(
λi,an−1 + λi,bn−1

)] (5.11)

where ∆tn−1 = tn − tn−1.
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We remark that

(i) Only in the one-period case, agents’ bid/ask quotes are independent of their
competitors. However, even in the one-period case, their value functions are
not independent of the inventory position and other parameters, such as risk
aversion of their competitors.

(ii) Agent i’s bid-ask spread

δi,bn−1 + δi,an−1 =
2

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+ γiσ

2(T − tn−1)

is independent of the inventory. After taking a first-order approximation of
the order arrival terms, we have

λi,an−1 + λi,bn−1 = A

2− (k + 1− 1

N
)βi(δ

i,a
n−1 + δi,bn−1)− k

∑
j 6=i

βj(δ
j,a
n−1 + δj,bn−1) + · · ·+


where the linear term does not depend on the inventory variables. There-
fore, if we substitute the approximation into Eq. (5.11), we arrive at the
conclusion that Agents’ utilities depend only on their own inventories. We
define this approximation as

f i(sn−1, x
i
n−1, q

i
n−1, γ1, · · · , γN , tn−1)
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which equals

− exp
(
−γi(xin−1 + qin−1sn−1)

)
exp

(
γ2
i σ

2(qin−1)2(T − tn−1)

2

)
hin−1

where

hin−1 = 1− Aγi∆tn−1

(k + 1− 1
N )βi + γi

{
2− (k + 1− 1

N
)βi

[ 2

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+ γiσ

2(T − tn−1)
]
− k

∑
j 6=i

βj

[ 2

γi
ln

(
1 +

γj

(k + 1− 1
N )βj

)
+ γjσ

2(T − tn−1)
]}
.

(iii) Notice that

V i(sn−1, x
i
n−1, γ1, · · · , γN , q1

n−1, · · · , qNn−1, tn−1)

= − exp
(
−γi(xin−1 + qin−1sn−1)

)
exp

(
γ2
i σ

2(qin−1)2(T − tn−1)

2

)
[
1− γi∆tn−1

(k+1− 1
N )βi+γi

(
λi,an−1 + λi,bn−1

)]
> − exp

(
−γi(xin−1 + qin−1sn−1)

)
exp

(
γ2
i σ

2(qin−1)2(T − tn−1)

2

)
which means that active agents will always have advantage over the inactive
agents.
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5.3.2 The Two-period Model

tn−2 tn−1 tn

• Assume that agents may only trade in the intervals (tn−2, tn−1) and (tn−1, tn).
They can only choose their bid/ask quotes at time tn−2 and tn−1. Suppose
trades occur immediately after time tn−2 and tn−1. Adopting the above linear
approximation, we have

δi,bn−2 =
1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − tn−2)

2
(2qin−2 + 1)

δi,an−2 =
1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − tn−2)

2
(−2qin−2 + 1)

(5.12)

and the utility is given by

V i
(
sn−2, x

i
n−2, γ1, · · · , γN , q1

n−2, · · · , qNn−2, tn−2

)
= − exp(−γi(xin−2 + qin−2sn−2)) exp

(
γ2
i σ

2(qin−2)2(T − tn−2)

2

)
[
1− γi∆tn−2

(k+1− 1
N )βi

(
λi,an−2 + λi,bn−2

)]
hin−1

(5.13)

where ∆tn−2 = tn−1 − tn−2.

26



• We remark that the spread

δi,bn−2 + δi,an−2 =
2

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+ γiσ

2(T − tn−2)

is independent of the inventory. By taking a first-order approximation of the
order arrival terms, we have

λi,bn−2 + λi,an−2 = A

2− (k + 1− 1

N
)βi(δ

i,a
n−2 + δi,bn−2)− k

∑
j 6=i

βj(δ
j,a
n−2 + δj,bn−2) + · · ·+

 .
The linear term does not depend on the inventory. Similar to the one-period

case, substituting the linear approximation into Eq. (5.12), one can get an
approximation of the utility V i, i.e.,

f i(sn−2, q
i
n−2, x

i
n−2, γ1, · · · , γN , tn−2)

which equals to

− exp(−γi(xin−2 + qin−2sn−2)) exp

(
γ2
i σ

2(qin−2)2(T − tn−2)

