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1 Mathematical Modeling

• A mathematical model 2 is a description of a system using mathematical con-

cepts and language. The process of developing a mathematical model is termed

mathematical modeling.

• Mathematical models are used in natural Sciences (such as Physics, Chemistry,

Biology, Earth Science) and Engineering and Technology (such as Computer Sci-

ence and Artificial Intelligence), as well as Social Sciences (such as Economics,

Psychology, Sociology, Political Science), and Management.

• Physicists, engineers, statisticians, operations research analysts, and economists

use mathematical models extensively. A model helps to explain a system, to study

the effects of different components, and to make predictions about behavior and

rational decisions.
2Taken from Wikipedia, the free encyclopedia. (http://en.wikipedia.org/wiki/Mathematical model)
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• Mathematical models can take many forms, including but not limited to Dynam-

ical Systems, Statistical Models, Differential/ DifferenceEquations , etc.

• In general, mathematical models may include logical models. The quality of a

scientific field depends on how well the mathematical models developed on the the-

oretical side agree with the results of repeatable experiments. Lack of agreement

between theoretical mathematical models and experimental measurements

often leads to important advances as better theories are developed.

-All models are wrong, but some are useful (George E. P. Box).

-Any intelligent fool can make things bigger and more complex. It takes a touch of

genius and a lot of courage to move in the opposite direction (Albert Einstein)

- KISS Principle, Keep It Simple and Smart.
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2 Some Problems and Motivations

2.1 A Counting Problem

• How many different ways of adding up 1’s and 2’s to 14?

1 = 1 T1 = 1

2 = 1 + 1, 2 T2 = 2

3 = 1 + 1 + 1, 1 + 2, 2 + 1 T3 = 3

4 = 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2 T4 = 5
... ...
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• We let Tj be the number of ways of adding 1’s and 2’s to j.

• We may have the following relation (Why?):

Tj = Tj−1 + Tj−2.

• This is called an Initial Value Problem (IVP).

• Then you can compute T14 as you know T1 and T2 (Exercise).

T (1) = 1 and T (2) = 2,

For j = 3 : 14,

T (j) = T (j − 1) + T (j − 2);

end;

Output T (14);

Or using EXCEL:

https://hkumath.hku.hk/~wkc/talks/pattern1.xlsx
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Figure 1: The random walk.

2.2 A Probability Problem

• A walker performs a random walk on the grid points from 0 to 5. Each time the

walker tosses a fair coin, the walker moves one step forward if it is a head otherwise

the walker moves one step backward. The walk stops when the random walker is at

position 0 or 5.

• What is the probability that the walker ends up at 0 given that he begins at j

(j = 1, 2, 3, 4)?
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• We let the probability be Tj.

Then we have T0 = 1 and T5 = 0.

Moreover, for j = 1, 2, 3, 4, we have

Tj = 0.5 · Tj+1 + 0.5 · Tj−1.

• This is called a Boundary Value Problem (BVP) (Exercise).

1 0 0 0 0 0

0.5 −1 0.5 0 0 0

0 0.5 −1 0.5 0 0

0 0 0.5 −1 0.5 0

0 0 0 0.5 −1 0.5

0 0 0 0 0 1





T0

T1

T2

T3

T4

T5


=



1

0

0

0

0

0


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

T0

T1

T2

T3

T4

T5


=



1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.8000 −1.6000 −1.2000 −0.8000 −0.4000 0.2000

0.6000 −1.2000 −2.4000 −1.6000 −0.8000 0.4000

0.4000 −0.8000 −1.6000 −2.4000 −1.2000 0.6000

0.2000 −0.4000 −0.8000 −1.2000 −1.6000 0.8000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000





1

0

0

0

0

0




T0

T1

T2

T3

T4

T5


=



1.0

0.8

0.6

0.4

0.2

0.0


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3 Some Mathematical Treatment for Second-order Homogeneous Difference Equations

• The previous problems are second-order homogeneous difference equation

of the following form:

a2Tj+2 + a1Tj+1 + a0Tj = 0, j = 0, 1, 2, . . . , (3.1)

• We seek for solution of the form:

Tj = zj.

If we substitute it into Eq. (3.1), we get the Euler equation:

f (z) = a2z
2 + a1z + a0 = 0.

• The roots are given by

z1 =
−a1 −

√
a21 − 4a0a2
2a2

and

z2 =
−a1 +

√
a21 − 4a0a2
2a2

.
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Case 1: Suppose that z1 ̸= z2 and both are real numbers.

