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Abstract: Incorporating metabolic and gene expression data to

reveal biochemical networks becomes a considerably admitted chal-

lenge. We here propose a promising approach to identify metabolic

biomarkers through integrating available biomedical data and disease-

specific gene expression data. Linear Programming(LP) based method

is utilized to determine flux variability interval, therefore enabling the

analysis of significant metabolites. This application can also be used

for discovering potential novel biomarkers.

A joint work with Limin,Li, Wai-Ki,Ching and other postgraduate

student.
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1 Motivations and Objectives.

• Metabolic diseases, can be directly caused by the lack of essen-

tial metabolites. Analysis of metabolite networks has been used in

the past decades.

- J.G. Reich and E.E. Selkov, Energy Metabolism of the Cell: A

Theoretical Treatise, New York: Acad.Press, 1981.

- J.Varner and D.Ramkrishna, Understanding the Control of Metabolism,

London: Portland.Press, 1996.

- Metabolic engineering from a cyberneic perspective.1.Theoretical

preliminaries, Biotechnol.Prog.(15)407-425, 1999.
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Admitted Challenge

{
Metabolic Data
Gene Expression Data

Incorporating metabolic and gene expression data to reveal biochem-

ical networks.

Contribution

We propose a promising approach to identify metabolic biomarkers.
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2 Metabolite Network Description

• Stoichiometry.

(1)M h2o c+(1)M mi134p c→(1)M mi34p c+(1)M pi c

M h2o c M mi134p c M mi34p c M pi c
Stoichimetry −1 −1 1 1

Table 1.

• Enzymes involved in Reactions
’LOCUS: 10846*TRANSCRIPT:1*ABBREVIATION:PDE10A*’

↓
PDE10A

• Flux lowerbound and upperbound.
[0,1000] ([-1000,1000] if reaction is reversible)
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Within the human metabolic network, there are

• 3742 reactions

• 2766 metabolites

• 1905 genes
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3 Expression Levels in Reactions.

To determine expression levels in reactions, we have to determine

expression levels in genes.

• Gene Expression

New Signal =
signal− µsignal

σsignal
.

µsignal is the average signal value, σsignal is the standard deviation

of the signal vector.

Binary Expressions :{
0, New Signal < 0;
1, New Signal ≥ 0.
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• Reaction Expression

Those highly expressed reactions are defined if all the participating

genes are highly expressed, otherwise, we define the reactions to be

lowly expressed.

Gene1 Gene2 Gene3 Gene4
R1 0 1 1 1
R2 1 1 1 1

Table 2.

R1 is lowly expressed, R2 is highly expressed.
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4 LP Model to determine Flux interval

• The Mixed Integer Programming Model

max
y+i ,y−i ,v

∑
i∈RH

(y+i + y−i ) +
∑

i∈RL
y+i

S · v = 0
vmin ≤ v ≤ vmax

vi + y+i (vmin,i − ϵ) ≥ vmin,i, i ∈ RH

vi + y+i (vmax,i + ϵ) ≤ vmax,i, i ∈ RH

vi(1− y+i ) ≤ v ≤ vmax,i(1− y+i ), i ∈ RL

y+i , y−i = {0,1}.
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v: flux for all the reactions;

S : stoichiometric matrix

ϵ : the flux threshold, and it is chosen to be 1 (see Reference)

RH, RL : highly and lowly expressed reactions.

y+i , y−i : reaction i is active or inactive

-L.Li and X.Zhou and W.Ching and P.Wang Predicting enzyme tar-

gets for cancer drugs by profiling human Metabolic reactions in

NCI-60 cell lines, BMC Bioinformatics , (11)501, 2010.
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• The Linear Programming Model

max
y+i ,y−i ,v

∑
i∈RH

(y+i + y−i ) +
∑

i∈RL
y+i

S · v = 0
vmin ≤ v ≤ vmax

vi + y+i (vmin,i − ϵ) ≥ vmin,i, i ∈ RH

vi + y+i (vmax,i + ϵ) ≤ vmax,i, i ∈ RH

vi(1− y+i ) ≤ v ≤ vmax,i(1− y+i ), i ∈ RL

0 ≤ y+i , y−i ≤ 1.

Interpretation: In the LP model, y+i and y−i represent the likelihoods

for reaction i to be active which are more realistic. Furthermore,

the LP model is much easier to handle when compared to the MILP

model.

11



Alternate Optimal Solutions to Determine Flux Interval

Multiple feasible solutions exist in the LP model.