2

)
hin−2h

i
n−1

and only depends on the inventory qin−2.
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5.3.3 The Multi-period Model

By repeating the argument of this analysis, one can get the following result for
the multi-period model:

• In the n-period model, agents’ optimal bid/ask quotes are given by
δi,bl =

1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − tl)
2

(2qil + 1)

δi,al =
1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − tl)
2

(−2qil + 1)
(5.14)

and their utilities are

V i
(
sl, x

i
l, γ1, . . . , γN , q

1
l , . . . , q

N
l , tn−2

)
= − exp(−γi(xil + qilsl)) exp

(
γ2
i σ

2(qil)
2(T − tl)
2

)
[
1− γi∆tl

(k+1− 1
N )βi

(
λi,al + λi,bl

)]∏n−1
m=l+1 h

i
m

(5.15)

where ∆tl = tl+1 − tl.
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5.3.4 The Continuous Model

In every step of the back-forward model, we adopt the first-order approxima-
tion of the arrival terms appearing in the utility function. Then we find that
an approximate agent’s utility functions depend only on their own inventories.
We then consider the case of continuous model. Define the approximate utility
as ui(s, xi, qi, t).

The following theorem results from applying the principle of Dynamic Program-
ming (DP).

• The optimal bid/ask quotes in dealer markets under competition are given by
δi,bt =

1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − t)
2

(2qi + 1)

δi,at =
1

γi
ln

(
1 +

γi

(k + 1− 1
N )βi

)
+
γiσ

2(T − t)
2

(−2qi + 1)
(5.16)

and agents’ approximate utility functions under the quoting strategy are greater
than those for the inactive case, i.e.,

ui(s, xi, qi, t) > − exp(−γi(xi + qis)) exp

(
γ2
i q

2
i σ

2(T − t)
2

)
(5.17)
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We remark that

(i) For the “frozen inventory” problem,{
Et[xi + qiST ] = xi + qis

ui(s, xi, qi, t) = − exp(−γixi) exp(−γiqis) exp
(
γ2i q

2
i σ

2(T−t)
2

)
.

For the active dealer, Et[Xi(T ) + qi(T )ST ] = xi + qis + Et

[∫ T
t δ

a
i dN

a
i +

∫ T
t δ

b
idN

b
i

]
> xi + qis

ui(s, xi, qi, t) > − exp(−γixi) exp(−γiqis) exp
(
γ2i q

2
i σ

2(T−t)
2

)
.

This means that active agents using our strategy to quoting always have an
advantage over inactive ones.

(ii) When N = 1, then βi = 1,

δbi + δai = γiσ
2(T − t) +

2

γi
ln
(

1 +
γi
k

)
which coincides with the results in Avellanede and Stoikov (2008).
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6 Numerical Results

• We adopt the algorithm below to solve the problem:

Step 1: Given the state variables at time t, compute δbi and δai for each
agent i, (i = 1, 2, . . . , N)

Step 2: At time t + dt, the state variables are updated:
with probability λai (δ

a
i )dt, Agent i’s inventory decreases by 1,

wealth increases by s + δai ;
with probability λbi(δ

b
i )dt, Agent i’s inventory increases by 1,

wealth decreases by s− δbi .
The mid-price is updated by a random increment ±σ

√
dt.

• Suppose that there are N dealers in a market. In the numerical experiments,
we assume βi’s to be identical, i.e., βi = 1/N (i = 1, 2, . . . , N). As far as our
simulation is concerned, we chose the following parameters:

s = 100, t = 0, T = 1, σ = 2, dt = 0.005, qi = 0, γi = 0.1, k = 1.5, A = 140

The values of the parameters are chosen to be the same as those in Avellaneda
& Stoikov (2008).