Then both

Tj = c1 · zj1 and Tj = c2 · zj2
are solutions to Eq. (3.1) for any real numbers c1 and c2.

• We can also check that their sum

Tj = c1 · zj1 + c2 · zj2, j = 0, 1, . . . , (3.2)

is also a solution. Therefore it is the general solution to Eq. (3.1).
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Case 2: If z1 = z2 (repeated root), then apart from the solution

Tj = c1 · zj1

another solution will be

Tj = c2 · j · zj1.

Because when we substitute Tj = j · zj1 into Eq. (3.1), we get

zj1 ·
(
j · (a2 · z21 + a1 · z1 + a0) + (2 · a2 · z21 + a1 · z1)

)
and

f (z1) = a2 · z21 + a1 · z1 + a0 = 0

and

z1 · (2 · a2 · z1 + a1) = z1f
′(z1) = 0.

• Therefore the general solution is of the form:

Tj = zj1 · (c1 + c2j), j = 0, 1, . . . , (3.3)
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Case 3: Complex Roots. In this case, we consider the difference equation of the

following form (where a, b ∈ R):

Tj+2 − 2aTj+1 + (a2 + b2)Tj = 0.

• Then a+ bi and a− bi form a pair of complex (conjugate) roots of the equation:

x2 − 2ax + (a2 + b2) = 0.

Then we have the solutions in their polar form:

a + bi = ρ(cos θ + i sin θ)

and

a− bi = ρ(cos θ − i sin θ)

where

ρ =
√
a2 + b2 and tan θ =

∣∣∣∣ba
∣∣∣∣ . (3.4)
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• By de Moivre’s Theorem we have for j ∈ N

(a + bi)j = ρj(cos θ + i sin θ)j = ρj(cos jθ + i sin jθ)

and

(a− bi)j = ρj(cos θ − i sin θ)j = ρj(cos jθ − i sin jθ)

which can be proved by using mathematical induction on n (exercise).

• Thus

A1(a + bi)j + A2(a− bi)j = A1ρ
j(cos jθ + i sin jθ) + A2ρ

j(cos jθ − i sin jθ)

= (A1 + A2)ρ
j cos jθ + i(A1 − A2)ρ

j sin jθ.

• Finally, in all the cases, the parameters (unknowns) can be solved if we are given

extra information such as T0 and T1, the initial conditions.

Exercise: Tj+2 − Tj+1 + Tj = 0 with T0 = 0 and T1 = 1.
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4 A Rabbit Population Problem

• One of the early examples of a recursively defined sequence arises in the writings

of Fibonacci, who was the greatest European Mathematician in the Middle Ages.

• In 1202, Fibonacci posed the following problem about the number of rabbits in a

closed environment. He assumed that a single pair of rabbits is born at the beginning

of a year. We then assume the following conditions:

(i) Rabbit pairs are not fertile during their first month of life but thereafter give

birth to one new male/female pair at the end of every month.

(ii) No death occurs during the year

• The question is: How many rabbits will there be at the end of the year?
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• Let Tj be the number of rabbit pairs alive at the end of month j. T0 = 1, the

initial number of rabbit pairs. We also have T1 = 1

• The number of rabbit pairs at the end of month j is equal to the sum of the

number of rabbit pairs at the end of month j − 1 and the number of

rabbit pairs born at the end of month j.

• The number of rabbit pairs born at the end of month j is equal to the

number of rabbit pairs at the end of month j − 2.

• The recurrence relation (j = 2, 3, . . .) is then given by

Tj = Tj−1 + Tj−2 with T0 = T1 = 1.

Therefore the answer for the Fibonacci’s question is T12 = 233. How?

• In fact, using our techniques in Section 3, we can obtain (Exercise):

Tj =

√
5 + 1

2
√
5

(
1 +

√
5

2

)j

+

√
5− 1

2
√
5

(
1−

√
5

2

)j

.
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5 An Eigenvalue Problem

• To obtain the eigenvalues and eigenvectors of a special n× n matrix:

An =


2 −1 0

−1 2 −1
. . . . . . . . .

−1 2 −1

0 −1 2


• We consider the relation Anv = λv, then we have

(2− λ)v1 − v2 = 0

−v1 + (2− λ)v2 − v3 = 0
... ...