Emphasis:

Investigate the multiplicity of solutions to find the lower bound and

upper bound for each flux.

Technical Support:

All the flux ranges can be determined through solving a series of LP

problems(See Reference ).

- R.Mahadevan and C.H.Schilling The effects of alternate opti-

mal solutions in constraint-based genome-scale metabolic models,

Metabolic Engineering, (5)264-276, 2003.
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Flux Profiles in Disease/Normal Sample

Using Expression Levels for Normal Sample, we obtain Flux interval

for the Normal with LP model.

Using Expression Levels for Disease Sample, we obtain Flux interval

for the Disease with LP model.

⇓
FN Lower, lower bound of flux profiles in normal sample;
FN Upper, upper bound of flux profiles in normal sample;
FD Lower, lower bound of flux profiles in disease sample;
FD Upper, upper bound of flux profiles in disease sample.
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5 Metabolite Biomarker Discovery

• Significant Reaction Identification

[l1, u1] : flux intervals for disease sample.

[l2, u2] flux intervals for normal sample.

⇓

Significant Reactions will be selected if u1 ≤ l2 or u2 ≤ l1.

• Significant Metabolite Discovery

In each disease, two pairs of control and disease sample are used.

⇓

Two sets of Significant Reactions ⇒ Reaction Markers(Overlap

of the Two!!)⇒ Metabolite Biomarkers: Boundary Metabo-

lites
14
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• Materials

Gene Expression Data: GEO Data sets(log 2 transformed)

• Diabetes: 12558 genes

Platform: GPL8300

• Obesity: 54675 genes

Platform: GPL570

Human Metabolite Network Data: BiGG Database
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6 Results

Index Reactions
1238 ‘[e] : ac 
 ac′

1951 ‘gcald[c] + h2o[c] + nad[c] → glyclt[c] + (2)h[c] + nadh[c]′

2297 ‘eandrstrn[r] + h[r] + nadph[r] → andrstandn[r] + h2o[r] + nadp[r]′

2357 ‘atp[c] + xylu−D[c] → adp[c] + h[c] + xu1p−D[c]′

2700 ‘dcdp[c] + h2o[c] → dcmp[c] + h[c] + pi[c]′

Table 3.Significant Reactions for Diabetes

Index Reactions
158 ‘4abut[m] + akg[m] 
 glu− L[m] + sucsal[m]′

248 ‘ac[m] + atp[m] + coa[m] → accoa[m] + amp[m] + ppi[m]′

582 ‘apoC − Lys[c] + btamp[c] → amp[c] + apoC − Lys btn[c] + h[c]′

1506 ‘[e] : pydam 
 pydam′

3682 ‘(2)na1[e] + uri[e] → (2)na1[c] + uri[c]′

Table 5.Significant Reactions for Obesity

17



ReactionsIndex Genes
1238 ‘NONE’
1951 ‘ALDH1A1’ ‘ALDH1A2’ ‘ALDH1A3’ ‘ALDH3A1’

‘ALDH3A2’ ‘ALDH3B1’ ‘ALDH3B2’ ‘ALDH7A1’

‘ALDH9A1’
2297 ‘HSD3B2’
2357 ‘KHK’
2700 ‘NONE’

Table 4. Significant Genes for Diabetes

ReactionsIndex Genes
158 ‘ABAT’
248 ‘ACAS2L’
582 ‘HLCS’
1506 ‘NONE’
3682 ‘SLC28A3’

Table 6. Significant Genes for Obesity
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Diabetes(For Illustration)

‘ALDH’ : related to the increasing risk of large vessel disease in

diabetes.

‘HSD3B2’ : highly expressed with regulation of FXR (farnesoid X

receptor) where FXR agonists are emerging therapeutic treatment

of diabetes.

The value of KHK as a pharmacological target needs testing : po-

tential biomarker in diabetes treatment.

‘ac[e]’ : an inhibitor in clinical trials.

‘nadph’, ‘nadp’ : significant in that l-xylulose is intensively used in

diabetes diagnosis.

‘pi’ : a key component in the disturbance of diabetes.
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Concluding Remarks

Linear Programming (LP) based strategy was used to obtain flux

profiles in both disease and normal sample.

Gene expression data for two pairs of sample in both disease and

normal status strengthens the significance of discovered genes or

metabolites which can be deemed as potential biomarkers.

The integration of gene expression levels with genome-scale human

metabolic network data provides a new way to systematically analyze

potential biomarkers.
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