• We show the case N = 2 and βi = 0.5 for i = 1, 2.
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Figure 3: The mid-price and the optimal bid-ask quotes of one monopolistic dealer.
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(a) Dealer 1
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(b) Dealer 2

Figure 4: The mid-price and the optimal bid-ask quotes of two dealers.
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6.1 The Effect of N

Table 6.1.1: 1000 simulations of one dealer with γ = 0.1 and β1 = 1.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1.49 64.26 5.68 0.20 3.40

Table 6.1.2: 1000 simulations of two dealers with γi = 0.1 and βi = 0.5, N = 2.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 2.11 29.15 6.09 -0.02 2.88
Dealer 2 2.11 29.40 6.22 0.08 2.79

Table 6.1.3: 1000 simulations of three dealers with γi = 0.1 and βi = 1/3, N = 3.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 2.79 15.69 5.65 0.14 2.51
Dealer 2 2.79 15.85 5.69 -0.11 2.58
Dealer 3 2.79 15.88 5.53 -0.01 2.44

Table 6.1.4: 1000 simulations of seven dealers with γi = 0.1 and βi = 1/7, N = 7.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 5.40 1.76 2.34 0.028 0.79
Dealer 2 5.40 1.93 2.52 -0.045 0.84
Dealer 3 5.40 1.95 2.57 0.003 0.82
Dealer 4 5.40 1.79 2.46 -0.03 0.80
Dealer 5 5.40 1.83 2.49 0.003 0.79
Dealer 6 5.40 1.86 2.50 -0.001 0.83
Dealer 7 5.40 1.86 2.60 -0.019 0.86
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6.2 Sensitivity Study of γ

•
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Figure 5: γ1 = 0.01, γ2 = 1 and β1 = β2 = 0.5

Table 6.2.1: 1000 simulations of two dealers with γ1 = 0.01, γ2 = 1 and βi = 0.5.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 2.01 23.97 7.44 0.07 4.30
Dealer 2 3.39 17.98 4.25 -0.074 1.61
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Figure 6: γ1 = 0.01, γ2 = 0.1, γ3 = 1 and β1 = β2 = β3 = 1/3

Table 6.2.2: 1000 simulations of three dealers with γ1 = 0.01, γ2 = 0.1, γ3 = 1 and βi = 1/3.

Agent Average Spread Profit Std (Profit) qT Std (qT ).
Dealer 1 2.77 14.36 6.26 -0.09 3.43
Dealer 2 2.79 14.21 5.68 -0.01 2.70
Dealer 3 3.74 10.99 3.74 0.08 1.47
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6.3 Sensitivity Study of Initial Inventory Positions

•
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Figure 7: γ1 = γ2 = 0.1, β1 = β2 = 0.5, q1 = 10 and q2 = 1.

Table6.3.1: 1000 simulations of two dealers with γ1 = γ2 = 0.1, β1 = β2 = 0.5, q1 = 10 and q2 = 1.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 2.11 14.85 19.59 0.19 2.94
Dealer 2 2.11 30.24 6.34 -0.13 3.00
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Table 6.3.2: 1000 simulations of two dealers with γ1 = γ2 = 0.1, β1 = β2 = 0.5, q1 = 50 and q2 = 0.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 2.11 -391.98 84.14 2.09 2.99
Dealer 2 2.11 37.55 12.45 -1.98 2.91

Table 6.3.3:1000 simulations of two dealers with γ1 = γ2 = 0.01, β1 = β2 = 0.5, q1 = 50 and q2 = 0.

Agent Average Spread Profit Std (Profit) qT Std (qT )
Dealer 1 2.01 13.11 40.42 25.31 4.74
Dealer 2 2.01 32.69 16.18 -7.12 4.57
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7 Summary

• A framework for modeling and investigating the optimal HFT strategies in
a competitive market is proposed. The modeling framework is built based on
Avellande-Stoikov’s quantitative model for a monopolistic agent.

• We recursively derived an approximate optimal bid/ask prices for each agent
in the financial market when informed the severity of the competition.

• We also analyze the effect of various parameters in our model on the bid-ask
quotes and profits of trading.

• Further works:
(i) Take in to account the presence of additional market factors, such as order
handling costs, asymmetric information and inter-dealer trading, in our model;
(ii) Consider a more general model for the mid-price;
(iii) Combine the use of limit orders and market orders.

38



References

[1] M. Avellaneda and S. Stoikov (2008), High-frequency trading in a limit order book, Quantitative Finance, 8, 217–224.

[2] J. Bouchaud, M. Mezard and M. Potters (2002), Statistical properties of stock order books: empirical results and models,
Quantitative Finance, 2, 251–256.

[3] E. Bayraktar, and M. Ludkovski (2014), Liquidation in limit order books with controlled intensity, Mathematical Finance, 4,
627–650.
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