−vj−1 + (2− λ)vj − vj+1 = 0
... ...

−vn−1 + (2− λ)vn = 0

where v = [v1, v2, . . . , vn]
T ̸= 0 is an eigenvector.
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• We define v0 = vn+1 = 0 then we have the difference equations:

−vj−1 + (2− λ)vj − vj+1 = 0 for j = 1, 2, . . . , n.

or

vj+1 − (2− λ)vj + vj−1 = 0 for j = 1, 2, . . . , n.

• Using the result we learned, the solution is of the form:

vj = Bmj
1 + Cmj

2

where B and C are two constants andm1 andm2 are roots of the quadratic equation

m2 − (2− λ)m + 1 = 0 (5.1)

• We remark that m1 ̸= m2. Because if this is the case, we have the solution form:

vj = (B + Cj)mj
1

but v0 = vn+1 = 0 implies that

v0 = 0 = B and vn+1 = 0 = C(n + 1)mn+1
1

and therefore B = C = 0 as m1 ̸= 0.
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Now we have

v0 = 0 = B + C

and

vn+1 = 0 = Bmn+1
1 + Cmn+1

2 .

Thus we have

B = −C and

(
m1

m2

)n+1

= 1 = e2πi

where i =
√
−1. Thus

m1

m2
= e

2sπi
n+1 for s = 1, 2, . . . , n.

• By Eq. (5.1), we have

m1m2 = 1.

Here we have

m1 = e
sπi
n+1 and m2 = e−

sπi
n+1
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• By Eq. (5.1) again, we have

m1 +m2 = 2− λ

and thus we have for s = 1, 2, . . . , n,

λs = 2− (e
sπi
n+1 + e

−sπi
n+1 )

= 2− 2 cos( sπ
n+1) (cos(2θ) = 1− 2 sin2(θ))

= 2− 2(1− 2 sin2( sπ
2(n+1)))

= 4 sin2( sπ
2(n+1)).

Finally we note that for λs, we have j = 1, 2, . . . , n

vj = Bmj
1 + Cmj

2 = B(e
sπi
n+1 − e

−sπi
n+1 ) = 2iB sin

(
jsπ

n + 1

)
.

• As 2iB is just a constant, we have

vs =

[
sin

(
sπ

n + 1

)
, sin

(
2sπ

n + 1

)
, · · · , sin

(
snπ

n + 1

)]T
.
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6 Systems of Difference Equations

6.1 An Epidemic Model: The SIR Model

Modeling the spread of an epidemic was issued by Kermack and McKendrick (1927).

In a closed population of size N , at time t, we let

xt be the population of the susceptible;

yt be the population of the infective;

zt be the population of the removal.

• The total population is assumed to be homogeneously mixed and is constant at

any time t, i.e., xt + yt + zt = N .

• Let β be the infection rate and γ be the removal rate. Decrease rate of

xt+1 ∝ xt and yt. Then the system dynamics can be described as follows:
xt+1 = xt − β · xt · yt
yt+1 = yt + β · xt · yt − γ · yt
zt+1 = zt + γ · yt
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• Suppose β = 0.02 and γ = 0.2.

• The population size N = 100 and initial at t = 0 there is one infective. Using the

difference equations, we know within one week, all people will be infected.

t xt yt zt

0 99.0 1.0 0.0

1 97.0 2.8 0.2

2 91.6 7.6 0.8

3 77.7 20.1 2.2

4 46.5 47.2 6.3

5 2.6 81.7 15.8

6 0.0 69.6 30.4
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6.2 An Economic Model: The Cobweb Model.

• The Cobweb model is an economic theory for studying price fluctuation and market

equilibrium. Let pt be the price, qt be quantity at time t, and the model reads:{
qt = α + βpt−1

pt = γ − δqt

where where α, β > 0, γ, δ > 0 and q0 > 0 are given and therefore p0 = γ − δq0.

• Solving the above two equations, we obtain two first-order linear difference equa-

tions:

qt = α + βγ − βδqt−1

and

pt = γ − αδ − βδpt−1.

It is straightforward to solve for pt and qt, but the long-run behavior of the solutions

are of special interest.
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• Since β > 0, δ > 0, their product βδ > 0, the solutions are thus always oscillatory

with respect to time t.

• As t → ∞, the equilibrium point is

(p∗, q∗) =
(γ − αδ

1 + βδ
,
α + βγ

1 + βδ

)
which is obtained by solving {

q = α + βγ − βδq

p = γ − αδ − βδp.

(1) If 0 < βδ < 1, then the solutions {pt} and {qt} will converge to (p∗, q∗).

(2) If βδ = 1, the solutions will oscillate with finite magnitude.

(3) If βδ > 1, the solutions will oscillate with infinite magnitude.
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6.3 A Transportation Model

• Consider a random walker (traveler) in a network of cities as shown in Figure 2.

The walker travels every day to the cities in the network.

(i) Suppose that at City i (i = 1, 2, 3, 4, 5), the probabilities of traveling to other

adjacent cities are all equal.

(ii) While the probability of staying at the same cite in the next move is assumed to

be zero.

(iii) At time 0 (day 0), the traveler is in City 2.

• Question: What is the probability that at time 7 (day 7) (one week later), the

traveler is found in City 1?
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Figure 2: The random walker and the network.

Observations:

We note that the probability of which city to visit tomorrow (time t+1) will be fixed

if the current city that the traveler visited (time t) is known.

Suppose today the traveler is in City 1 (time t), then with probability 1/4 he will visit

Cities 2,3,4 or 5 tomorrow (time t + 1).

If today the traveler is in City 2 (time t), then with probability 1/3 he will visit Cities

1,3,or 5 tomorrow (time t + 1). But the probability of visiting City 4 is 0.



26

• Problem Formulation:

We first define the transition probability Qij. Here Qij is the probability that the

traveler will make a move to City i given the traveler is now in City j.

Qi1 = 1/4 for i = 2, 3, 4, 5;

Qi2 = 1/3 for i = 1, 3, 5; Qi3 = 1/3 for i = 1, 2, 4;

Qi4 = 1/3 for i = 1, 3, 5; Qi5 = 1/3 for i = 1, 2, 4;

The remaining Qij are all zero. If we know the probabilities, then we can put them

into a matrix:

Q =


0 1/3 1/3 1/3 1/3

1/4 0 1/3 0 1/3

1/4 1/3 0 1/3 0

1/4 0 1/3 0 1/3

1/4 1/3 0 1/3 0

 .
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Let Pi(t) be the probability that the traveler is in City i at time t. Here i = 1, 2, 3, 4, 5

and t = 0, 1, 2, . . . ,.

Now we have

P1(t + 1) = Q12P2(t) +Q13P3(t) +Q14P4(t) +Q15P5(t)

P2(t + 1) = Q21P1(t) +Q23P3(t) +Q25P5(t)

P3(t + 1) = Q31P1(t) +Q32P2(t) +Q34P4(t)

P4(t + 1) = Q41P1(t) Q43P3(t) Q45P5(t)

P5(t + 1) = Q51P1(t) +Q52P2(t) +Q54P4(t)

and

P1(0) = P3(0) = P4(0) = P5(0) = 0 and P2(0) = 1.
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Or



P1(t + 1) = 1/3P2(t) +1/3P3(t) +1/3P4(t) +1/3P5(t)

P2(t + 1) = 1/4P1(t) +1/3P3(t) +1/3P5(t)

P3(t + 1) = 1/4P1(t) +1/3P2(t) +1/3P4(t)

P4(t + 1) = 1/4P1(t) +1/3P3(t) +1/3P5(t)

P5(t + 1) = 1/4P1(t) +1/3P2(t) +1/3P4(t)

and

P1(0) = P3(0) = P4(0) = P5(0) = 0 and P2(0) = 1.

and we are asked to find P1(7).
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• In matrix language, the relation can be written as follows:
P1(t + 1)

P2(t + 1)

P3(t + 1)

P4(t + 1)

P5(t + 1)

 =


0 1/3 1/3 1/3 1/3

1/4 0 1/3 0 1/3

1/4 1/3 0 1/3 0

1/4 0 1/3 0 1/3

1/4 1/3 0 1/3 0




P1(t)

P2(t)

P3(t)

P4(t)

P5(t)

 (6.1)

• If we let

P(t) = [P1(t) P2(t) P3(t) P4(t) P5(t)]
T

then we may write

P(t + 1) = QP(t)

and

P(0) = [P1(0) P2(0) P3(0) P4(0) P5(0)]
T = [0 1 0 0 0]T

and we are asked to find P1(7) of P(7).
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• Using EXCEL/SciLab/MatLab, we compute the followings:

https://hkumath.hku.hk/~wkc/talks/traveler1.xlsx

P(1) P(2) P(3) P(4) P(5) P(6) P(7)

0.3333 0.2222 0.2593 0.2469 0.2510 0.2497 0.2501

0.0000 0.3056 0.1111 0.2376 0.1543 0.2095 0.1728

0.3333 0.0833 0.2593 0.1389 0.2202 0.1656 0.2021

0.0000 0.3056 0.1111 0.2377 0.1543 0.2095 0.1728

0.3333 0.0833 0.2593 0.1389 0.2202 0.1656 0.2021

The answer is then equal to 0.2501 roughly.
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Remark 1: One may consider the long-run probabilities, i.e.,

lim
t→∞

Pi(t) = Pi, i = 1, 2, 3, 4, 5.

Suppose they exist, then they must satisfy

P1 = 1/3P2 +1/3P3 +1/3P4 +1/3P5

P2 = 1/4P1 +1/3P3 +1/3P5

P3 = 1/4P1 +1/3P2 +1/3P4

P4 = 1/4P1 +1/3P3 +1/3P5

P5 = 1/4P1 +1/3P2 +1/3P4

(6.2)

and

P1 + P2 + P3 + P4 + P5 = 1.

•What is the meaning of Pi? It means when the traveling process has been continued

for a long time (in equilibrium), the probability of finding the traveler in City i will

be Pi
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• Here by symmetry of the network, P2 = P3 = P4 = P5 = P , we have

P1 + 4P = 1 and P1 = 4/3P (the first equation).

Hence P1 = 1/4 and P2 = P3 = P4 = P5 = P = 3/16.

lim
t→∞

P(t) =

[
4

16

3

16

3

16

3

16

3

16

]T
.

• The traveler is “spending” 25% of his time in city 1. While the other four cities

will share equally the remaining 75% of his visiting time.

• If we regard a city as a webpage, the traveler as a user on the internet and the

edges as the links. Then webpage 1 is the most important one (rank no. 1) because

the user spends most of his time (25%) on this webpage. The other four webpages

have the same ranking. This is the key idea of Google’s PageRank algorithm.
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Remark 2: In the example, we ignore the transportation cost which may affect

the traveler’s decision. Suppose the highways connecting the cities have different

fees (costs) given in the following table.

City 1 2 3 4 5

1 ∞ 20 25 40 50

2 20 ∞ 20 ∞ 40

3 25 20 ∞ 25 ∞
4 40 ∞ 25 ∞ 10

5 50 40 ∞ 10 ∞

Question: How to model the probabilities in the matrix of Eq. (6.1)?

Let Qij be the probability that the traveler will move to City i tomorrow given that

today he is in City j. Let Cij be the cost of taking the highway from City i to City

j (in the above table). What is an appropriate relation between Qij and Cij?
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• One possible and reasonable suggestion is to assume that Qij is a decreasing

function in Cij. For example,

(a) Qij ∝ 1
Cij

3

(b) Qij ∝ e−Cij

Suppose we adopt (a), then let us compute Qi1 for i = 1, 2, 3, 4. We have (for some

K > 0),

Q21 =
K

20
, Q31 =

K

25
, Q41 =

K

40
, Q51 =

K

50
.

To determine K, we note that (why?)

Q21 +Q31 +Q41 +Q51 = 1.

Hence we have

K(0.2 + 0.25 + +0.025 + 0.02) = 1 or K = 7.4074.

3You may consider Qij ∝ 1
Cij+1

if Cij is too close to 0
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• We can compute the remaining probabilities similarly.

• We have a new system as follows:
P1(t + 1)

P2(t + 1)

P3(t + 1)

P4(t + 1)

P5(t + 1)

 =


0.0000 0.4000 0.3077 0.1515 0.1379

0.3704 0.0000 0.3846 0.0000 0.1724

0.2963 0.4000 0.0000 0.2424 0.0000

0.1852 0.0000 0.3077 0.0000 0.6897

0.1481 0.2000 0.0000 0.6061 0.0000




P1(t)

P2(t)

P3(t)

P4(t)

P5(t)


In this case, we have

P(7) = [0.1971 0.1557 0.2104 0.1890 0.2477]T .

and P1(7) = 0.1971.

• By solving the linear system of equations similar to Eq. (6.2), we can show that

lim
t→∞

P(t) = [0.1929 0.1786 0.1857 0.2357 0.2071]T .
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